File size: 7,556 Bytes
90f0b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/QR>
template<typename HyperplaneType> void hyperplane(const HyperplaneType& _plane)
{
/* this test covers the following files:
Hyperplane.h
*/
using std::abs;
const Index dim = _plane.dim();
enum { Options = HyperplaneType::Options };
typedef typename HyperplaneType::Scalar Scalar;
typedef typename HyperplaneType::RealScalar RealScalar;
typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime, 1> VectorType;
typedef Matrix<Scalar, HyperplaneType::AmbientDimAtCompileTime,
HyperplaneType::AmbientDimAtCompileTime> MatrixType;
VectorType p0 = VectorType::Random(dim);
VectorType p1 = VectorType::Random(dim);
VectorType n0 = VectorType::Random(dim).normalized();
VectorType n1 = VectorType::Random(dim).normalized();
HyperplaneType pl0(n0, p0);
HyperplaneType pl1(n1, p1);
HyperplaneType pl2 = pl1;
Scalar s0 = internal::random<Scalar>();
Scalar s1 = internal::random<Scalar>();
VERIFY_IS_APPROX( n1.dot(n1), Scalar(1) );
VERIFY_IS_MUCH_SMALLER_THAN( pl0.absDistance(p0), Scalar(1) );
if(numext::abs2(s0)>RealScalar(1e-6))
VERIFY_IS_APPROX( pl1.signedDistance(p1 + n1 * s0), s0);
else
VERIFY_IS_MUCH_SMALLER_THAN( abs(pl1.signedDistance(p1 + n1 * s0) - s0), Scalar(1) );
VERIFY_IS_MUCH_SMALLER_THAN( pl1.signedDistance(pl1.projection(p0)), Scalar(1) );
VERIFY_IS_MUCH_SMALLER_THAN( pl1.absDistance(p1 + pl1.normal().unitOrthogonal() * s1), Scalar(1) );
// transform
if (!NumTraits<Scalar>::IsComplex)
{
MatrixType rot = MatrixType::Random(dim,dim).householderQr().householderQ();
DiagonalMatrix<Scalar,HyperplaneType::AmbientDimAtCompileTime> scaling(VectorType::Random());
Translation<Scalar,HyperplaneType::AmbientDimAtCompileTime> translation(VectorType::Random());
while(scaling.diagonal().cwiseAbs().minCoeff()<RealScalar(1e-4)) scaling.diagonal() = VectorType::Random();
pl2 = pl1;
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot).absDistance(rot * p1), Scalar(1) );
pl2 = pl1;
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot,Isometry).absDistance(rot * p1), Scalar(1) );
pl2 = pl1;
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling).absDistance((rot*scaling) * p1), Scalar(1) );
VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
pl2 = pl1;
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*scaling*translation)
.absDistance((rot*scaling*translation) * p1), Scalar(1) );
VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
pl2 = pl1;
VERIFY_IS_MUCH_SMALLER_THAN( pl2.transform(rot*translation,Isometry)
.absDistance((rot*translation) * p1), Scalar(1) );
VERIFY_IS_APPROX( pl2.normal().norm(), RealScalar(1) );
}
// casting
const int Dim = HyperplaneType::AmbientDimAtCompileTime;
typedef typename GetDifferentType<Scalar>::type OtherScalar;
Hyperplane<OtherScalar,Dim,Options> hp1f = pl1.template cast<OtherScalar>();
VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),pl1);
Hyperplane<Scalar,Dim,Options> hp1d = pl1.template cast<Scalar>();
VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),pl1);
}
template<typename Scalar> void lines()
{
using std::abs;
typedef Hyperplane<Scalar, 2> HLine;
typedef ParametrizedLine<Scalar, 2> PLine;
typedef Matrix<Scalar,2,1> Vector;
typedef Matrix<Scalar,3,1> CoeffsType;
for(int i = 0; i < 10; i++)
{
Vector center = Vector::Random();
Vector u = Vector::Random();
Vector v = Vector::Random();
Scalar a = internal::random<Scalar>();
while (abs(a-1) < Scalar(1e-4)) a = internal::random<Scalar>();
while (u.norm() < Scalar(1e-4)) u = Vector::Random();
while (v.norm() < Scalar(1e-4)) v = Vector::Random();
HLine line_u = HLine::Through(center + u, center + a*u);
HLine line_v = HLine::Through(center + v, center + a*v);
// the line equations should be normalized so that a^2+b^2=1
VERIFY_IS_APPROX(line_u.normal().norm(), Scalar(1));
VERIFY_IS_APPROX(line_v.normal().norm(), Scalar(1));
Vector result = line_u.intersection(line_v);
// the lines should intersect at the point we called "center"
if(abs(a-1) > Scalar(1e-2) && abs(v.normalized().dot(u.normalized()))<Scalar(0.9))
VERIFY_IS_APPROX(result, center);
// check conversions between two types of lines
PLine pl(line_u); // gcc 3.3 will commit suicide if we don't name this variable
HLine line_u2(pl);
CoeffsType converted_coeffs = line_u2.coeffs();
if(line_u2.normal().dot(line_u.normal())<Scalar(0))
converted_coeffs = -line_u2.coeffs();
VERIFY(line_u.coeffs().isApprox(converted_coeffs));
}
}
template<typename Scalar> void planes()
{
using std::abs;
typedef Hyperplane<Scalar, 3> Plane;
typedef Matrix<Scalar,3,1> Vector;
for(int i = 0; i < 10; i++)
{
Vector v0 = Vector::Random();
Vector v1(v0), v2(v0);
if(internal::random<double>(0,1)>0.25)
v1 += Vector::Random();
if(internal::random<double>(0,1)>0.25)
v2 += v1 * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
if(internal::random<double>(0,1)>0.25)
v2 += Vector::Random() * std::pow(internal::random<Scalar>(0,1),internal::random<int>(1,16));
Plane p0 = Plane::Through(v0, v1, v2);
VERIFY_IS_APPROX(p0.normal().norm(), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v0), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v1), Scalar(1));
VERIFY_IS_MUCH_SMALLER_THAN(p0.absDistance(v2), Scalar(1));
}
}
template<typename Scalar> void hyperplane_alignment()
{
typedef Hyperplane<Scalar,3,AutoAlign> Plane3a;
typedef Hyperplane<Scalar,3,DontAlign> Plane3u;
EIGEN_ALIGN_MAX Scalar array1[4];
EIGEN_ALIGN_MAX Scalar array2[4];
EIGEN_ALIGN_MAX Scalar array3[4+1];
Scalar* array3u = array3+1;
Plane3a *p1 = ::new(reinterpret_cast<void*>(array1)) Plane3a;
Plane3u *p2 = ::new(reinterpret_cast<void*>(array2)) Plane3u;
Plane3u *p3 = ::new(reinterpret_cast<void*>(array3u)) Plane3u;
p1->coeffs().setRandom();
*p2 = *p1;
*p3 = *p1;
VERIFY_IS_APPROX(p1->coeffs(), p2->coeffs());
VERIFY_IS_APPROX(p1->coeffs(), p3->coeffs());
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES > 0
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(array3u)) Plane3a));
#endif
}
void test_geo_hyperplane()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( hyperplane(Hyperplane<float,2>()) );
CALL_SUBTEST_2( hyperplane(Hyperplane<float,3>()) );
CALL_SUBTEST_2( hyperplane(Hyperplane<float,3,DontAlign>()) );
CALL_SUBTEST_2( hyperplane_alignment<float>() );
CALL_SUBTEST_3( hyperplane(Hyperplane<double,4>()) );
CALL_SUBTEST_4( hyperplane(Hyperplane<std::complex<double>,5>()) );
CALL_SUBTEST_1( lines<float>() );
CALL_SUBTEST_3( lines<double>() );
CALL_SUBTEST_2( planes<float>() );
CALL_SUBTEST_5( planes<double>() );
}
}
|