File size: 10,877 Bytes
90f0b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
// Copyright (C) 2009 Mathieu Gautier <mathieu.gautier@cea.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/SVD>
template<typename T> T bounded_acos(T v)
{
using std::acos;
using std::min;
using std::max;
return acos((max)(T(-1),(min)(v,T(1))));
}
template<typename QuatType> void check_slerp(const QuatType& q0, const QuatType& q1)
{
using std::abs;
typedef typename QuatType::Scalar Scalar;
typedef AngleAxis<Scalar> AA;
Scalar largeEps = test_precision<Scalar>();
Scalar theta_tot = AA(q1*q0.inverse()).angle();
if(theta_tot>Scalar(EIGEN_PI))
theta_tot = Scalar(2.)*Scalar(EIGEN_PI)-theta_tot;
for(Scalar t=0; t<=Scalar(1.001); t+=Scalar(0.1))
{
QuatType q = q0.slerp(t,q1);
Scalar theta = AA(q*q0.inverse()).angle();
VERIFY(abs(q.norm() - 1) < largeEps);
if(theta_tot==0) VERIFY(theta_tot==0);
else VERIFY(abs(theta - t * theta_tot) < largeEps);
}
}
template<typename Scalar, int Options> void quaternion(void)
{
/* this test covers the following files:
Quaternion.h
*/
using std::abs;
typedef Matrix<Scalar,3,1> Vector3;
typedef Matrix<Scalar,3,3> Matrix3;
typedef Quaternion<Scalar,Options> Quaternionx;
typedef AngleAxis<Scalar> AngleAxisx;
Scalar largeEps = test_precision<Scalar>();
if (internal::is_same<Scalar,float>::value)
largeEps = Scalar(1e-3);
Scalar eps = internal::random<Scalar>() * Scalar(1e-2);
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random(),
v2 = Vector3::Random(),
v3 = Vector3::Random();
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI)),
b = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
// Quaternion: Identity(), setIdentity();
Quaternionx q1, q2;
q2.setIdentity();
VERIFY_IS_APPROX(Quaternionx(Quaternionx::Identity()).coeffs(), q2.coeffs());
q1.coeffs().setRandom();
VERIFY_IS_APPROX(q1.coeffs(), (q1*q2).coeffs());
// concatenation
q1 *= q2;
q1 = AngleAxisx(a, v0.normalized());
q2 = AngleAxisx(a, v1.normalized());
// angular distance
Scalar refangle = abs(AngleAxisx(q1.inverse()*q2).angle());
if (refangle>Scalar(EIGEN_PI))
refangle = Scalar(2)*Scalar(EIGEN_PI) - refangle;
if((q1.coeffs()-q2.coeffs()).norm() > 10*largeEps)
{
VERIFY_IS_MUCH_SMALLER_THAN(abs(q1.angularDistance(q2) - refangle), Scalar(1));
}
// rotation matrix conversion
VERIFY_IS_APPROX(q1 * v2, q1.toRotationMatrix() * v2);
VERIFY_IS_APPROX(q1 * q2 * v2,
q1.toRotationMatrix() * q2.toRotationMatrix() * v2);
VERIFY( (q2*q1).isApprox(q1*q2, largeEps)
|| !(q2 * q1 * v2).isApprox(q1.toRotationMatrix() * q2.toRotationMatrix() * v2));
q2 = q1.toRotationMatrix();
VERIFY_IS_APPROX(q1*v1,q2*v1);
Matrix3 rot1(q1);
VERIFY_IS_APPROX(q1*v1,rot1*v1);
Quaternionx q3(rot1.transpose()*rot1);
VERIFY_IS_APPROX(q3*v1,v1);
// angle-axis conversion
AngleAxisx aa = AngleAxisx(q1);
VERIFY_IS_APPROX(q1 * v1, Quaternionx(aa) * v1);
// Do not execute the test if the rotation angle is almost zero, or
// the rotation axis and v1 are almost parallel.
if (abs(aa.angle()) > 5*test_precision<Scalar>()
&& (aa.axis() - v1.normalized()).norm() < Scalar(1.99)
&& (aa.axis() + v1.normalized()).norm() < Scalar(1.99))
{
VERIFY_IS_NOT_APPROX(q1 * v1, Quaternionx(AngleAxisx(aa.angle()*2,aa.axis())) * v1);
}
// from two vector creation
VERIFY_IS_APPROX( v2.normalized(),(q2.setFromTwoVectors(v1, v2)*v1).normalized());
VERIFY_IS_APPROX( v1.normalized(),(q2.setFromTwoVectors(v1, v1)*v1).normalized());
VERIFY_IS_APPROX(-v1.normalized(),(q2.setFromTwoVectors(v1,-v1)*v1).normalized());
if (internal::is_same<Scalar,double>::value)
{
v3 = (v1.array()+eps).matrix();
VERIFY_IS_APPROX( v3.normalized(),(q2.setFromTwoVectors(v1, v3)*v1).normalized());
VERIFY_IS_APPROX(-v3.normalized(),(q2.setFromTwoVectors(v1,-v3)*v1).normalized());
}
// from two vector creation static function
VERIFY_IS_APPROX( v2.normalized(),(Quaternionx::FromTwoVectors(v1, v2)*v1).normalized());
VERIFY_IS_APPROX( v1.normalized(),(Quaternionx::FromTwoVectors(v1, v1)*v1).normalized());
VERIFY_IS_APPROX(-v1.normalized(),(Quaternionx::FromTwoVectors(v1,-v1)*v1).normalized());
if (internal::is_same<Scalar,double>::value)
{
v3 = (v1.array()+eps).matrix();
VERIFY_IS_APPROX( v3.normalized(),(Quaternionx::FromTwoVectors(v1, v3)*v1).normalized());
VERIFY_IS_APPROX(-v3.normalized(),(Quaternionx::FromTwoVectors(v1,-v3)*v1).normalized());
}
// inverse and conjugate
VERIFY_IS_APPROX(q1 * (q1.inverse() * v1), v1);
VERIFY_IS_APPROX(q1 * (q1.conjugate() * v1), v1);
// test casting
Quaternion<float> q1f = q1.template cast<float>();
VERIFY_IS_APPROX(q1f.template cast<Scalar>(),q1);
Quaternion<double> q1d = q1.template cast<double>();
VERIFY_IS_APPROX(q1d.template cast<Scalar>(),q1);
// test bug 369 - improper alignment.
Quaternionx *q = new Quaternionx;
delete q;
q1 = Quaternionx::UnitRandom();
q2 = Quaternionx::UnitRandom();
check_slerp(q1,q2);
q1 = AngleAxisx(b, v1.normalized());
q2 = AngleAxisx(b+Scalar(EIGEN_PI), v1.normalized());
check_slerp(q1,q2);
q1 = AngleAxisx(b, v1.normalized());
q2 = AngleAxisx(-b, -v1.normalized());
check_slerp(q1,q2);
q1 = Quaternionx::UnitRandom();
q2.coeffs() = -q1.coeffs();
check_slerp(q1,q2);
}
template<typename Scalar> void mapQuaternion(void){
typedef Map<Quaternion<Scalar>, Aligned> MQuaternionA;
typedef Map<const Quaternion<Scalar>, Aligned> MCQuaternionA;
typedef Map<Quaternion<Scalar> > MQuaternionUA;
typedef Map<const Quaternion<Scalar> > MCQuaternionUA;
typedef Quaternion<Scalar> Quaternionx;
typedef Matrix<Scalar,3,1> Vector3;
typedef AngleAxis<Scalar> AngleAxisx;
Vector3 v0 = Vector3::Random(),
v1 = Vector3::Random();
Scalar a = internal::random<Scalar>(-Scalar(EIGEN_PI), Scalar(EIGEN_PI));
EIGEN_ALIGN_MAX Scalar array1[4];
EIGEN_ALIGN_MAX Scalar array2[4];
EIGEN_ALIGN_MAX Scalar array3[4+1];
Scalar* array3unaligned = array3+1;
MQuaternionA mq1(array1);
MCQuaternionA mcq1(array1);
MQuaternionA mq2(array2);
MQuaternionUA mq3(array3unaligned);
MCQuaternionUA mcq3(array3unaligned);
// std::cerr << array1 << " " << array2 << " " << array3 << "\n";
mq1 = AngleAxisx(a, v0.normalized());
mq2 = mq1;
mq3 = mq1;
Quaternionx q1 = mq1;
Quaternionx q2 = mq2;
Quaternionx q3 = mq3;
Quaternionx q4 = MCQuaternionUA(array3unaligned);
VERIFY_IS_APPROX(q1.coeffs(), q2.coeffs());
VERIFY_IS_APPROX(q1.coeffs(), q3.coeffs());
VERIFY_IS_APPROX(q4.coeffs(), q3.coeffs());
#ifdef EIGEN_VECTORIZE
if(internal::packet_traits<Scalar>::Vectorizable)
VERIFY_RAISES_ASSERT((MQuaternionA(array3unaligned)));
#endif
VERIFY_IS_APPROX(mq1 * (mq1.inverse() * v1), v1);
VERIFY_IS_APPROX(mq1 * (mq1.conjugate() * v1), v1);
VERIFY_IS_APPROX(mcq1 * (mcq1.inverse() * v1), v1);
VERIFY_IS_APPROX(mcq1 * (mcq1.conjugate() * v1), v1);
VERIFY_IS_APPROX(mq3 * (mq3.inverse() * v1), v1);
VERIFY_IS_APPROX(mq3 * (mq3.conjugate() * v1), v1);
VERIFY_IS_APPROX(mcq3 * (mcq3.inverse() * v1), v1);
VERIFY_IS_APPROX(mcq3 * (mcq3.conjugate() * v1), v1);
VERIFY_IS_APPROX(mq1*mq2, q1*q2);
VERIFY_IS_APPROX(mq3*mq2, q3*q2);
VERIFY_IS_APPROX(mcq1*mq2, q1*q2);
VERIFY_IS_APPROX(mcq3*mq2, q3*q2);
// Bug 1461, compilation issue with Map<const Quat>::w(), and other reference/constness checks:
VERIFY_IS_APPROX(mcq3.coeffs().x() + mcq3.coeffs().y() + mcq3.coeffs().z() + mcq3.coeffs().w(), mcq3.coeffs().sum());
VERIFY_IS_APPROX(mcq3.x() + mcq3.y() + mcq3.z() + mcq3.w(), mcq3.coeffs().sum());
mq3.w() = 1;
const Quaternionx& cq3(q3);
VERIFY( &cq3.x() == &q3.x() );
const MQuaternionUA& cmq3(mq3);
VERIFY( &cmq3.x() == &mq3.x() );
// FIXME the following should be ok. The problem is that currently the LValueBit flag
// is used to determine wether we can return a coeff by reference or not, which is not enough for Map<const ...>.
//const MCQuaternionUA& cmcq3(mcq3);
//VERIFY( &cmcq3.x() == &mcq3.x() );
}
template<typename Scalar> void quaternionAlignment(void){
typedef Quaternion<Scalar,AutoAlign> QuaternionA;
typedef Quaternion<Scalar,DontAlign> QuaternionUA;
EIGEN_ALIGN_MAX Scalar array1[4];
EIGEN_ALIGN_MAX Scalar array2[4];
EIGEN_ALIGN_MAX Scalar array3[4+1];
Scalar* arrayunaligned = array3+1;
QuaternionA *q1 = ::new(reinterpret_cast<void*>(array1)) QuaternionA;
QuaternionUA *q2 = ::new(reinterpret_cast<void*>(array2)) QuaternionUA;
QuaternionUA *q3 = ::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionUA;
q1->coeffs().setRandom();
*q2 = *q1;
*q3 = *q1;
VERIFY_IS_APPROX(q1->coeffs(), q2->coeffs());
VERIFY_IS_APPROX(q1->coeffs(), q3->coeffs());
#if defined(EIGEN_VECTORIZE) && EIGEN_MAX_STATIC_ALIGN_BYTES>0
if(internal::packet_traits<Scalar>::Vectorizable && internal::packet_traits<Scalar>::size<=4)
VERIFY_RAISES_ASSERT((::new(reinterpret_cast<void*>(arrayunaligned)) QuaternionA));
#endif
}
template<typename PlainObjectType> void check_const_correctness(const PlainObjectType&)
{
// there's a lot that we can't test here while still having this test compile!
// the only possible approach would be to run a script trying to compile stuff and checking that it fails.
// CMake can help with that.
// verify that map-to-const don't have LvalueBit
typedef typename internal::add_const<PlainObjectType>::type ConstPlainObjectType;
VERIFY( !(internal::traits<Map<ConstPlainObjectType> >::Flags & LvalueBit) );
VERIFY( !(internal::traits<Map<ConstPlainObjectType, Aligned> >::Flags & LvalueBit) );
VERIFY( !(Map<ConstPlainObjectType>::Flags & LvalueBit) );
VERIFY( !(Map<ConstPlainObjectType, Aligned>::Flags & LvalueBit) );
}
void test_geo_quaternion()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1(( quaternion<float,AutoAlign>() ));
CALL_SUBTEST_1( check_const_correctness(Quaternionf()) );
CALL_SUBTEST_2(( quaternion<double,AutoAlign>() ));
CALL_SUBTEST_2( check_const_correctness(Quaterniond()) );
CALL_SUBTEST_3(( quaternion<float,DontAlign>() ));
CALL_SUBTEST_4(( quaternion<double,DontAlign>() ));
CALL_SUBTEST_5(( quaternionAlignment<float>() ));
CALL_SUBTEST_6(( quaternionAlignment<double>() ));
CALL_SUBTEST_1( mapQuaternion<float>() );
CALL_SUBTEST_2( mapQuaternion<double>() );
}
}
|