File size: 7,413 Bytes
90f0b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
// This file is part of a joint effort between Eigen, a lightweight C++ template library
// for linear algebra, and MPFR C++, a C++ interface to MPFR library (http://www.holoborodko.com/pavel/)
//
// Copyright (C) 2010-2012 Pavel Holoborodko <pavel@holoborodko.com>
// Copyright (C) 2010 Konstantin Holoborodko <konstantin@holoborodko.com>
// Copyright (C) 2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_MPREALSUPPORT_MODULE_H
#define EIGEN_MPREALSUPPORT_MODULE_H
#include <Eigen/Core>
#include <mpreal.h>
namespace Eigen {
/**
* \defgroup MPRealSupport_Module MPFRC++ Support module
* \code
* #include <Eigen/MPRealSupport>
* \endcode
*
* This module provides support for multi precision floating point numbers
* via the <a href="http://www.holoborodko.com/pavel/mpfr">MPFR C++</a>
* library which itself is built upon <a href="http://www.mpfr.org/">MPFR</a>/<a href="http://gmplib.org/">GMP</a>.
*
* \warning MPFR C++ is licensed under the GPL.
*
* You can find a copy of MPFR C++ that is known to be compatible in the unsupported/test/mpreal folder.
*
* Here is an example:
*
\code
#include <iostream>
#include <Eigen/MPRealSupport>
#include <Eigen/LU>
using namespace mpfr;
using namespace Eigen;
int main()
{
// set precision to 256 bits (double has only 53 bits)
mpreal::set_default_prec(256);
// Declare matrix and vector types with multi-precision scalar type
typedef Matrix<mpreal,Dynamic,Dynamic> MatrixXmp;
typedef Matrix<mpreal,Dynamic,1> VectorXmp;
MatrixXmp A = MatrixXmp::Random(100,100);
VectorXmp b = VectorXmp::Random(100);
// Solve Ax=b using LU
VectorXmp x = A.lu().solve(b);
std::cout << "relative error: " << (A*x - b).norm() / b.norm() << std::endl;
return 0;
}
\endcode
*
*/
template<> struct NumTraits<mpfr::mpreal>
: GenericNumTraits<mpfr::mpreal>
{
enum {
IsInteger = 0,
IsSigned = 1,
IsComplex = 0,
RequireInitialization = 1,
ReadCost = HugeCost,
AddCost = HugeCost,
MulCost = HugeCost
};
typedef mpfr::mpreal Real;
typedef mpfr::mpreal NonInteger;
static inline Real highest (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::maxval(Precision); }
static inline Real lowest (long Precision = mpfr::mpreal::get_default_prec()) { return -mpfr::maxval(Precision); }
// Constants
static inline Real Pi (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_pi(Precision); }
static inline Real Euler (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_euler(Precision); }
static inline Real Log2 (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_log2(Precision); }
static inline Real Catalan (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::const_catalan(Precision); }
static inline Real epsilon (long Precision = mpfr::mpreal::get_default_prec()) { return mpfr::machine_epsilon(Precision); }
static inline Real epsilon (const Real& x) { return mpfr::machine_epsilon(x); }
#ifdef MPREAL_HAVE_DYNAMIC_STD_NUMERIC_LIMITS
static inline int digits10 (long Precision = mpfr::mpreal::get_default_prec()) { return std::numeric_limits<Real>::digits10(Precision); }
static inline int digits10 (const Real& x) { return std::numeric_limits<Real>::digits10(x); }
#endif
static inline Real dummy_precision()
{
mpfr_prec_t weak_prec = ((mpfr::mpreal::get_default_prec()-1) * 90) / 100;
return mpfr::machine_epsilon(weak_prec);
}
};
namespace internal {
template<> inline mpfr::mpreal random<mpfr::mpreal>()
{
return mpfr::random();
}
template<> inline mpfr::mpreal random<mpfr::mpreal>(const mpfr::mpreal& a, const mpfr::mpreal& b)
{
return a + (b-a) * random<mpfr::mpreal>();
}
inline bool isMuchSmallerThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return mpfr::abs(a) <= mpfr::abs(b) * eps;
}
inline bool isApprox(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return mpfr::isEqualFuzzy(a,b,eps);
}
inline bool isApproxOrLessThan(const mpfr::mpreal& a, const mpfr::mpreal& b, const mpfr::mpreal& eps)
{
return a <= b || mpfr::isEqualFuzzy(a,b,eps);
}
template<> inline long double cast<mpfr::mpreal,long double>(const mpfr::mpreal& x)
{ return x.toLDouble(); }
template<> inline double cast<mpfr::mpreal,double>(const mpfr::mpreal& x)
{ return x.toDouble(); }
template<> inline long cast<mpfr::mpreal,long>(const mpfr::mpreal& x)
{ return x.toLong(); }
template<> inline int cast<mpfr::mpreal,int>(const mpfr::mpreal& x)
{ return int(x.toLong()); }
// Specialize GEBP kernel and traits for mpreal (no need for peeling, nor complicated stuff)
// This also permits to directly call mpfr's routines and avoid many temporaries produced by mpreal
template<>
class gebp_traits<mpfr::mpreal, mpfr::mpreal, false, false>
{
public:
typedef mpfr::mpreal ResScalar;
enum {
Vectorizable = false,
LhsPacketSize = 1,
RhsPacketSize = 1,
ResPacketSize = 1,
NumberOfRegisters = 1,
nr = 1,
mr = 1,
LhsProgress = 1,
RhsProgress = 1
};
typedef ResScalar LhsPacket;
typedef ResScalar RhsPacket;
typedef ResScalar ResPacket;
};
template<typename Index, typename DataMapper, bool ConjugateLhs, bool ConjugateRhs>
struct gebp_kernel<mpfr::mpreal,mpfr::mpreal,Index,DataMapper,1,1,ConjugateLhs,ConjugateRhs>
{
typedef mpfr::mpreal mpreal;
EIGEN_DONT_INLINE
void operator()(const DataMapper& res, const mpreal* blockA, const mpreal* blockB,
Index rows, Index depth, Index cols, const mpreal& alpha,
Index strideA=-1, Index strideB=-1, Index offsetA=0, Index offsetB=0)
{
if(rows==0 || cols==0 || depth==0)
return;
mpreal acc1(0,mpfr_get_prec(blockA[0].mpfr_srcptr())),
tmp (0,mpfr_get_prec(blockA[0].mpfr_srcptr()));
if(strideA==-1) strideA = depth;
if(strideB==-1) strideB = depth;
for(Index i=0; i<rows; ++i)
{
for(Index j=0; j<cols; ++j)
{
const mpreal *A = blockA + i*strideA + offsetA;
const mpreal *B = blockB + j*strideB + offsetB;
acc1 = 0;
for(Index k=0; k<depth; k++)
{
mpfr_mul(tmp.mpfr_ptr(), A[k].mpfr_srcptr(), B[k].mpfr_srcptr(), mpreal::get_default_rnd());
mpfr_add(acc1.mpfr_ptr(), acc1.mpfr_ptr(), tmp.mpfr_ptr(), mpreal::get_default_rnd());
}
mpfr_mul(acc1.mpfr_ptr(), acc1.mpfr_srcptr(), alpha.mpfr_srcptr(), mpreal::get_default_rnd());
mpfr_add(res(i,j).mpfr_ptr(), res(i,j).mpfr_srcptr(), acc1.mpfr_srcptr(), mpreal::get_default_rnd());
}
}
}
};
} // end namespace internal
}
#endif // EIGEN_MPREALSUPPORT_MODULE_H
|