File size: 37,199 Bytes
1c69333 be9c6f5 1c69333 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 |
###########################################################################################################################################
#||- - - |8.19.2025| - - - || HEBBIAN BLOOM || - - - | 1990two | - - -||#
###########################################################################################################################################
"""
Mathematical Foundation & Conceptual Documentation
-------------------------------------------------
CORE PRINCIPLE:
Combines Hebbian learning ("neurons that fire together, wire together") with
Bloom filter probabilistic membership testing to create self-organizing
associative memory systems that adapt based on usage patterns.
MATHEMATICAL FOUNDATION:
=======================
1. HEBBIAN LEARNING RULE:
Δw_ij = η * a_i * a_j
Where:
- w_ij: connection strength between neurons i and j
- η: learning rate (plasticity parameter)
- a_i, a_j: activation levels of neurons i and j
In our context:
- Strengthens hash function weights for co-occurring patterns
- Adapts activation thresholds based on usage frequency
- Creates associative links between related items
2. BLOOM FILTER MATHEMATICS:
Optimal bit array size: m = -n * ln(p) / (ln(2))²
Optimal hash functions: k = (m/n) * ln(2)
Where:
- n: expected number of items
- p: desired false positive rate
- m: bit array size
- k: number of hash functions
False positive probability: P_fp ≈ (1 - e^(-kn/m))^k
3. CONFIDENCE ESTIMATION:
C_total = (C_bit + C_hash + C_access) / 3
Where:
- C_bit: confidence from bit array activation strength
- C_hash: confidence from hash activation patterns
- C_access: confidence from historical access frequency
4. TEMPORAL DECAY:
w_t+1 = γ * w_t
Where γ ∈ [0.9, 0.999] is the decay rate, implementing forgetting.
CONCEPTUAL REASONING:
====================
WHY HEBBIAN + BLOOM FILTERS?
- Traditional Bloom filters use static hash functions
- Real-world data has temporal and associative patterns
- Hebbian learning enables dynamic adaptation to these patterns
- Results in more efficient memory utilization and better retrieval
KEY INNOVATIONS:
1. **Learnable Hash Functions**: Neural networks that adapt their mappings
2. **Associative Strengthening**: Related items develop similar hash patterns
3. **Confidence Estimation**: Multi-factor confidence scoring
4. **Temporal Adaptation**: Gradual forgetting prevents overfitting
5. **Ensemble Filtering**: Multiple filters with voting for robustness
APPLICATIONS:
- Caching systems that learn access patterns
- Recommendation engines with temporal adaptation
- Memory systems for neural architectures
- Similarity search with learned associations
COMPLEXITY ANALYSIS:
- Space: O(m + n*d) where m=bit array size, n=items, d=vector dimension
- Time: O(k*d) per operation where k=hash functions
- Learning: O(d²) for co-activation matrix updates
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
import hashlib
from collections import defaultdict, deque
from typing import List, Dict, Tuple, Optional, Union
SAFE_MIN = -1e6
SAFE_MAX = 1e6
EPS = 1e-8
#||- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 𓅸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -||#
def make_safe(tensor, min_val=SAFE_MIN, max_val=SAFE_MAX):
tensor = torch.where(torch.isnan(tensor), torch.tensor(0.0, device=tensor.device, dtype=tensor.dtype), tensor)
tensor = torch.where(torch.isinf(tensor), torch.tensor(max_val, device=tensor.device, dtype=tensor.dtype), tensor)
return torch.clamp(tensor, min_val, max_val)
def safe_cosine_similarity(a, b, dim=-1, eps=EPS):
if a.dtype != torch.float32:
a = a.float()
if b.dtype != torch.float32:
b = b.float()
a_norm = torch.norm(a, dim=dim, keepdim=True).clamp(min=eps)
b_norm = torch.norm(b, dim=dim, keepdim=True).clamp(min=eps)
return torch.sum(a * b, dim=dim, keepdim=True) / (a_norm * b_norm)
def item_to_vector(item, vector_dim=64):
"""Convert arbitrary item to fixed-size vector representation.
Uses different encoding strategies:
- Strings: MD5 hash-based encoding
- Numbers: Sinusoidal positional encoding
- Tensors: Flattening with padding/truncation
- Other: Deterministic hash-based random vector
"""
if isinstance(item, str):
# String to vector via hashing
hash_obj = hashlib.md5(item.encode())
hash_bytes = hash_obj.digest()
# Convert bytes to float vector
vector = torch.tensor([b / 255.0 for b in hash_bytes], dtype=torch.float32)
# Pad or truncate to desired dimension
if len(vector) < vector_dim:
padding = torch.zeros(vector_dim - len(vector), dtype=torch.float32)
vector = torch.cat([vector, padding])
else:
vector = vector[:vector_dim]
elif isinstance(item, (int, float)):
# Numeric to vector via sinusoidal encoding
vector = torch.zeros(vector_dim, dtype=torch.float32)
for i in range(vector_dim // 2):
freq = 10000 ** (-2 * i / vector_dim)
vector[2*i] = math.sin(item * freq)
vector[2*i + 1] = math.cos(item * freq)
elif torch.is_tensor(item):
# Tensor to vector via projection
vector = item.flatten().float()
if len(vector) < vector_dim:
padding = torch.zeros(vector_dim - len(vector), dtype=torch.float32, device=vector.device)
vector = torch.cat([vector, padding])
else:
vector = vector[:vector_dim]
else:
# Default: random stable vector based on hash (no global RNG side-effects)
hash_val = hash(str(item)) % (2**31)
gen = torch.Generator(device='cpu')
gen.manual_seed(hash_val)
vector = torch.randn(vector_dim, generator=gen, dtype=torch.float32)
return make_safe(vector)
###########################################################################################################################################
###############################################- - - LEARNABLE HASH FUNCTION - - -#####################################################
class LearnableHashFunction(nn.Module):
"""Neural hash function with Hebbian plasticity.
Implements learnable hash functions that adapt through Hebbian learning,
strengthening patterns that co-occur and developing associative mappings.
Mathematical Details:
- Base hash: h = tanh(W2 * tanh(W1 * x + b1) + b2)
- Hebbian modulation: h_mod = h * tanh(w_hebbian)
- Threshold adaptation: h_thresh = h_mod - θ
- Binary conversion: p = sigmoid(5 * h_thresh)
"""
def __init__(self, input_dim, hash_output_bits=32, learning_rate=0.01):
super().__init__()
self.input_dim = input_dim
self.hash_output_bits = hash_output_bits
self.learning_rate = learning_rate
# Neural hash function
self.hash_network = nn.Sequential(
nn.Linear(input_dim, input_dim * 2),
nn.LayerNorm(input_dim * 2),
nn.Tanh(),
nn.Linear(input_dim * 2, hash_output_bits),
nn.Tanh() # Output in [-1, 1]
)
# Hebbian plasticity parameters
self.hebbian_weights = nn.Parameter(torch.ones(hash_output_bits) * 0.1)
self.plasticity_rate = nn.Parameter(torch.tensor(learning_rate))
# Activity history for Hebbian learning
self.register_buffer('activity_history', torch.zeros(100, hash_output_bits))
self.register_buffer('history_pointer', torch.tensor(0, dtype=torch.long))
# Co-activation tracking
self.coactivation_matrix = nn.Parameter(torch.eye(hash_output_bits) * 0.1)
# Adaptive threshold
self.activation_threshold = nn.Parameter(torch.zeros(hash_output_bits))
def compute_hash_activation(self, item_vector):
"""Compute hash activation pattern for an item."""
# Ensure correct shape/dtype/device
if item_vector.dim() == 1:
item_vector = item_vector.unsqueeze(0)
item_vector = item_vector.to(next(self.hash_network.parameters()).device, dtype=torch.float32)
# Base neural hash
base_hash = self.hash_network(item_vector).squeeze(0)
# Apply Hebbian modulation
hebbian_modulation = torch.tanh(self.hebbian_weights)
modulated_hash = base_hash * hebbian_modulation
# Apply adaptive threshold
thresholded = modulated_hash - self.activation_threshold
# Convert to binary pattern (probabilistic)
hash_probs = torch.sigmoid(thresholded * 10.0) # Sharp sigmoid
return hash_probs, modulated_hash
def get_hash_bits(self, item_vector, deterministic=False):
"""Get binary hash bits for an item."""
hash_probs, _ = self.compute_hash_activation(item_vector)
if deterministic:
hash_bits = (hash_probs > 0.5).float()
else:
hash_bits = torch.bernoulli(hash_probs)
return hash_bits
def hebbian_update(self, item_vector, co_occurring_items=None):
"""Apply Hebbian learning rule: Δw = η * pre * post.
Strengthens connections between co-activated hash bits and updates
the co-activation matrix for associative learning.
"""
hash_probs, modulated_hash = self.compute_hash_activation(item_vector)
# Store activity in history
with torch.no_grad():
ptr = int(self.history_pointer.item())
self.activity_history[ptr % self.activity_history.size(0)].copy_(hash_probs.detach())
self.history_pointer.add_(1)
self.history_pointer.remainder_(self.activity_history.size(0))
# Hebbian weight update: strengthen active bits
plasticity_rate = torch.clamp(self.plasticity_rate, 0.001, 0.1)
# Basic Hebbian rule: Δw = η * pre * post
activity_strength = torch.abs(modulated_hash)
hebbian_delta = plasticity_rate * activity_strength * hash_probs
# Update Hebbian weights
with torch.no_grad():
self.hebbian_weights.data.add_(hebbian_delta * 0.05)
self.hebbian_weights.data.clamp_(-2.0, 2.0)
# Co-activation matrix update if multiple items provided
if co_occurring_items is not None:
self.update_coactivation_matrix(hash_probs, co_occurring_items)
return hash_probs
def update_coactivation_matrix(self, current_activation, co_occurring_items):
"""Update co-activation matrix based on items that occur together."""
with torch.no_grad():
for co_item in co_occurring_items:
co_item_vector = item_to_vector(co_item, self.input_dim).to(current_activation.device)
co_activation, _ = self.compute_hash_activation(co_item_vector)
# Outer product for co-activation strengthening
coactivation_update = torch.outer(current_activation, co_activation)
# Update co-activation matrix
learning_rate = 0.01
self.coactivation_matrix.data.add_(learning_rate * coactivation_update)
self.coactivation_matrix.data.clamp_(-1.0, 1.0)
def get_similar_patterns(self, item_vector, top_k=5):
"""Find historically similar activation patterns."""
current_probs, _ = self.compute_hash_activation(item_vector)
# Compare with history
similarities = []
for i in range(self.activity_history.shape[0]):
hist_pattern = self.activity_history[i]
if torch.sum(hist_pattern) > 0: # Non-zero pattern
similarity = safe_cosine_similarity(
current_probs.unsqueeze(0),
hist_pattern.unsqueeze(0)
).squeeze()
similarities.append((i, float(similarity.item())))
# Sort by similarity
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:top_k]
def apply_forgetting(self, forget_rate=0.99):
"""Apply gradual forgetting to prevent overfitting."""
with torch.no_grad():
self.hebbian_weights.data.mul_(forget_rate)
self.coactivation_matrix.data.mul_(forget_rate)
###########################################################################################################################################
################################################- - - HEBBIAN BLOOM FILTER - - -#######################################################
class HebbianBloomFilter(nn.Module):
"""Probabilistic set membership filter with Hebbian learning.
Combines traditional Bloom filter efficiency with adaptive hash functions
that learn from usage patterns and develop associative mappings.
Key Features:
- Learnable hash functions with neural plasticity
- Confidence-based membership testing
- Associative learning between related items
- Temporal decay for forgetting old patterns
"""
def __init__(self, capacity=10000, error_rate=0.01, vector_dim=64, num_hash_functions=8):
super().__init__()
self.capacity = capacity
self.error_rate = error_rate
self.vector_dim = vector_dim
self.num_hash_functions = num_hash_functions
# Calculate optimal bit array size
self.bit_array_size = self._calculate_bit_array_size(capacity, error_rate)
# Learnable hash functions
self.hash_functions = nn.ModuleList([
LearnableHashFunction(vector_dim, hash_output_bits=32)
for _ in range(num_hash_functions)
])
# Bit array with confidence scores (not just binary)
self.register_buffer('bit_array', torch.zeros(self.bit_array_size))
self.register_buffer('confidence_array', torch.zeros(self.bit_array_size))
# Item storage for association learning
self.stored_items = {}
self.item_vectors = {}
# Usage statistics
self.register_buffer('access_counts', torch.zeros(self.bit_array_size))
self.register_buffer('total_items_added', torch.tensor(0, dtype=torch.long))
# Associative learning parameters
self.association_strength = nn.Parameter(torch.tensor(0.1))
self.confidence_threshold = nn.Parameter(torch.tensor(0.5))
# Temporal decay for forgetting
self.decay_rate = nn.Parameter(torch.tensor(0.999))
def _calculate_bit_array_size(self, capacity, error_rate):
"""Calculate optimal bit array size for given capacity and error rate."""
return int(-capacity * math.log(error_rate) / (math.log(2) ** 2))
def _get_bit_indices(self, item_vector):
"""Get bit indices from all hash functions for an item."""
indices = []
confidences = []
for hash_func in self.hash_functions:
hash_bits = hash_func.get_hash_bits(item_vector, deterministic=True)
# Convert hash bits to index in bit array using binary encoding -> integer -> modulo
weights = (1 << torch.arange(len(hash_bits), device=hash_bits.device, dtype=torch.int64))
bit_index = int((hash_bits.to(dtype=torch.int64) * weights).sum().item())
bit_index = bit_index % self.bit_array_size
# Compute confidence based on hash activation strength
hash_probs, _ = hash_func.compute_hash_activation(item_vector)
confidence = torch.mean(torch.abs(hash_probs - 0.5)) * 2 # Distance from uncertain (0.5)
indices.append(bit_index)
confidences.append(confidence.item())
return indices, confidences
def add(self, item, associated_items=None):
"""Add item to the Hebbian Bloom filter with optional associations.
Args:
item: Item to add to the filter
associated_items: Optional list of items to associate with this item
Returns:
List of bit indices that were set for this item
"""
# Convert item to vector
item_vector = item_to_vector(item, self.vector_dim)
# Store item information
item_key = str(item)
self.stored_items[item_key] = item
self.item_vectors[item_key] = item_vector
# Get bit indices and confidences
indices, confidences = self._get_bit_indices(item_vector)
# Update bit array and confidence array
with torch.no_grad():
for idx, conf in zip(indices, confidences):
self.bit_array[idx] = 1.0
self.confidence_array[idx] = max(float(self.confidence_array[idx].item()), conf)
self.access_counts[idx] += 1
# Apply Hebbian learning to hash functions
for hash_func in self.hash_functions:
hash_func.hebbian_update(item_vector, associated_items)
# Update item count
with torch.no_grad():
self.total_items_added.add_(1)
# Learn associations if provided
if associated_items:
self._learn_associations(item, associated_items)
return indices
def _learn_associations(self, primary_item, associated_items):
"""Learn associations between items using Hebbian principles."""
primary_vector = item_to_vector(primary_item, self.vector_dim)
for assoc_item in associated_items:
assoc_vector = item_to_vector(assoc_item, self.vector_dim)
# Compute similarity
similarity = safe_cosine_similarity(
primary_vector.unsqueeze(0),
assoc_vector.unsqueeze(0)
).squeeze()
# Strengthen hash functions based on similarity
association_strength = torch.clamp(self.association_strength, 0.01, 1.0)
_ = association_strength # keep variable used to respect format
for hash_func in self.hash_functions:
# If items are similar, encourage similar hash patterns
if float(similarity.item()) > 0.5:
hash_func.hebbian_update(primary_vector, [assoc_item])
def query(self, item, return_confidence=False):
"""Query membership with optional confidence estimation.
Args:
item: Item to query
return_confidence: Whether to return confidence score
Returns:
Boolean membership result, optionally with confidence score
"""
item_vector = item_to_vector(item, self.vector_dim)
indices, confidences = self._get_bit_indices(item_vector)
# Check if all bits are set
bit_checks = [self.bit_array[idx].item() > 0 for idx in indices]
is_member = all(bit_checks)
if return_confidence:
# Compute confidence based on multiple factors
bit_confidences = [self.confidence_array[idx].item() for idx in indices]
hash_confidences = confidences
# Combined confidence
bit_conf = np.mean(bit_confidences) if bit_confidences else 0.0
hash_conf = np.mean(hash_confidences) if hash_confidences else 0.0
# Access frequency confidence
access_conf = np.mean([self.access_counts[idx].item() for idx in indices])
access_conf = min(access_conf / 10.0, 1.0) # Normalize
overall_confidence = (bit_conf + hash_conf + access_conf) / 3.0
return is_member, overall_confidence
return is_member
def find_similar_items(self, query_item, top_k=5):
"""Find items similar to query using learned associations (vector + coactivation)."""
query_vector = item_to_vector(query_item, self.vector_dim)
# Precompute query activations and coactivation weights for each hash function
coact_weights = []
for hash_func in self.hash_functions:
q_act, _ = hash_func.compute_hash_activation(query_vector)
# act_q^T M act_i = dot(M^T act_q, act_i)
q_weight = torch.matmul(hash_func.coactivation_matrix.t(), q_act)
coact_weights.append((q_act, q_weight))
similarities = []
for item_key, item_vector in self.item_vectors.items():
# Base cosine similarity in item space
base_sim = safe_cosine_similarity(
query_vector.unsqueeze(0),
item_vector.unsqueeze(0)
).squeeze().item()
# Coactivation similarity averaged over hash functions
co_sim_sum = 0.0
for (hash_func, (q_act, q_weight)) in zip(self.hash_functions, coact_weights):
i_act, _ = hash_func.compute_hash_activation(item_vector)
co_sim_sum += torch.dot(q_weight, i_act).item() / max(1, len(i_act))
co_sim = co_sim_sum / max(1, len(self.hash_functions))
# Blend scores (alpha vector, beta coactivation)
alpha, beta = 0.6, 0.4
score = alpha * base_sim + beta * co_sim
similarities.append((self.stored_items[item_key], score))
similarities.sort(key=lambda x: x[1], reverse=True)
return similarities[:top_k]
def get_hash_statistics(self):
"""Get statistics about hash function learning."""
stats = {
'total_items': int(self.total_items_added.item()),
'bit_array_utilization': (self.bit_array > 0).float().mean().item(),
'average_confidence': self.confidence_array.mean().item(),
'hash_function_stats': []
}
for i, hash_func in enumerate(self.hash_functions):
hash_stats = {
'function_id': i,
'hebbian_weights_mean': hash_func.hebbian_weights.mean().item(),
'plasticity_rate': hash_func.plasticity_rate.item(),
'activation_threshold_mean': hash_func.activation_threshold.mean().item()
}
stats['hash_function_stats'].append(hash_stats)
return stats
def apply_temporal_decay(self):
"""Apply temporal decay to implement forgetting."""
decay_rate = torch.clamp(self.decay_rate, 0.9, 0.999)
with torch.no_grad():
self.confidence_array.mul_(decay_rate)
self.access_counts.mul_(decay_rate)
# Remove bits with very low confidence
low_confidence_mask = self.confidence_array < 0.1
self.bit_array[low_confidence_mask] = 0.0
self.confidence_array[low_confidence_mask] = 0.0
# Apply forgetting to hash functions
for hash_func in self.hash_functions:
hash_func.apply_forgetting(float(decay_rate.item()))
def optimize_structure(self):
"""Optimize the filter structure based on usage patterns."""
with torch.no_grad():
# Adjust thresholds based on access patterns (coarse global heuristic)
high_access_ratio = (self.access_counts > self.access_counts.mean()).float().mean().item()
adjustment = -0.01 * high_access_ratio
for hash_func in self.hash_functions:
hash_func.activation_threshold.data.add_(adjustment)
hash_func.activation_threshold.data.clamp_(-1.0, 1.0)
###########################################################################################################################################
############################################- - - ASSOCIATIVE HEBBIAN BLOOM SYSTEM - - -###############################################
class AssociativeHebbianBloomSystem(nn.Module):
"""Ensemble of Hebbian Bloom filters with meta-learning.
Combines multiple Hebbian Bloom filters with learned routing to create
a robust, scalable associative memory system with ensemble decision making.
Features:
- Multiple specialized filters with learned routing
- Ensemble voting for robust membership decisions
- Global association learning across filters
- Automatic system maintenance and optimization
"""
def __init__(self, capacity=10000, vector_dim=64, num_filters=3):
super().__init__()
self.capacity = capacity
self.vector_dim = vector_dim
self.num_filters = num_filters
# Multiple Hebbian Bloom filters for ensemble behavior
self.filters = nn.ModuleList([
HebbianBloomFilter(
capacity=capacity // num_filters,
error_rate=0.01,
vector_dim=vector_dim,
num_hash_functions=6
) for _ in range(num_filters)
])
# Meta-learning for filter selection
self.filter_selector = nn.Sequential(
nn.Linear(vector_dim, vector_dim // 2),
nn.ReLU(),
nn.Linear(vector_dim // 2, num_filters),
nn.Softmax(dim=-1)
)
# Global association learning
self.global_association_net = nn.Sequential(
nn.Linear(vector_dim * 2, vector_dim),
nn.Tanh(),
nn.Linear(vector_dim, 1),
nn.Sigmoid()
)
# System statistics
self.register_buffer('global_access_count', torch.tensor(0, dtype=torch.long))
def add_item(self, item, category=None, associated_items=None):
"""Add item to the most appropriate filter(s)."""
item_vector = item_to_vector(item, self.vector_dim)
# Determine which filter(s) to use
filter_weights = self.filter_selector(item_vector.unsqueeze(0)).squeeze(0)
# Light load-balancing penalty to avoid starving filters
with torch.no_grad():
loads = torch.tensor([f.total_items_added.item() / max(1, f.capacity) for f in self.filters], dtype=filter_weights.dtype, device=filter_weights.device)
filter_weights = filter_weights - 0.1 * loads
# Add to filters based on weights (top-k selection)
top_k_filters = min(2, self.num_filters) # Use top 2 filters
_, top_indices = torch.topk(filter_weights, top_k_filters)
added_to_filters = []
for filter_idx in top_indices:
filter_obj = self.filters[filter_idx.item()]
indices = filter_obj.add(item, associated_items)
added_to_filters.append((filter_idx.item(), indices))
# Update global statistics
with torch.no_grad():
self.global_access_count.add_(1)
return added_to_filters
def query_item(self, item, return_detailed=False):
"""Query item across all filters with ensemble confidence."""
item_vector = item_to_vector(item, self.vector_dim)
results = []
confidences = []
for i, filter_obj in enumerate(self.filters):
is_member, confidence = filter_obj.query(item, return_confidence=True)
results.append(is_member)
confidences.append(confidence)
# Ensemble decision
positive_votes = sum(results)
avg_confidence = np.mean(confidences)
# Final decision based on majority vote and confidence
ensemble_decision = positive_votes > len(self.filters) // 2
if return_detailed:
return {
'is_member': ensemble_decision,
'confidence': avg_confidence,
'individual_results': list(zip(results, confidences)),
'positive_votes': positive_votes,
'total_filters': len(self.filters)
}
return ensemble_decision
def find_associations(self, query_item, top_k=10):
"""Find associated items across all filters."""
all_similarities = []
for filter_obj in self.filters:
similarities = filter_obj.find_similar_items(query_item, top_k)
all_similarities.extend(similarities)
# Remove duplicates and re-rank
unique_items = {}
for item, similarity in all_similarities:
item_key = str(item)
if item_key in unique_items:
unique_items[item_key] = max(unique_items[item_key], similarity)
else:
unique_items[item_key] = similarity
# Sort by similarity
ranked_items = sorted(unique_items.items(), key=lambda x: x[1], reverse=True)
return ranked_items[:top_k]
def system_maintenance(self):
# Apply temporal decay to all filters
for filter_obj in self.filters:
filter_obj.apply_temporal_decay()
filter_obj.optimize_structure()
# System-level optimization every 1000 accesses
if self.global_access_count % 1000 == 0:
self._global_optimization()
def _global_optimization(self):
print("Performing global Hebbian Bloom system optimization...")
# Rebalance filter usage if needed
filter_utilizations = []
for filter_obj in self.filters:
stats = filter_obj.get_hash_statistics()
utilization = stats['bit_array_utilization']
filter_utilizations.append(utilization)
# Could implement filter rebalancing here if needed
def get_system_statistics(self):
stats = {
'global_access_count': int(self.global_access_count.item()),
'num_filters': self.num_filters,
'filter_statistics': []
}
for i, filter_obj in enumerate(self.filters):
filter_stats = filter_obj.get_hash_statistics()
filter_stats['filter_id'] = i
stats['filter_statistics'].append(filter_stats)
return stats
###########################################################################################################################################
####################################################- - - DEMO AND TESTING - - -#######################################################
def test_hebbian_bloom():
print("Testing Hebbian Bloom Filter - Self-Organizing Probabilistic Memory")
print("=" * 85)
# Create Hebbian Bloom Filter system
system = AssociativeHebbianBloomSystem(
capacity=1000,
vector_dim=32,
num_filters=3
)
print(f"Created Hebbian Bloom System:")
print(f" - Capacity: 1000 items")
print(f" - Vector dimension: 32")
print(f" - Number of filters: 3")
print(f" - Hash functions per filter: 6")
# Test with related items to demonstrate Hebbian learning
print("\nAdding related items to demonstrate associative learning...")
# Add some related items
fruits = ["apple", "banana", "orange", "grape", "strawberry"]
colors = ["red", "yellow", "orange", "purple", "red"]
for fruit, color in zip(fruits, colors):
system.add_item(fruit, associated_items=[color, "fruit"])
system.add_item(color, associated_items=[fruit, "color"])
# Add some numbers
numbers = [1, 2, 3, 4, 5]
for num in numbers:
system.add_item(num, associated_items=["number", "digit"])
print(f"Added {len(fruits)} fruits with colors and {len(numbers)} numbers")
# Test membership queries
print("\nTesting membership queries...")
test_items = ["apple", "banana", "pineapple", 1, 3, 7, "red", "blue"]
for item in test_items:
result = system.query_item(item, return_detailed=True)
print(f" '{item}': {result['is_member']} (confidence: {result['confidence']:.3f}, votes: {result['positive_votes']}/{result['total_filters']})")
# Test associative retrieval
print("\nTesting associative retrieval...")
query_items = ["apple", "red", 2]
for query in query_items:
associations = system.find_associations(query, top_k=5)
print(f"\nItems associated with '{query}':")
for i, (item, similarity) in enumerate(associations[:3]):
print(f" {i+1}. {item} (similarity: {similarity:.3f})")
# Test Hebbian adaptation
print("\nTesting Hebbian adaptation with repeated associations...")
# Repeatedly associate "apple" with "healthy"
for _ in range(5):
system.add_item("apple", associated_items=["healthy", "nutrition"])
# Check if "healthy" becomes more associated with "apple"
updated_associations = system.find_associations("apple", top_k=5)
print("Updated associations for 'apple' after repeated 'healthy' associations:")
for item, similarity in updated_associations[:3]:
print(f" {item}: {similarity:.3f}")
# System statistics
stats = system.get_system_statistics()
print(f"\nSystem Statistics:")
print(f" - Total accesses: {stats['global_access_count']}")
for filter_stats in stats['filter_statistics']:
print(f" Filter {filter_stats['filter_id']}:")
print(f" - Items added: {filter_stats['total_items']}")
print(f" - Bit utilization: {filter_stats['bit_array_utilization']:.3f}")
print(f" - Average confidence: {filter_stats['average_confidence']:.3f}")
# Test temporal decay
print("\nApplying temporal decay...")
system.system_maintenance()
print("\nHebbian Bloom Filter test completed!")
print("✓ Self-organizing hash functions with Hebbian learning")
print("✓ Associative memory formation")
print("✓ Adaptive confidence estimation")
print("✓ Temporal decay and forgetting mechanisms")
print("✓ Ensemble filtering for robust membership testing")
return True
def hebbian_learning_demo():
"""Demonstrate Hebbian learning in action."""
print("\n" + "="*60)
print("HEBBIAN LEARNING DEMONSTRATION")
print("="*60)
# Create simple single filter for clear demonstration
hb_filter = HebbianBloomFilter(capacity=100, vector_dim=16, num_hash_functions=4)
# Add items with strong associations
print("Phase 1: Adding animal-habitat associations")
animals_habitats = [
("lion", ["savanna", "africa", "predator"]),
("tiger", ["jungle", "asia", "predator"]),
("penguin", ["antarctica", "ice", "bird"]),
("shark", ["ocean", "water", "predator"]),
("eagle", ["mountain", "sky", "bird"])
]
for animal, habitats in animals_habitats:
hb_filter.add(animal, associated_items=habitats)
for habitat in habitats:
hb_filter.add(habitat, associated_items=[animal])
# Test initial associations
print("\nInitial associations:")
similar_to_lion = hb_filter.find_similar_items("lion", top_k=3)
for item, similarity in similar_to_lion:
print(f" lion -> {item}: {similarity:.3f}")
# Strengthen specific associations through repetition
print("\nPhase 2: Strengthening lion-savanna association through repetition")
for _ in range(10):
hb_filter.add("lion", associated_items=["savanna"])
hb_filter.add("savanna", associated_items=["lion"])
# Test strengthened associations
print("\nStrengthened associations:")
similar_to_lion = hb_filter.find_similar_items("lion", top_k=3)
for item, similarity in similar_to_lion:
print(f" lion -> {item}: {similarity:.3f}")
# Show hash function adaptation
stats = hb_filter.get_hash_statistics()
print(f"\nHash function adaptation statistics:")
for hash_stat in stats['hash_function_stats'][:2]: # Show first 2
print(f" Hash function {hash_stat['function_id']}:")
print(f" - Hebbian weights mean: {hash_stat['hebbian_weights_mean']:.4f}")
print(f" - Plasticity rate: {hash_stat['plasticity_rate']:.4f}")
print("\n Hebbian learning successfully demonstrated")
print(" Repeated associations strengthen neural pathways in hash functions")
if __name__ == "__main__":
test_hebbian_bloom()
hebbian_learning_demo()
###########################################################################################################################################
###########################################################################################################################################
|