# Adaptive Bi-Coupled Coherence Recovery (ABCR) Algorithm ## Mathematical Formulation and Algorithmic Specification ### 1. Core State Variables **Coherence State Vector**: ``` κ(t) = [κ_δ(t), κ_θ(t), κ_α(t), κ_β(t), κ_γ(t)] ``` **Phase State Vector**: ``` φ(t) = [φ_δ(t), φ_θ(t), φ_α(t), φ_β(t), φ_γ(t)] ``` **Invariant Field** (long-term memory): ``` Π = [Π_δ, Π_θ, Π_α, Π_β, Π_γ] ``` ### 2. Dual-Stream Architecture The system maintains two complementary processing streams: **Stream A (Excitatory)**: Detects hypo-coherence ``` S_A(κ) = {b ∈ Bands | κ_b < τ_low} ``` **Stream B (Inhibitory)**: Detects hyper-coherence ``` S_B(κ) = {b ∈ Bands | κ_b > τ_high} ``` ### 3. Adaptive Threshold System **Context-Aware Thresholds**: ``` τ_low(t) = τ_base * (1 - σ(t)) τ_high(t) = 1 - τ_base * (1 - σ(t)) ``` Where σ(t) is the system stress indicator: ``` σ(t) = min(1, Σ|dκ_b/dt| / Σκ_b) ``` **Adaptive Alpha (Renewal Rate)**: ``` α(t) = α_base + α_mod * σ(t) α_base ∈ [0.5, 0.65] α_mod ∈ [0, 0.15] ``` ### 4. Spatial Encoding with Bi-Coupling **Forward Capsule** (standard encoding): ``` C_F[m,n,b] = G_r(m,n) * κ_b * exp(iφ_b - ik_b*r) ``` **Mirror Capsule** (complementary encoding): ``` C_M[m,n,b] = G_r(m,n) * (1-κ_b) * exp(i(π-φ_b) + ik_b*r) ``` Where: - `G_r(m,n) = exp(-r/r_0)` is the spatial envelope - `k_b = 2πf_b/c` is the wave number - `r = √(m²+n²) * Δx` is the radius ### 5. Broken Chain Detection Algorithm ```python FUNCTION DetectBrokenChains(κ, C_F, C_M): broken_A = [] # Hypo-coherent chains broken_B = [] # Hyper-coherent chains intact = {} FOR each band b: κ_b = κ[b] # Dual-mode detection IF κ_b < τ_low: phase_coherence = ComputePhaseCoherence(C_F[b]) IF phase_coherence < τ_phase: broken_A.append(ChainComponent(b, κ_b, "hypo")) ELIF κ_b > τ_high: phase_coherence = ComputePhaseCoherence(C_M[b]) IF phase_coherence < τ_phase: broken_B.append(ChainComponent(b, κ_b, "hyper")) ELSE: intact[b] = κ_b RETURN broken_A, broken_B, intact ``` ### 6. Bi-Coupled Reconstruction **Hamiltonian for Reconstruction**: For hypo-coherent chains (Stream A): ``` H_A[b] = h_b^F + Σ_j J_{bj}^F * κ_j + λ * h_b^M ``` For hyper-coherent chains (Stream B): ``` H_B[b] = h_b^M + Σ_j J_{bj}^M * (1-κ_j) + λ * h_b^F ``` Where: - `h_b^F` = forward capsule field bias - `h_b^M` = mirror capsule field bias - `J_{bj}` = coupling strength between bands - `λ` = cross-stream coupling coefficient **Iterative Reconstruction**: ```python FUNCTION ReconstructChains(broken_A, broken_B, intact, H_A, H_B): κ_recon = intact.copy() FOR iteration in 1..MAX_ITER: converged = True # Reconstruct hypo-coherent chains FOR chain in broken_A: field = H_A[chain.band] κ_new = sigmoid(field) IF |κ_new - κ_recon[chain.band]| > ε: converged = False κ_recon[chain.band] = κ_new # Reconstruct hyper-coherent chains FOR chain in broken_B: field = H_B[chain.band] κ_new = 1 - sigmoid(field) IF |κ_new - κ_recon[chain.band]| > ε: converged = False κ_recon[chain.band] = κ_new IF converged: BREAK RETURN κ_recon ``` ### 7. Integrity Audit with Bi-Stream Validation **Dual-Stream Residuals**: ``` s_A = R*τ_R - (Δκ_A + D_ω^A + D_C^A) # Stream A residual s_B = R*τ_R - (Δκ_B + D_ω^B + D_C^B) # Stream B residual ``` **Composite Audit Score**: ``` s_composite = w_A * s_A + w_B * s_B ``` Where weights depend on which streams were active: ``` w_A = |broken_A| / (|broken_A| + |broken_B|) w_B = |broken_B| / (|broken_A| + |broken_B|) ``` **Seam Classification**: ``` IF |s_composite| < ε_audit AND |Δκ_avg| < ε_type1: seam = TYPE_I # Perfect recovery ELIF |s_composite| < ε_audit: seam = TYPE_II # Acceptable loss ELSE: seam = TYPE_III # Failed recovery ``` ### 8. Cognitive Renewal with Mode Selection **Mode-Aware Renewal**: ```python FUNCTION AdaptiveRenewal(κ_fragmented, Π, mode): IF mode == "conservative": ρ = 0.8 # High reliance on invariant novelty = 0.05 baseline = 0.5 ELIF mode == "moderate": ρ = 0.7 novelty = 0.1 baseline = 0.6 ELIF mode == "aggressive": ρ = 0.6 novelty = 0.15 baseline = 0.65 FOR each band b: ξ = Normal(0, novelty) κ_renewed[b] = ρ*Π[b] + (1-ρ)*baseline + ξ κ_renewed[b] = clip(κ_renewed[b], 0, 1) RETURN κ_renewed ``` ### 9. Main Algorithm Flow ```python ALGORITHM AdaptiveBiCoupledCoherenceRecovery: INPUT: κ(t), φ(t), Π, mode, context OUTPUT: κ_recovered(t+1) # Step 1: Compute adaptive thresholds σ = ComputeSystemStress(κ, dκ/dt) τ_low, τ_high = ComputeAdaptiveThresholds(σ, context) α = ComputeAdaptiveAlpha(σ, mode) # Step 2: Encode dual capsules C_F = EncodeForwardCapsule(κ, φ) C_M = EncodeMirrorCapsule(κ, φ) # Step 3: Detect broken chains in both streams broken_A, broken_B, intact = DetectBrokenChains(κ, C_F, C_M) # Step 4: Check for emergency conditions IF EmergencyCondition(broken_A, broken_B): RETURN EmergencyDecouple() # Step 5: Compute bi-coupled Hamiltonians H_A = ComputeStreamAHamiltonian(broken_A, intact, C_F, C_M) H_B = ComputeStreamBHamiltonian(broken_B, intact, C_F, C_M) # Step 6: Reconstruct broken chains κ_recon = ReconstructChains(broken_A, broken_B, intact, H_A, H_B) # Step 7: Perform integrity audit audit = BiStreamAudit(κ, κ_recon, broken_A, broken_B) # Step 8: Apply renewal if audit passes IF audit.pass: κ_final = AdaptiveRenewal(κ_recon, Π, mode) UpdateInvariantField(Π, κ_final) RETURN κ_final ELSE: RETURN FallbackRecovery(κ, Π) ``` ### 10. System Modes The algorithm supports multiple operational modes: **1. Standard Mode**: - Balanced thresholds - Moderate alpha (0.6) - Equal stream weighting **2. High-Sensitivity Mode**: - Lower τ_low (0.2) - Higher τ_high (0.8) - Faster response **3. Stability Mode**: - Conservative thresholds - Lower alpha (0.5) - Prioritize invariant field **4. Recovery Mode**: - Aggressive alpha (0.65) - Relaxed thresholds - Higher novelty injection ### 11. Key Innovations 1. **Dual-Stream Processing**: Simultaneous detection of hypo- and hyper-coherence 2. **Mirror Capsules**: Complementary encoding for robust reconstruction 3. **Adaptive Parameters**: Context-aware threshold and renewal rate adjustment 4. **Bi-Coupled Hamiltonians**: Cross-stream information sharing 5. **Composite Auditing**: Validation across both processing streams 6. **Mode Selection**: Configurable behavior for different applications ### 12. Computational Complexity - **Spatial Encoding**: O(M*N*B) where M,N are grid dimensions, B is number of bands - **Chain Detection**: O(B*P) where P is positions per band - **Reconstruction**: O(I*B²) where I is iterations - **Total**: O(M*N*B + I*B²) ≈ O(n²) for typical parameters ### 13. Convergence Guarantees The algorithm converges under the following conditions: 1. |J_{ij}| < 1 for all coupling terms 2. Learning rate α ∈ (0, 1) 3. Sigmoid activation ensures bounded outputs 4. Maximum iterations prevent infinite loops ### 14. Applications Mapping **Trading Systems**: - Use high-sensitivity mode for volatile markets - Hypo-coherence → missed opportunities - Hyper-coherence → overtrading **Mental Health Device**: - Hypo-coherence → depression/dissociation - Hyper-coherence → anxiety/mania - Adaptive mode based on biometric feedback **Consciousness Modeling**: - Full dual-stream for complete state space - Mirror capsules represent complementary awareness - Invariant field as persistent self-model