File size: 31,669 Bytes
3682d8c 1692396 3682d8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
###########################################################################################################################################
#||||- - - |8.19.2025| - - - || LIQUID BAYES || - - - |1990two| - - -|||| #
###########################################################################################################################################
"""
Mathematical Foundation & Conceptual Documentation
-------------------------------------------------
CORE PRINCIPLE:
Combines liquid state machines (continuous neural dynamics) with Bayesian inference
to create adaptive neural systems where probabilistic confidence modulates the
evolution of continuous dynamical states, enabling exploration-exploitation balance.
MATHEMATICAL FOUNDATION:
=======================
1. LIQUID STATE MACHINE DYNAMICS:
dx/dt = -x/τ + W_rec·σ(x) + W_in·u + b
Where:
- x: liquid state vector (membrane potentials)
- τ: time constant (liquid viscosity)
- W_rec: recurrent connection matrix
- W_in: input weight matrix
- σ: nonlinear activation function
- u: external input signal
- b: bias terms
2. CONFIDENCE-MODULATED EVOLUTION:
dx/dt = c·f(x,u) + (1-c)·ε·η
Where:
- c: Bayesian confidence score ∈ [0,1]
- f(x,u): standard liquid dynamics
- ε: exploration rate parameter
- η: Gaussian noise for exploration
High confidence → smooth, deterministic evolution
Low confidence → exploratory, stochastic behavior
3. BAYESIAN CONFIDENCE ESTIMATION:
P(θ|D) ∝ P(D|θ)·P(θ)
Confidence = 1 - H(P(θ|D))
Where:
- H: entropy function
- Low entropy → high confidence
- High entropy → low confidence
4. BELIEF PROPAGATION:
For Bayesian network with variables X₁...Xₙ:
P(Xi|parents(Xi)) = normalize(evidence(Xi) · ∏ messages)
Iterative message passing for approximate inference.
5. TEMPORAL INTEGRATION:
x(t+dt) = x(t) + dt·dx/dt
Euler integration for continuous-time dynamics.
CONCEPTUAL REASONING:
====================
WHY LIQUID + BAYESIAN?
- Traditional neural networks lack temporal dynamics
- Liquid state machines provide rich temporal processing
- Bayesian inference quantifies uncertainty in decisions
- Confidence feedback enables adaptive exploration
KEY INNOVATIONS:
1. **Confidence-Modulated Dynamics**: Uncertainty controls exploration
2. **Temporal Bayesian Networks**: Dynamic probabilistic reasoning
3. **Adaptive Time Constants**: Liquid viscosity adapts to confidence
4. **Hierarchical Uncertainty**: Multiple levels of uncertainty quantification
5. **Exploration-Exploitation Balance**: Automatic trade-off via confidence
APPLICATIONS:
- Adaptive control systems with uncertainty quantification
- Time-series prediction with confidence bounds
- Reinforcement learning with liquid state representations
- Robust decision-making under uncertainty
- Continuous learning systems
COMPLEXITY ANALYSIS:
- Liquid Evolution: O(d²) where d = state dimension
- Bayesian Inference: O(n·k²) where n = variables, k = states per variable
- Chain Execution: O(T·(d² + n·k²)) where T = chain steps
- Memory: O(d² + n²·k²) for connection matrices
BIOLOGICAL INSPIRATION:
- Membrane potential dynamics in neural circuits
- Confidence-based neuromodulation (dopamine, norepinephrine)
- Bayesian brain hypothesis for uncertainty processing
- Liquid computing in cortical microcircuits
"""
from __future__ import annotations
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from collections import defaultdict
from typing import List, Dict, Tuple, Optional
SAFE_MIN = -1e6
SAFE_MAX = 1e6
EPS = 1e-8
#||||- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 𓅸 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -||||#
def make_safe(tensor, min_val=SAFE_MIN, max_val=SAFE_MAX):
tensor = torch.where(torch.isnan(tensor), torch.tensor(0.0, device=tensor.device, dtype=tensor.dtype), tensor)
tensor = torch.where(torch.isinf(tensor), torch.tensor(max_val, device=tensor.device, dtype=tensor.dtype), tensor)
return torch.clamp(tensor, min_val, max_val)
def safe_softmax(x, dim=-1, temperature=1.0):
x = x.to(dtype=torch.float32)
x = make_safe(x, min_val=-50, max_val=50)
# Guard temperature and improve numerical stability
if isinstance(temperature, torch.Tensor):
temperature = float(temperature.detach().cpu().item())
temperature = max(float(temperature), EPS)
x = x / temperature
x = x - x.amax(dim=dim, keepdim=True)
return F.softmax(x, dim=dim)
###########################################################################################################################################
#################################################- - - LIQUID DYNAMICS CORE - - -######################################################
class LiquidDynamicsCore(nn.Module):
"""Continuous neural dynamics with confidence-modulated evolution.
Implements liquid state machine dynamics where the evolution of continuous
neural states is modulated by Bayesian confidence estimates, enabling
adaptive exploration-exploitation behavior.
Mathematical Details:
- Standard dynamics: dx/dt = -x/τ + W_rec·σ(x) + W_in·u + b
- Confidence modulation: dx/dt = c·standard + (1-c)·exploration
- Euler integration: x(t+dt) = x(t) + dt·dx/dt
The liquid state represents membrane potentials of a continuous neural
circuit with recurrent connections and external inputs.
"""
def __init__(self, state_dim, input_dim, liquid_time_constant=1.0):
super().__init__()
self.state_dim = state_dim
self.input_dim = input_dim
self.liquid_time_constant = nn.Parameter(torch.tensor(liquid_time_constant))
# Liquid dynamics parameters
self.W_rec = nn.Parameter(torch.randn(state_dim, state_dim) * 0.1) # Recurrent weights
self.W_in = nn.Parameter(torch.randn(state_dim, input_dim) * 0.1) # Input weights
self.bias = nn.Parameter(torch.zeros(state_dim))
# Nonlinear activation function
self.activation = nn.Tanh()
# Membrane potential (liquid state)
self.register_buffer('liquid_state', torch.zeros(1, state_dim))
# Uncertainty injection parameters
self.noise_scale = nn.Parameter(torch.tensor(0.1))
self.exploration_rate = nn.Parameter(torch.tensor(0.05))
def reset_state(self, batch_size=1):
"""Reset the liquid state (preserve buffer & device)."""
with torch.no_grad():
if self.liquid_state.shape[0] != batch_size:
self.liquid_state = torch.zeros(
batch_size, self.state_dim,
device=self.liquid_state.device,
dtype=self.liquid_state.dtype,
)
else:
self.liquid_state.zero_()
def evolve_liquid(self, input_signal, confidence_weight=1.0, dt=0.1):
"""Evolve liquid state with confidence-modulated dynamics.
Implements the core liquid state machine evolution with Bayesian
confidence modulation. High confidence leads to smooth, deterministic
evolution while low confidence enables exploration through noise injection.
Mathematical Details:
- Decay term: -x/τ
- Recurrent term: W_rec·tanh(x)
- Input term: W_in·u
- Confidence modulation: c·dynamics + (1-c)·exploration
Args:
input_signal: External input to liquid [batch_size, input_dim]
confidence_weight: Confidence score(s) ∈ [0,1] modulating evolution
dt: Integration time step
Returns:
Updated liquid state [batch_size, state_dim]
"""
batch_size = input_signal.shape[0]
if self.liquid_state.shape[0] != batch_size:
self.reset_state(batch_size)
# Compute liquid dynamics: dx/dt = -x/τ + W_rec*σ(x) + W_in*u + b
tau = torch.clamp(self.liquid_time_constant, 0.1, 10.0)
# Recurrent dynamics
recurrent_input = torch.matmul(self.activation(self.liquid_state), self.W_rec.T)
# External input
external_input = torch.matmul(input_signal, self.W_in.T)
# Combined dynamics
dynamics = (-self.liquid_state / tau + recurrent_input + external_input + self.bias)
# Confidence-modulated evolution
if isinstance(confidence_weight, torch.Tensor):
if confidence_weight.dim() == 1:
confidence_weight = confidence_weight.unsqueeze(-1)
confidence_weight = confidence_weight.to(self.liquid_state.dtype)
else:
confidence_weight = torch.tensor(confidence_weight, device=self.liquid_state.device, dtype=self.liquid_state.dtype)
# High confidence → smooth evolution, Low confidence → exploration
exploration_noise = torch.randn_like(self.liquid_state) * self.noise_scale
exploration_strength = (1.0 - confidence_weight) * self.exploration_rate
modulated_dynamics = confidence_weight * dynamics + exploration_strength * exploration_noise
# Euler integration (keep buffer identity)
self.liquid_state.add_(dt * make_safe(modulated_dynamics))
return self.liquid_state.clone()
def get_liquid_features(self):
"""Extract multiple feature representations from liquid state.
Returns:
Dictionary containing:
- raw_state: Raw membrane potentials
- activated_state: Nonlinearly activated state
- state_energy: L2 energy of state vector
- state_entropy: Entropy of state distribution
"""
return {
'raw_state': self.liquid_state.clone(),
'activated_state': self.activation(self.liquid_state),
'state_energy': torch.sum(self.liquid_state ** 2, dim=-1, keepdim=True),
'state_entropy': self._compute_state_entropy()
}
def _compute_state_entropy(self):
"""Compute entropy of liquid state distribution.
Treats liquid state as a probability distribution (after softmax)
and computes Shannon entropy: H = -Σ p(x)·log(p(x))
Returns:
Entropy values [batch_size, 1]
"""
state_probs = safe_softmax(self.liquid_state, dim=-1, temperature=1.0)
entropy = -torch.sum(state_probs * torch.log(state_probs + EPS), dim=-1, keepdim=True)
return entropy
###########################################################################################################################################
############################################- - - BAYESIAN CONFIDENCE NETWORK - - -###################################################
class BayesianConfidenceNetwork(nn.Module):
"""Bayesian network for confidence estimation from liquid states.
Implements a simplified Bayesian network that performs probabilistic
inference over discrete variables extracted from continuous liquid states.
Uses belief propagation for approximate inference and estimates confidence
based on posterior entropy.
Mathematical Framework:
- Variables: X₁, X₂, ..., Xₙ with discrete states
- Evidence: E(Xi) from liquid state features
- Conditional probabilities: P(Xi|parents(Xi))
- Posterior beliefs: P(Xi|evidence)
- Confidence: 1 - H(P(Xi|evidence))
"""
def __init__(self, state_dim, num_variables=5, num_states_per_var=3):
super().__init__()
self.state_dim = state_dim
self.num_variables = num_variables
self.num_states_per_var = num_states_per_var
# Feature extraction from liquid state
self.feature_extractor = nn.Sequential(
nn.Linear(state_dim, state_dim * 2),
nn.LayerNorm(state_dim * 2),
nn.ReLU(),
nn.Linear(state_dim * 2, num_variables * num_states_per_var)
)
# Bayesian network structure (simplified - fully connected for now)
# Each variable can influence every other variable
self.conditional_prob_tables = nn.ParameterList([
nn.Parameter(torch.randn(num_states_per_var, num_states_per_var * (num_variables - 1)) * 0.1)
for _ in range(num_variables)
])
# Prior probabilities for each variable
self.priors = nn.Parameter(torch.ones(num_variables, num_states_per_var))
# Confidence calibration network
self.confidence_net = nn.Sequential(
nn.Linear(num_variables, num_variables * 2),
nn.ReLU(),
nn.Linear(num_variables * 2, 1),
nn.Sigmoid()
)
# Uncertainty quantification
self.uncertainty_estimator = nn.Sequential(
nn.Linear(state_dim, state_dim),
nn.ReLU(),
nn.Linear(state_dim, 1),
nn.Sigmoid()
)
def extract_variable_beliefs(self, liquid_features):
"""Extract discrete variable beliefs from continuous liquid state.
Maps high-dimensional continuous liquid state to evidence for
discrete variables in the Bayesian network.
Args:
liquid_features: Dictionary containing liquid state features
Returns:
Variable beliefs [batch_size, num_variables, num_states_per_var]
"""
# Get features from liquid state
liquid_state = liquid_features['activated_state']
# Extract variable evidence
evidence = self.feature_extractor(liquid_state)
evidence = evidence.view(-1, self.num_variables, self.num_states_per_var)
# Convert to probability distributions
variable_beliefs = safe_softmax(evidence, dim=-1)
return variable_beliefs
def bayesian_inference(self, variable_beliefs):
"""Perform approximate Bayesian inference via belief propagation.
Implements simplified belief propagation algorithm to compute
posterior beliefs over variables given evidence.
Mathematical Details:
- Initialize with priors: P(Xi)
- Iterate belief updates: P(Xi) ← normalize(evidence(Xi) · ∏ messages)
- Messages based on conditional probability tables
Args:
variable_beliefs: Evidence for variables [batch_size, num_vars, num_states]
Returns:
Posterior beliefs [batch_size, num_variables, num_states_per_var]
"""
batch_size = variable_beliefs.shape[0]
device = variable_beliefs.device
# Initialize with priors
current_beliefs = safe_softmax(self.priors.unsqueeze(0).expand(batch_size, -1, -1), dim=-1)
# Iterative belief propagation (simplified)
for iteration in range(3): # Few iterations for efficiency
new_beliefs = current_beliefs.clone()
for var_idx in range(self.num_variables):
# Get evidence for this variable
evidence = variable_beliefs[:, var_idx, :]
# Get conditional probabilities from other variables
if self.num_variables > 1:
other_var_beliefs = torch.cat([
current_beliefs[:, :var_idx].flatten(1),
current_beliefs[:, var_idx+1:].flatten(1)
], dim=1)
else:
other_var_beliefs = torch.zeros(batch_size, 0, device=device)
# Compute conditional probabilities
if other_var_beliefs.shape[1] > 0:
cond_probs = torch.matmul(other_var_beliefs, self.conditional_prob_tables[var_idx].T)
cond_probs = safe_softmax(cond_probs, dim=-1)
else:
cond_probs = torch.ones_like(evidence) / self.num_states_per_var
# Combine evidence with conditional probabilities
combined = evidence * cond_probs
new_beliefs[:, var_idx, :] = safe_softmax(combined, dim=-1)
current_beliefs = new_beliefs
return current_beliefs
def compute_confidence(self, beliefs, liquid_features):
"""Compute confidence score from Bayesian beliefs and liquid features.
Combines multiple sources of confidence information:
1. Belief sharpness (low entropy = high confidence)
2. Neural confidence estimation
3. Liquid state uncertainty
Mathematical Details:
- Entropy confidence: 1 - H(beliefs)/H_max
- Combined confidence: weighted average of sources
Args:
beliefs: Posterior beliefs [batch_size, num_vars, num_states]
liquid_features: Dictionary of liquid state features
Returns:
Confidence scores [batch_size, 1]
"""
# Confidence based on belief sharpness (low entropy = high confidence)
belief_entropy = -torch.sum(beliefs * torch.log(beliefs + EPS), dim=-1)
avg_entropy = belief_entropy.mean(dim=-1, keepdim=True)
# Normalize entropy to confidence (low entropy = high confidence)
max_entropy = math.log(self.num_states_per_var)
entropy_confidence = 1.0 - (avg_entropy / max_entropy)
# Additional confidence from neural network
nn_confidence = self.confidence_net(belief_entropy)
# Uncertainty from liquid state
liquid_uncertainty = self.uncertainty_estimator(liquid_features['raw_state'])
state_confidence = 1.0 - liquid_uncertainty
# Combine confidence sources
total_confidence = 0.4 * entropy_confidence + 0.3 * nn_confidence + 0.3 * state_confidence
return torch.clamp(total_confidence, 0.0, 1.0)
def forward(self, liquid_features):
"""Complete forward pass: feature extraction → inference → confidence.
Args:
liquid_features: Dictionary containing liquid state features
Returns:
Dictionary containing:
- beliefs: Posterior beliefs over variables
- confidence: Overall confidence score
- variable_beliefs: Raw variable evidence
"""
# Extract variable beliefs from liquid state
variable_beliefs = self.extract_variable_beliefs(liquid_features)
# Perform Bayesian inference
posterior_beliefs = self.bayesian_inference(variable_beliefs)
# Compute confidence
confidence = self.compute_confidence(posterior_beliefs, liquid_features)
return {
'beliefs': posterior_beliefs,
'confidence': confidence,
'variable_beliefs': variable_beliefs
}
###########################################################################################################################################
############################################- - - LIQUID BAYES CHAIN - - -############################################################
class LiquidBayesChain(nn.Module):
"""Complete Liquid-Bayes system with iterative refinement chain.
Implements the full Liquid-Bayes architecture where liquid dynamics
and Bayesian confidence estimation form a feedback loop over multiple
chain steps, enabling progressive refinement of predictions.
Architecture:
1. Liquid evolution (confidence-modulated)
2. Bayesian confidence estimation
3. Feedback to liquid dynamics
4. Repeat for multiple chain steps
5. Final prediction with uncertainty quantification
The chain allows the system to iteratively improve its predictions
by using confidence estimates to guide further exploration or exploitation.
"""
def __init__(self, input_dim, state_dim, output_dim, num_chain_steps=3):
super().__init__()
self.input_dim = input_dim
self.state_dim = state_dim
self.output_dim = output_dim
self.num_chain_steps = num_chain_steps
# Core components
self.liquid_core = LiquidDynamicsCore(state_dim, input_dim)
self.bayesian_confidence = BayesianConfidenceNetwork(state_dim)
# Final prediction network
self.final_predictor = nn.Sequential(
nn.Linear(state_dim, state_dim * 2),
nn.LayerNorm(state_dim * 2),
nn.ReLU(),
nn.Dropout(0.1),
nn.Linear(state_dim * 2, output_dim)
)
# Final Bayesian uncertainty estimation
self.final_bayesian = BayesianConfidenceNetwork(output_dim, num_variables=3, num_states_per_var=4)
# Chain step weights (learnable importance of each step)
self.step_weights = nn.Parameter(torch.ones(num_chain_steps))
def single_chain_step(self, input_signal, step_idx=0):
"""Execute one step of the Liquid-Bayes feedback chain.
Each chain step consists of:
1. Evolve liquid dynamics (with confidence modulation if not first step)
2. Extract features from liquid state
3. Perform Bayesian confidence assessment
Args:
input_signal: External input to liquid [batch_size, input_dim]
step_idx: Current step index in chain
Returns:
Dictionary containing step outputs and intermediate states
"""
# Step 1: Evolve liquid state
if step_idx == 0:
# First step - no confidence modulation
liquid_state = self.liquid_core.evolve_liquid(input_signal, confidence_weight=1.0)
else:
# Get confidence from previous step
liquid_features = self.liquid_core.get_liquid_features()
bayes_output = self.bayesian_confidence(liquid_features)
confidence = bayes_output['confidence']
# Step 2: Confidence-modulated liquid evolution
liquid_state = self.liquid_core.evolve_liquid(input_signal, confidence_weight=confidence)
# Get updated liquid features
liquid_features = self.liquid_core.get_liquid_features()
# Step 3: Bayesian confidence assessment
bayes_output = self.bayesian_confidence(liquid_features)
return {
'liquid_state': liquid_state,
'liquid_features': liquid_features,
'bayes_output': bayes_output,
'confidence': bayes_output['confidence']
}
def forward(self, input_signal, return_chain_states=False):
"""Execute complete Liquid-Bayes chain with iterative refinement.
Args:
input_signal: Input to process [batch_size, input_dim]
return_chain_states: Whether to return intermediate chain states
Returns:
Dictionary containing:
- prediction: Final output predictions
- final_confidence: Weighted confidence across chain
- final_beliefs: Final Bayesian beliefs
- prediction_uncertainty: Uncertainty in predictions
- chain_states: Intermediate states (if requested)
"""
batch_size = input_signal.shape[0]
# Reset liquid state
self.liquid_core.reset_state(batch_size)
# Store chain states for analysis
chain_states = []
# Execute chain steps
for step in range(self.num_chain_steps):
step_output = self.single_chain_step(input_signal, step_idx=step)
step_output['step_idx'] = step
chain_states.append(step_output)
# Final prediction from last liquid state
final_liquid_state = chain_states[-1]['liquid_features']['activated_state']
prediction_logits = self.final_predictor(final_liquid_state)
# Final Bayesian uncertainty quantification
prediction_features = {
'raw_state': prediction_logits,
'activated_state': torch.tanh(prediction_logits)
}
final_bayes = self.final_bayesian(prediction_features)
# Weighted combination of confidence scores across chain
step_weights = safe_softmax(self.step_weights, dim=0)
weighted_confidence = sum(
step_weights[i] * chain_states[i]['confidence']
for i in range(self.num_chain_steps)
)
output = {
'prediction': prediction_logits,
'final_confidence': weighted_confidence,
'final_beliefs': final_bayes['beliefs'],
'prediction_uncertainty': 1.0 - final_bayes['confidence']
}
if return_chain_states:
output['chain_states'] = chain_states
return output
def predict_with_uncertainty(self, input_signal):
"""Make predictions with comprehensive uncertainty quantification.
Provides detailed uncertainty analysis including:
- Final prediction confidence
- Chain-step progression
- Liquid state entropy evolution
Args:
input_signal: Input to process [batch_size, input_dim]
Returns:
Dictionary with comprehensive uncertainty information
"""
output = self.forward(input_signal, return_chain_states=True)
# Extract uncertainty information
uncertainty_info = {
'prediction': output['prediction'],
'confidence': output['final_confidence'],
'prediction_uncertainty': output['prediction_uncertainty'],
'chain_confidences': [state['confidence'] for state in output['chain_states']],
'liquid_entropies': [state['liquid_features']['state_entropy'] for state in output['chain_states']]
}
return uncertainty_info
###########################################################################################################################################
##################################################- - - DEMO AND TESTING - - -#########################################################
def test_liquid_bayes_chain():
print(" Testing Liquid Bayes Chain - Probabilistic Control of Continuous Dynamics")
print("=" * 80)
# Create Liquid-Bayes chain
input_dim = 32
state_dim = 64
output_dim = 10
model = LiquidBayesChain(
input_dim=input_dim,
state_dim=state_dim,
output_dim=output_dim,
num_chain_steps=4
)
print(f"Created Liquid-Bayes Chain:")
print(f" - Input dimension: {input_dim}")
print(f" - Liquid state dimension: {state_dim}")
print(f" - Output dimension: {output_dim}")
print(f" - Chain steps: {model.num_chain_steps}")
# Generate test data
batch_size = 8
test_input = torch.randn(batch_size, input_dim)
print(f"\nTesting with batch size: {batch_size}")
# Test forward pass
print("\nExecuting Liquid-Bayes chain...")
output = model(test_input, return_chain_states=True)
print("Chain execution results:")
print(f" - Final prediction shape: {output['prediction'].shape}")
print(f" - Average confidence: {output['final_confidence'].mean():.3f}")
print(f" - Average uncertainty: {output['prediction_uncertainty'].mean():.3f}")
# Analyze chain progression
print("\nChain step analysis:")
for i, state in enumerate(output['chain_states']):
conf = state['confidence'].mean().item()
entropy = state['liquid_features']['state_entropy'].mean().item()
print(f" Step {i+1}: Confidence={conf:.3f}, Liquid Entropy={entropy:.3f}")
# Test uncertainty prediction
print("\nTesting uncertainty quantification...")
uncertainty_output = model.predict_with_uncertainty(test_input[:3])
print("Uncertainty analysis:")
for i in range(3):
conf = uncertainty_output['confidence'][i].item()
pred_unc = uncertainty_output['prediction_uncertainty'][i].item()
print(f" Sample {i+1}: Confidence={conf:.3f}, Prediction Uncertainty={pred_unc:.3f}")
# Test adaptive behavior
print("\nTesting adaptive behavior with different inputs...")
# High-confidence input (structured pattern)
structured_input = torch.ones(1, input_dim) * 0.5
struct_output = model(structured_input)
struct_conf = struct_output['final_confidence'].item()
# Low-confidence input (random noise)
noisy_input = torch.randn(1, input_dim) * 2.0
noisy_output = model(noisy_input)
noisy_conf = noisy_output['final_confidence'].item()
print(f" Structured input confidence: {struct_conf:.3f}")
print(f" Noisy input confidence: {noisy_conf:.3f}")
print(f" Confidence difference: {abs(struct_conf - noisy_conf):.3f}")
print("\nLiquid-Bayes Chain test completed!")
print("✓ Liquid dynamics evolve with Bayesian confidence modulation")
print("✓ Probabilistic feedback loop controls exploration vs exploitation")
print("✓ Full uncertainty quantification throughout the chain")
print("✓ Adaptive behavior based on input characteristics")
return True
def confidence_modulation_demo():
"""Demonstrate how Bayesian confidence modulates liquid evolution."""
print("\n" + "="*60)
print(" CONFIDENCE MODULATION DEMO")
print("="*60)
# Create simplified model
model = LiquidBayesChain(input_dim=16, state_dim=32, output_dim=5, num_chain_steps=3)
# Test with controlled confidence scenarios
scenarios = [
("High Confidence Input", torch.ones(1, 16) * 0.3), # Structured
("Medium Confidence Input", torch.randn(1, 16) * 0.5), # Moderate noise
("Low Confidence Input", torch.randn(1, 16) * 2.0), # High noise
]
print("Testing confidence-driven adaptation:")
for name, test_input in scenarios:
output = model(test_input, return_chain_states=True)
# Extract confidence progression
confidences = [state['confidence'].item() for state in output['chain_states']]
entropies = [state['liquid_features']['state_entropy'].item() for state in output['chain_states']]
print(f"\n{name}:")
print(f" Chain confidences: {[f'{c:.3f}' for c in confidences]}")
print(f" Liquid entropies: {[f'{e:.3f}' for e in entropies]}")
print(f" Final confidence: {output['final_confidence'].item():.3f}")
print("\n Demo shows how liquid dynamics adapt based on Bayesian confidence!")
print(" High confidence → stable evolution, Low confidence → exploration")
if __name__ == "__main__":
test_liquid_bayes_chain()
confidence_modulation_demo()
###########################################################################################################################################
###########################################################################################################################################
|