File size: 42,897 Bytes
233f515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
##############################################################################################################################################
#||||- - - |6.25.2025| - - - || MEMORY FOREST || - - - |1990two| - - -|||| #
##############################################################################################################################################
"""
Mathematical Foundation & Conceptual Documentation
-------------------------------------------------
CORE PRINCIPLE:
Combines decision tree routing with associative hash buckets to create scalable
memory systems that learn optimal organization patterns. Instead of searching
all memory linearly, learned decision trees route queries to relevant memory
buckets, creating hierarchical, adaptive memory organization.
MATHEMATICAL FOUNDATION:
=======================
1. DECISION TREE ROUTING:
Split Function: s(x, ΞΈ) = Ο((wΒ·x + b)/Ο)
Where:
- x: input feature vector
- w, b: learnable split parameters
- Ο: temperature parameter (controls split sharpness)
- Ο: sigmoid function
- s(x,ΞΈ) β [0,1]: routing probability (left vs right)
2. HIERARCHICAL ROUTING:
Path to leaf: p = [sβ, sβ, ..., s_{d-1}] for depth d
Leaf index: L(x) = Ξ£α΅’ sα΅’ Γ 2^i (binary path encoding)
Bucket assignment: B(x) = TreeToBucket[L(x)]
3. ASSOCIATIVE MEMORY OPERATIONS:
Hash Functions: h_k(x) = tanh(W_kΒ·x + b_k) for k = 1..K
Hash Signature: H(x) = [hβ(x), hβ(x), ..., h_K(x)]
Similarity: sim(x,y) = cosine(H(x), H(y))
4. MEMORY STORAGE:
Storage Condition: sim(x, stored) < ΞΈ_similarity
Eviction Policy: LRU based on access_count[i]
Update Rule: x_stored β Ξ±Β·x_stored + (1-Ξ±)Β·x_new for similar items
5. ENSEMBLE RETRIEVAL:
Tree Votes: V_t(x) = {items from bucket B_t(x)}
Similarity Scores: S(q,i) = cosine_similarity(q, i)
Final Ranking: rank = argmax_i Ξ£_t w_t Γ S(q,i) Γ I(i β V_t)
Where w_t are tree importance weights.
6. ADAPTIVE LEARNING:
Success Feedback: R(query, retrieval) β [0,1]
Tree Update: ΞΈ_t β ΞΈ_t + Ξ·Β·βΞΈ log P(correct_path|R)
Split Reinforcement: bias_node β bias_node + Ξ±Β·sign(R - 0.5)
CONCEPTUAL REASONING:
====================
WHY DECISION TREES + HASH BUCKETS?
- Linear search over large memories is O(n) - doesn't scale
- Fixed hash functions don't adapt to data distribution
- Decision trees provide hierarchical, learned routing (O(log n))
- Hash buckets enable efficient similarity-based storage/retrieval
- Combination creates adaptive, scalable associative memory
KEY INNOVATIONS:
1. **Learned Routing**: Decision trees adapt splits based on retrieval success
2. **Hierarchical Organization**: Multi-level memory structure (trees β buckets β items)
3. **Ensemble Retrieval**: Multiple trees vote on best memories
4. **Adaptive Hash Functions**: Learnable hash functions with Hebbian updates
5. **Success-Based Learning**: Trees optimize for retrieval performance
APPLICATIONS:
- Large-scale information retrieval systems
- Adaptive caching and content distribution
- Knowledge base organization and query
- Recommender systems with hierarchical user models
- Scientific literature search and organization
COMPLEXITY ANALYSIS:
- Storage: O(log T + B) where T=trees, B=bucket_size
- Retrieval: O(T Γ log T + k Γ B) where k=top_k results
- Tree Update: O(log T) per feedback sample
- Memory: O(T Γ 2^D + N Γ E) where D=depth, N=items, E=embedding_dim
- Scalability: Sub-linear in number of stored items
BIOLOGICAL INSPIRATION:
- Hippocampal place cell organization for spatial memory
- Cortical hierarchical feature extraction and routing
- Cerebellar learned motor program selection
- Associative memory formation in neural circuits
- Synaptic plasticity for adaptive connection strengths
"""
from __future__ import annotations
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from collections import defaultdict, deque
from typing import List, Dict, Tuple, Optional
SAFE_MIN = -1e6
SAFE_MAX = 1e6
EPS = 1e-8
#||||- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - π¦ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -||||#
def make_safe(tensor, min_val=SAFE_MIN, max_val=SAFE_MAX):
tensor = torch.where(torch.isnan(tensor), torch.tensor(0.0, device=tensor.device, dtype=tensor.dtype), tensor)
tensor = torch.where(torch.isinf(tensor), torch.tensor(max_val, device=tensor.device, dtype=tensor.dtype), tensor)
return torch.clamp(tensor, min_val, max_val)
def safe_cosine_similarity(a, b, dim=-1, eps=EPS):
"""Numerically stable cosine similarity computation.
Computes cosine similarity between vectors with proper normalization
and numerical stability checks to prevent division by zero.
Mathematical Details:
- cosine(a,b) = (aΒ·b) / (||a|| ||b||)
- Handles zero vectors gracefully
- Clamps norms to minimum value for stability
Args:
a, b: Input tensors
dim: Dimension along which to compute similarity
eps: Minimum norm value for numerical stability
Returns:
Cosine similarity values β [-1, 1]
"""
if a.dtype != torch.float32:
a = a.float()
if b.dtype != torch.float32:
b = b.float()
a_norm = torch.norm(a, dim=dim, keepdim=True).clamp(min=eps)
b_norm = torch.norm(b, dim=dim, keepdim=True).clamp(min=eps)
return torch.sum(a * b, dim=dim, keepdim=True) / (a_norm * b_norm)
###########################################################################################################################################
#################################################- - - ASSOCIATIVE HASH BUCKET - - -###################################################
class AssociativeHashBucket(nn.Module):
"""Associative memory bucket with learnable hash functions and similarity clustering.
Implements a memory bucket that stores items with learned hash signatures
and retrieves similar items based on cosine similarity. Features adaptive
hash functions, similarity-based clustering, and LRU eviction policy.
Mathematical Framework:
- Hash functions: h_k(x) = tanh(W_kΒ·x + b_k) for k = 1..K
- Similarity threshold: store only if max_sim(x, stored) < ΞΈ
- Retrieval: rank by cosine similarity in hash space
- Eviction: LRU based on access patterns
The bucket learns to cluster similar items together and adapts
its hash functions based on storage and retrieval patterns.
"""
def __init__(self, bucket_size=64, embedding_dim=128, num_hash_functions=4):
super().__init__()
self.bucket_size = bucket_size
self.embedding_dim = embedding_dim
self.num_hash_functions = num_hash_functions
# Learnable hash functions (linear projections with nonlinearity)
self.hash_projections = nn.ModuleList([
nn.Linear(embedding_dim, 1, bias=True) for _ in range(num_hash_functions)
])
# Storage buffers for items and metadata
self.register_buffer('stored_items', torch.zeros(bucket_size, embedding_dim))
self.register_buffer('item_hashes', torch.zeros(bucket_size, num_hash_functions))
self.register_buffer('occupancy', torch.zeros(bucket_size, dtype=torch.bool))
self.register_buffer('access_counts', torch.zeros(bucket_size))
# Associative memory parameters
self.similarity_threshold = nn.Parameter(torch.tensor(0.7))
self.decay_rate = nn.Parameter(torch.tensor(0.99))
# Storage management
self.storage_pointer = 0
def compute_hash_signature(self, item_embedding):
"""Compute hash signature for item using learnable hash functions.
Applies K learned hash functions to generate a signature vector
that captures important features for similarity matching.
Mathematical Details:
- Each hash function: h_k(x) = tanh(W_kΒ·x + b_k)
- Signature: [hβ(x), hβ(x), ..., h_K(x)]
- Tanh provides bounded, differentiable hash values
Args:
item_embedding: Input embedding tensor [batch_size?, embedding_dim]
Returns:
Hash signature [num_hash_functions] or [batch_size, num_hash_functions]
"""
x = item_embedding
if x.dim() == 1:
x = x.unsqueeze(0)
signatures = []
for hash_proj in self.hash_projections:
sig = torch.tanh(hash_proj(x)).squeeze(-1) # [batch_size]
signatures.append(sig)
sigs = torch.stack(signatures, dim=-1) # [batch_size, num_hash_functions]
return sigs.squeeze(0) if item_embedding.dim() == 1 else sigs
def store_item(self, item_embedding, item_id=None):
"""Store item in bucket with similarity-based clustering and eviction.
Storage Strategy:
1. Check similarity to existing items
2. If similar item exists, update it (clustering)
3. Otherwise, store as new item
4. Use LRU eviction when bucket is full
Mathematical Details:
- Similarity check: max_i cos_sim(x, stored_i) > ΞΈ
- Update rule: stored_i β Ξ±Β·stored_i + (1-Ξ±)Β·x (Ξ±=0.9)
- Eviction: remove item with minimum access_count
Args:
item_embedding: Item to store [embedding_dim] or [batch_size, embedding_dim]
item_id: Optional item identifier
Returns:
List of storage indices where items were placed
"""
if item_embedding.dim() == 1:
item_embedding = item_embedding.unsqueeze(0)
batch_size = item_embedding.shape[0]
stored_items = []
for i in range(batch_size):
embedding = item_embedding[i]
hash_sig = self.compute_hash_signature(embedding)
# Check similarity to existing items (similarity-based clustering)
if self.occupancy.any():
similarities = safe_cosine_similarity(
embedding.unsqueeze(0),
self.stored_items[self.occupancy],
dim=-1
).squeeze()
threshold = torch.clamp(self.similarity_threshold, 0.1, 0.95)
if similarities.numel() > 0 and similarities.max() > threshold:
# Update existing similar item (weighted average)
best_idx = self.occupancy.nonzero(as_tuple=False)[similarities.argmax()]
self.stored_items[best_idx] = 0.9 * self.stored_items[best_idx] + 0.1 * embedding
self.access_counts[best_idx] += 1
stored_items.append(int(best_idx.item()))
continue
# Store as new item
if self.storage_pointer >= self.bucket_size:
# Bucket full - use LRU eviction
if self.occupancy.any():
rel_idx = self.access_counts[self.occupancy].argmin()
evict_idx = self.occupancy.nonzero(as_tuple=False)[rel_idx]
else:
evict_idx = torch.tensor(0)
else:
evict_idx = torch.tensor(self.storage_pointer)
self.storage_pointer = min(self.storage_pointer + 1, self.bucket_size)
# Store item and metadata
self.stored_items[evict_idx] = embedding
self.item_hashes[evict_idx] = hash_sig.squeeze()
self.occupancy[evict_idx] = True
self.access_counts[evict_idx] = 1
stored_items.append(int(evict_idx.item()))
return stored_items
def retrieve_similar(self, query_embedding, top_k=5):
"""Retrieve most similar items to query based on cosine similarity.
Retrieval Process:
1. Compute similarities to all stored items
2. Rank by similarity score
3. Return top-k most similar items
4. Update access counts for retrieved items
Mathematical Details:
- Similarity: cos_sim(query, stored_i) for all stored items
- Ranking: argsort(similarities, descending=True)
- Access update: access_count[retrieved] += 1
Args:
query_embedding: Query vector [embedding_dim] or [batch_size, embedding_dim]
top_k: Number of most similar items to return
Returns:
Tuple of (retrieved_items, similarity_scores)
"""
if query_embedding.dim() == 1:
query_embedding = query_embedding.unsqueeze(0)
if not self.occupancy.any():
return [], []
# Get valid stored items
valid_items = self.stored_items[self.occupancy]
valid_indices = self.occupancy.nonzero(as_tuple=False).squeeze(-1)
if valid_items.numel() == 0:
return [], []
# Compute cosine similarities
similarities = safe_cosine_similarity(
query_embedding.expand(valid_items.shape[0], -1),
valid_items,
dim=-1
).squeeze(-1) # [num_valid_items]
if similarities.numel() == 0:
return [], []
# Get top-k most similar items
k = min(top_k, similarities.size(0))
top_sims, top_indices = torch.topk(similarities, k)
retrieved_items = valid_items[top_indices]
retrieved_indices = valid_indices[top_indices]
# Update access counts for retrieved items (LRU maintenance)
for idx in retrieved_indices:
self.access_counts[idx] += 1
return retrieved_items, top_sims
def get_bucket_stats(self):
"""Get comprehensive bucket statistics for monitoring and analysis.
Returns:
Dictionary containing occupancy, access patterns, and configuration info
"""
return {
'occupancy_rate': self.occupancy.float().mean().item(),
'total_accesses': self.access_counts.sum().item(),
'avg_similarity': self.similarity_threshold.item(),
'storage_pointer': self.storage_pointer
}
###########################################################################################################################################
################################################- - - MEMORY DECISION TREE - - -#######################################################
class MemoryDecisionTree(nn.Module):
"""Learned decision tree for adaptive memory routing with success-based updates.
Implements a binary decision tree where each internal node learns a split
function based on retrieval success feedback. Trees adapt their routing
decisions to maximize memory retrieval performance.
Mathematical Framework:
- Split functions: s(x) = Ο((wΒ·x + b)/Ο) where Ο is sigmoid
- Path encoding: binary path through tree to leaf
- Success feedback: R β [0,1] from retrieval quality
- Parameter updates: ΞΈ β ΞΈ + Ξ·Β·β log P(success|path)
The tree learns to route queries to memory buckets where similar
items are most likely to be found, adapting based on retrieval success.
"""
def __init__(self, input_dim, max_depth=6, min_samples_split=2):
super().__init__()
self.input_dim = input_dim
self.max_depth = max_depth
self.min_samples_split = min_samples_split
# Maximum number of internal nodes (2^max_depth - 1)
max_nodes = 2**max_depth - 1
# Learnable split functions for each internal node
self.split_weights = nn.Parameter(torch.randn(max_nodes, input_dim) * 0.1)
self.split_biases = nn.Parameter(torch.zeros(max_nodes))
self.split_temperatures = nn.Parameter(torch.ones(max_nodes))
# Initialize parameters for stable splits
with torch.no_grad():
self.split_temperatures.data.mul_(0.6) # Lower temp = sharper splits
self.split_biases.data.add_(0.01 * torch.randn_like(self.split_biases))
# Node tracking and statistics
self.register_buffer('node_active', torch.zeros(max_nodes, dtype=torch.bool))
self.register_buffer('node_samples', torch.zeros(max_nodes))
# Bucket assignment mappings
self.leaf_to_bucket = {}
self.bucket_to_leaves = defaultdict(list)
# Initialize root node as active
self.node_active[0] = True
def get_node_split(self, node_idx, x):
"""Compute split probability for node given input.
Evaluates the learned split function at a specific node to determine
routing probability (left vs right child).
Mathematical Details:
- Split score: s = wΒ·x + b
- Temperature scaling: s' = s/Ο
- Probability: p = Ο(s') where Ο is sigmoid
- p > 0.5 β go right, p β€ 0.5 β go left
Args:
node_idx: Index of tree node
x: Input feature vector [batch_size?, input_dim]
Returns:
Split probabilities [batch_size] (probability of going right)
"""
if node_idx >= len(self.split_weights):
return torch.zeros(x.shape[0], device=x.device)
weights = self.split_weights[node_idx]
bias = self.split_biases[node_idx]
temp = torch.clamp(self.split_temperatures[node_idx], 0.1, 10.0)
split_score = torch.matmul(x, weights) + bias
split_prob = torch.sigmoid(split_score / temp)
return split_prob
def route_to_leaf(self, x, deterministic=False):
"""Route input through tree to leaf node.
Traverses the decision tree from root to leaf, making routing
decisions at each internal node based on learned split functions.
Tree Traversal:
- Start at root (index 0)
- At each node, compute split probability
- Go left (2*i + 1) or right (2*i + 2) based on probability
- Continue until reaching leaf at max_depth
Args:
x: Input features [batch_size, input_dim]
deterministic: If True, use deterministic splits (p > 0.5)
Returns:
Tuple of (leaf_nodes, routing_paths)
"""
batch_size = x.shape[0]
device = x.device
# Start at root node
current_nodes = torch.zeros(batch_size, dtype=torch.long, device=device)
paths = torch.zeros(batch_size, self.max_depth, dtype=torch.long, device=device)
# Traverse tree to leaf depth
for depth in range(self.max_depth - 1):
split_probs = torch.zeros(batch_size, device=device)
# Compute split probabilities for current nodes
for i in range(batch_size):
node_idx = int(current_nodes[i].item())
if self.node_active[node_idx]:
split_probs[i] = self.get_node_split(node_idx, x[i:i+1]).squeeze()
# Make routing decisions
if deterministic:
go_right = (split_probs > 0.5).long()
else:
go_right = torch.bernoulli(split_probs).long()
paths[:, depth] = go_right
# Update current nodes using heap indexing
current_nodes = current_nodes * 2 + 1 + go_right
return current_nodes, paths
def assign_leaf_to_bucket(self, leaf_idx, bucket_idx):
"""Assign tree leaf to memory bucket for storage routing.
Creates bidirectional mapping between tree leaves and memory buckets
to enable routing queries to appropriate storage locations.
Args:
leaf_idx: Tree leaf index
bucket_idx: Memory bucket index
"""
self.leaf_to_bucket[int(leaf_idx.item())] = int(bucket_idx)
self.bucket_to_leaves[int(bucket_idx)].append(int(leaf_idx.item()))
def get_bucket_for_input(self, x, deterministic=True):
"""Route input to appropriate memory bucket via tree traversal.
Uses the learned routing tree to determine which memory bucket
should store/retrieve items for the given input.
Args:
x: Input features [batch_size, input_dim]
deterministic: Whether to use deterministic routing
Returns:
Bucket indices [batch_size]
"""
leaf_nodes, _ = self.route_to_leaf(x, deterministic=deterministic)
bucket_assignments = []
for leaf in leaf_nodes:
bucket_idx = self.leaf_to_bucket.get(int(leaf.item()), 0)
bucket_assignments.append(bucket_idx)
return torch.tensor(bucket_assignments, device=x.device)
def update_node_statistics(self, x, rewards):
"""Update tree parameters based on retrieval success feedback.
Implements success-based learning where tree parameters are updated
to reinforce routing decisions that lead to successful retrievals.
Learning Algorithm:
1. Trace path through tree for each input
2. For each node on successful paths, reinforce split decision
3. For each node on unsuccessful paths, weaken split decision
4. Update sample counts and node activation
Mathematical Details:
- Success reinforcement: bias β bias + Ξ±Β·sign(reward - 0.5)
- Learning rate Ξ± = 0.01 for stable updates
- Binary rewards: >0.5 = success, β€0.5 = failure
Args:
x: Input features [batch_size, input_dim]
rewards: Retrieval success scores [batch_size] β [0,1]
"""
leaf_nodes, paths = self.route_to_leaf(x, deterministic=True)
# Update parameters based on success feedback
for i in range(x.shape[0]):
current_node = 0
reward = rewards[i].item() if torch.is_tensor(rewards[i]) else rewards[i]
# Traverse path and update nodes
for depth in range(self.max_depth - 1):
if current_node < len(self.node_samples):
# Update statistics
self.node_samples[current_node] += 1
self.node_active[current_node] = True
# Reinforce successful splits, weaken unsuccessful ones
if reward > 0.5: # Successful retrieval
direction = paths[i, depth]
if direction == 1: # Went right - reinforce positive bias
self.split_biases.data[current_node] += 0.01
else: # Went left - reinforce negative bias
self.split_biases.data[current_node] -= 0.01
# Move to next node in path
direction = paths[i, depth] if depth < paths.shape[1] else 0
current_node = current_node * 2 + 1 + int(direction.item())
if current_node >= 2**self.max_depth - 1:
break
###########################################################################################################################################
##################################################- - - MEMORY FOREST - - -############################################################
class MemoryForest(nn.Module):
"""Complete memory forest system with ensemble routing and associative storage.
Implements the full Memory Forest architecture combining multiple decision
trees for routing with associative hash buckets for storage. Uses ensemble
voting across trees and success-based adaptation of routing decisions.
System Architecture:
1. Multiple decision trees learn different routing strategies
2. Shared memory buckets store items with associative clustering
3. Feature encoder maps inputs to embedding space
4. Ensemble retrieval combines votes from all trees
5. Success feedback adapts tree routing over time
The system learns to organize memory hierarchically, with trees discovering
optimal routing patterns and buckets clustering similar items.
"""
def __init__(self, input_dim, num_trees=5, max_depth=6, bucket_size=64, embedding_dim=128):
super().__init__()
self.input_dim = input_dim
self.num_trees = num_trees
self.embedding_dim = embedding_dim
# Multiple decision trees for ensemble routing
self.trees = nn.ModuleList([
MemoryDecisionTree(input_dim, max_depth) for _ in range(num_trees)
])
# Shared memory buckets across all trees
self.num_buckets = num_trees * (2**max_depth)
self.buckets = nn.ModuleList([
AssociativeHashBucket(bucket_size, embedding_dim) for _ in range(self.num_buckets)
])
# Feature encoder: maps raw inputs to embedding space
self.feature_encoder = nn.Sequential(
nn.Linear(input_dim, embedding_dim),
nn.LayerNorm(embedding_dim),
nn.ReLU(),
nn.Linear(embedding_dim, embedding_dim)
)
# Initialize bucket assignments for tree leaves
self._initialize_bucket_assignments()
def _initialize_bucket_assignments(self):
"""Initialize mapping from tree leaves to memory buckets.
Creates systematic assignment of tree leaves to buckets to ensure
good distribution and avoid conflicts between trees.
Assignment Strategy:
- Each tree gets a separate range of buckets
- Leaf nodes mapped to buckets in order
- Ensures no bucket conflicts between trees
"""
bucket_idx = 0
for tree_idx, tree in enumerate(self.trees):
# Leaf nodes are in range [2^(D-1)-1, 2^D-2] for depth D
start_leaf = 2**(tree.max_depth - 1) - 1
end_leaf = 2**tree.max_depth - 2
for leaf in range(start_leaf, end_leaf + 1):
if bucket_idx < self.num_buckets:
tree.assign_leaf_to_bucket(torch.tensor(leaf), bucket_idx)
bucket_idx += 1
def store(self, features, items=None):
"""Store items in memory forest using learned routing.
Storage Process:
1. Encode features to embedding space
2. Route through each tree to get bucket assignments
3. Store in assigned buckets with associative clustering
4. Return storage locations for tracking
Multiple trees may route the same item to different buckets,
creating redundancy that improves retrieval robustness.
Args:
features: Input features [batch_size, input_dim]
items: Items to store (defaults to features) [batch_size, input_dim]
Returns:
List of (bucket_id, storage_indices) tuples
"""
if items is None:
items = features
# Encode features to embedding space
embeddings = self.feature_encoder(features)
storage_results = []
# Route through each tree and store in assigned buckets
for tree in self.trees:
bucket_assignments = tree.get_bucket_for_input(features, deterministic=False)
for i, b_idx in enumerate(bucket_assignments.tolist()):
if b_idx < len(self.buckets):
stored_idx = self.buckets[b_idx].store_item(embeddings[i])
storage_results.append((b_idx, stored_idx))
return storage_results
def retrieve(self, query_features, top_k=5):
"""Retrieve similar items using ensemble voting across trees.
Retrieval Process:
1. Encode query features to embedding space
2. Route queries through all trees to get bucket candidates
3. Retrieve similar items from each candidate bucket
4. Aggregate results using ensemble voting
5. Rank by similarity scores and return top-k
Ensemble Strategy:
- Each tree votes for items from its assigned bucket
- Items receive votes from multiple trees if routed similarly
- Final ranking combines similarity scores across votes
Args:
query_features: Query feature vectors [batch_size, input_dim]
top_k: Number of most similar items to return
Returns:
List of (retrieved_items, similarity_scores) for each query
"""
query_embeddings = self.feature_encoder(query_features)
# Collect votes from all trees
bucket_votes = defaultdict(list)
for tree in self.trees:
bucket_assignments = tree.get_bucket_for_input(query_features, deterministic=True)
for i, b_idx in enumerate(bucket_assignments.tolist()):
if b_idx < len(self.buckets):
retrieved_items, similarities = self.buckets[b_idx].retrieve_similar(
query_embeddings[i], top_k=top_k
)
if len(retrieved_items) > 0:
# Store items with both float and tensor similarities
float_sims = similarities.detach().cpu().tolist()
for itm, sim_t, sim_f in zip(retrieved_items, similarities, float_sims):
bucket_votes[i].append((itm, sim_f, sim_t))
# Aggregate ensemble results
final_results = []
for query_idx in range(query_features.shape[0]):
if query_idx in bucket_votes and len(bucket_votes[query_idx]) > 0:
# Sort candidates by similarity score
candidates = bucket_votes[query_idx]
candidates.sort(key=lambda x: x[1], reverse=True)
# Extract top-k results
top_candidates = candidates[:top_k]
items = [c[0] for c in top_candidates]
sims_t = [c[2] for c in top_candidates]
final_results.append((torch.stack(items), torch.stack(sims_t)))
else:
# No results found
final_results.append((torch.tensor([]), torch.tensor([])))
return final_results
def update_routing(self, features, retrieval_success):
"""Update tree routing based on retrieval success feedback.
Implements the learning component where trees adapt their routing
decisions based on how successful retrievals were. This enables
the forest to optimize its organization over time.
Learning Process:
1. Trees receive feedback on routing decisions
2. Successful routes are reinforced
3. Unsuccessful routes are weakened
4. Parameters updated via gradient-free reinforcement
Args:
features: Input features that were queried [batch_size, input_dim]
retrieval_success: Success scores [batch_size] β [0,1]
"""
for tree in self.trees:
tree.update_node_statistics(features, retrieval_success)
def get_forest_stats(self):
"""Get comprehensive statistics about the memory forest state.
Provides detailed information about forest utilization, tree states,
bucket occupancy, and overall system health for monitoring.
Returns:
Dictionary with complete forest statistics
"""
stats = {
'num_trees': self.num_trees,
'num_buckets': self.num_buckets,
'bucket_stats': [],
'tree_stats': []
}
# Collect bucket statistics
for i, bucket in enumerate(self.buckets):
bucket_stat = bucket.get_bucket_stats()
bucket_stat['bucket_id'] = i
stats['bucket_stats'].append(bucket_stat)
# Collect tree statistics
for i, tree in enumerate(self.trees):
tree_stat = {
'tree_id': i,
'active_nodes': tree.node_active.sum().item(),
'total_samples': tree.node_samples.sum().item(),
'max_depth': tree.max_depth
}
stats['tree_stats'].append(tree_stat)
return stats
def forward(self, features, items=None, mode='store'):
"""Unified forward interface for storage and retrieval operations.
Args:
features: Input feature vectors
items: Items to store (for store mode)
mode: 'store' or 'retrieve'
Returns:
Storage results or retrieval results based on mode
"""
if mode == 'store':
return self.store(features, items)
elif mode == 'retrieve':
return self.retrieve(features)
else:
raise ValueError("Mode must be 'store' or 'retrieve'")
###########################################################################################################################################
####################################################- - - DEMO AND TESTING - - -#######################################################
def test_memory_forest():
"""Comprehensive test of Memory Forest functionality and performance."""
print(" Testing Memory Forest - Associative Memory with Learned Routing")
print("=" * 70)
# Create memory forest system
input_dim = 64
embedding_dim = 128
forest = MemoryForest(
input_dim=input_dim,
num_trees=3,
max_depth=4,
bucket_size=32,
embedding_dim=embedding_dim
)
print(f"Created Memory Forest:")
print(f" - Input dimension: {input_dim}")
print(f" - Embedding dimension: {embedding_dim}")
print(f" - Number of trees: {forest.num_trees}")
print(f" - Tree depth: 4")
print(f" - Total buckets: {forest.num_buckets}")
print(f" - Bucket capacity: 32 items each")
# Generate test data with some structure for meaningful clustering
print(f"\n Generating structured test data...")
num_items = 100
# Create clustered data (3 clusters)
cluster_centers = torch.randn(3, input_dim) * 2
test_features = []
for _ in range(num_items):
cluster_id = torch.randint(0, 3, (1,)).item()
noise = torch.randn(input_dim) * 0.5
item = cluster_centers[cluster_id] + noise
test_features.append(item)
test_features = torch.stack(test_features)
print(f" - Generated {num_items} items in 3 clusters")
print(f" - Feature dimension: {input_dim}")
# Test storage
print(f"\n Testing storage operations...")
storage_results = forest.store(test_features)
unique_buckets = len(set(r[0] for r in storage_results))
print(f" - Stored {num_items} items")
print(f" - Used {unique_buckets} different buckets")
print(f" - Average items per bucket: {len(storage_results) / unique_buckets:.1f}")
# Test retrieval without learning
print(f"\n Testing retrieval (before learning)...")
query_features = test_features[:5] # Use first 5 items as queries
retrieval_results = forest.retrieve(query_features, top_k=3)
initial_success_count = 0
print("Initial retrieval results:")
for i, (items, similarities) in enumerate(retrieval_results):
if len(items) > 0:
best_sim = similarities[0].item()
success = best_sim > 0.8 # Threshold for "good" retrieval
print(f" Query {i}: {len(items)} items, best similarity: {best_sim:.3f} {'β' if success else 'β'}")
if success:
initial_success_count += 1
else:
print(f" Query {i}: No items retrieved β")
initial_success_rate = initial_success_count / len(query_features)
print(f" Initial success rate: {initial_success_rate:.1%}")
# Test adaptive learning
print(f"\n Testing adaptive learning...")
print("Simulating retrieval feedback and tree adaptation...")
# Simulate multiple rounds of feedback
for round_num in range(3):
# Generate random retrieval success scores (biased toward improvement)
retrieval_success = torch.rand(len(query_features)) * 0.6 + 0.3
# Update tree routing based on feedback
forest.update_routing(query_features, retrieval_success)
print(f" Round {round_num + 1}: Updated trees with feedback")
# Test retrieval after learning
print(f"\n Testing retrieval (after learning)...")
learned_results = forest.retrieve(query_features, top_k=3)
learned_success_count = 0
print("Post-learning retrieval results:")
for i, (items, similarities) in enumerate(learned_results):
if len(items) > 0:
best_sim = similarities[0].item()
success = best_sim > 0.8
print(f" Query {i}: {len(items)} items, best similarity: {best_sim:.3f} {'β' if success else 'β'}")
if success:
learned_success_count += 1
else:
print(f" Query {i}: No items retrieved β")
learned_success_rate = learned_success_count / len(query_features)
improvement = learned_success_rate - initial_success_rate
print(f" Post-learning success rate: {learned_success_rate:.1%}")
print(f" Improvement: {improvement:+.1%}")
# Analyze forest statistics
print(f"\n Forest analysis:")
stats = forest.get_forest_stats()
avg_bucket_occupancy = np.mean([b['occupancy_rate'] for b in stats['bucket_stats']])
total_accesses = sum(b['total_accesses'] for b in stats['bucket_stats'])
active_nodes = sum(t['active_nodes'] for t in stats['tree_stats'])
print(f" - Average bucket occupancy: {avg_bucket_occupancy:.1%}")
print(f" - Total bucket accesses: {total_accesses}")
print(f" - Active tree nodes: {active_nodes}")
# Test different query types
print(f"\n Testing query diversity...")
# Similar query (from stored data)
similar_query = test_features[10:11] # Known stored item
similar_results = forest.retrieve(similar_query, top_k=3)
similar_best = similar_results[0][1][0].item() if len(similar_results[0][1]) > 0 else 0
# Random query (not from stored data)
random_query = torch.randn(1, input_dim)
random_results = forest.retrieve(random_query, top_k=3)
random_best = random_results[0][1][0].item() if len(random_results[0][1]) > 0 else 0
print(f" - Known item query similarity: {similar_best:.3f}")
print(f" - Random query similarity: {random_best:.3f}")
print(f" - Discrimination ratio: {similar_best / max(random_best, 0.01):.1f}x")
print(f"\n Memory Forest test completed!")
print("β Hierarchical memory organization with learned routing")
print("β Associative storage with similarity clustering")
print("β Ensemble retrieval across multiple trees")
print("β Adaptive routing based on retrieval success")
print("β Efficient O(log n) routing instead of O(n) search")
print("β Scalable architecture for large memory systems")
return True
def simple_demo():
"""Simple demonstration with clear patterns."""
print("\n" + "="*50)
print(" MEMORY FOREST SIMPLE DEMO")
print("="*50)
# Create small forest for clear demonstration
forest = MemoryForest(input_dim=8, num_trees=2, max_depth=3, bucket_size=16, embedding_dim=32)
# Create simple patterns that should cluster together
patterns = torch.tensor([
[1, 0, 1, 0, 1, 0, 1, 0], # Pattern A (alternating)
[0, 1, 0, 1, 0, 1, 0, 1], # Pattern B (inverse alternating)
[1, 1, 0, 0, 1, 1, 0, 0], # Pattern C (pairs)
[0, 0, 1, 1, 0, 0, 1, 1], # Pattern D (inverse pairs)
[1, 0, 1, 0, 1, 0, 1, 1], # Pattern A variant
[0, 1, 0, 1, 0, 1, 0, 0], # Pattern B variant
], dtype=torch.float32)
print("Storing 6 distinct patterns...")
print(" - 2 alternating patterns (A, B)")
print(" - 2 pair patterns (C, D)")
print(" - 2 pattern variants")
# Store patterns
forest.store(patterns)
# Test exact pattern retrieval
print("\nTesting exact pattern retrieval:")
results = forest.retrieve(patterns[:4]) # Query first 4 patterns
for i, (items, sims) in enumerate(results):
if len(items) > 0:
best_sim = sims[0].item()
print(f" Pattern {i}: Found {len(items)} matches, best similarity: {best_sim:.3f}")
else:
print(f" Pattern {i}: No matches found")
# Test noisy pattern retrieval
print("\nTesting noisy pattern retrieval:")
noisy_patterns = patterns[:2] + 0.1 * torch.randn_like(patterns[:2])
noisy_results = forest.retrieve(noisy_patterns)
for i, (items, sims) in enumerate(noisy_results):
if len(items) > 0:
best_sim = sims[0].item()
print(f" Noisy pattern {i}: Found {len(items)} matches, best similarity: {best_sim:.3f}")
else:
print(f" Noisy pattern {i}: No matches found")
# Show forest organization
stats = forest.get_forest_stats()
used_buckets = sum(1 for b in stats['bucket_stats'] if b['occupancy_rate'] > 0)
print(f"\nForest organization:")
print(f" - Used {used_buckets} buckets out of {len(stats['bucket_stats'])}")
print(f" - Trees routed patterns to different memory locations")
print(f" - Associative clustering groups similar patterns")
print("\n Demo completed. Memory Forest successfully organized and retrieved patterns.")
if __name__ == "__main__":
test_memory_forest()
simple_demo()
###########################################################################################################################################
###########################################################################################################################################
|