File size: 10,599 Bytes
90f0b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 |
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009 Gael Guennebaud <g.gael@free.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <unsupported/Eigen/AutoDiff>
template<typename Scalar>
EIGEN_DONT_INLINE Scalar foo(const Scalar& x, const Scalar& y)
{
using namespace std;
// return x+std::sin(y);
EIGEN_ASM_COMMENT("mybegin");
// pow(float, int) promotes to pow(double, double)
return x*2 - 1 + static_cast<Scalar>(pow(1+x,2)) + 2*sqrt(y*y+0) - 4 * sin(0+x) + 2 * cos(y+0) - exp(Scalar(-0.5)*x*x+0);
//return x+2*y*x;//x*2 -std::pow(x,2);//(2*y/x);// - y*2;
EIGEN_ASM_COMMENT("myend");
}
template<typename Vector>
EIGEN_DONT_INLINE typename Vector::Scalar foo(const Vector& p)
{
typedef typename Vector::Scalar Scalar;
return (p-Vector(Scalar(-1),Scalar(1.))).norm() + (p.array() * p.array()).sum() + p.dot(p);
}
template<typename _Scalar, int NX=Dynamic, int NY=Dynamic>
struct TestFunc1
{
typedef _Scalar Scalar;
enum {
InputsAtCompileTime = NX,
ValuesAtCompileTime = NY
};
typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;
int m_inputs, m_values;
TestFunc1() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
TestFunc1(int inputs, int values) : m_inputs(inputs), m_values(values) {}
int inputs() const { return m_inputs; }
int values() const { return m_values; }
template<typename T>
void operator() (const Matrix<T,InputsAtCompileTime,1>& x, Matrix<T,ValuesAtCompileTime,1>* _v) const
{
Matrix<T,ValuesAtCompileTime,1>& v = *_v;
v[0] = 2 * x[0] * x[0] + x[0] * x[1];
v[1] = 3 * x[1] * x[0] + 0.5 * x[1] * x[1];
if(inputs()>2)
{
v[0] += 0.5 * x[2];
v[1] += x[2];
}
if(values()>2)
{
v[2] = 3 * x[1] * x[0] * x[0];
}
if (inputs()>2 && values()>2)
v[2] *= x[2];
}
void operator() (const InputType& x, ValueType* v, JacobianType* _j) const
{
(*this)(x, v);
if(_j)
{
JacobianType& j = *_j;
j(0,0) = 4 * x[0] + x[1];
j(1,0) = 3 * x[1];
j(0,1) = x[0];
j(1,1) = 3 * x[0] + 2 * 0.5 * x[1];
if (inputs()>2)
{
j(0,2) = 0.5;
j(1,2) = 1;
}
if(values()>2)
{
j(2,0) = 3 * x[1] * 2 * x[0];
j(2,1) = 3 * x[0] * x[0];
}
if (inputs()>2 && values()>2)
{
j(2,0) *= x[2];
j(2,1) *= x[2];
j(2,2) = 3 * x[1] * x[0] * x[0];
j(2,2) = 3 * x[1] * x[0] * x[0];
}
}
}
};
#if EIGEN_HAS_VARIADIC_TEMPLATES
/* Test functor for the C++11 features. */
template <typename Scalar>
struct integratorFunctor
{
typedef Matrix<Scalar, 2, 1> InputType;
typedef Matrix<Scalar, 2, 1> ValueType;
/*
* Implementation starts here.
*/
integratorFunctor(const Scalar gain) : _gain(gain) {}
integratorFunctor(const integratorFunctor& f) : _gain(f._gain) {}
const Scalar _gain;
template <typename T1, typename T2>
void operator() (const T1 &input, T2 *output, const Scalar dt) const
{
T2 &o = *output;
/* Integrator to test the AD. */
o[0] = input[0] + input[1] * dt * _gain;
o[1] = input[1] * _gain;
}
/* Only needed for the test */
template <typename T1, typename T2, typename T3>
void operator() (const T1 &input, T2 *output, T3 *jacobian, const Scalar dt) const
{
T2 &o = *output;
/* Integrator to test the AD. */
o[0] = input[0] + input[1] * dt * _gain;
o[1] = input[1] * _gain;
if (jacobian)
{
T3 &j = *jacobian;
j(0, 0) = 1;
j(0, 1) = dt * _gain;
j(1, 0) = 0;
j(1, 1) = _gain;
}
}
};
template<typename Func> void forward_jacobian_cpp11(const Func& f)
{
typedef typename Func::ValueType::Scalar Scalar;
typedef typename Func::ValueType ValueType;
typedef typename Func::InputType InputType;
typedef typename AutoDiffJacobian<Func>::JacobianType JacobianType;
InputType x = InputType::Random(InputType::RowsAtCompileTime);
ValueType y, yref;
JacobianType j, jref;
const Scalar dt = internal::random<double>();
jref.setZero();
yref.setZero();
f(x, &yref, &jref, dt);
//std::cerr << "y, yref, jref: " << "\n";
//std::cerr << y.transpose() << "\n\n";
//std::cerr << yref << "\n\n";
//std::cerr << jref << "\n\n";
AutoDiffJacobian<Func> autoj(f);
autoj(x, &y, &j, dt);
//std::cerr << "y j (via autodiff): " << "\n";
//std::cerr << y.transpose() << "\n\n";
//std::cerr << j << "\n\n";
VERIFY_IS_APPROX(y, yref);
VERIFY_IS_APPROX(j, jref);
}
#endif
template<typename Func> void forward_jacobian(const Func& f)
{
typename Func::InputType x = Func::InputType::Random(f.inputs());
typename Func::ValueType y(f.values()), yref(f.values());
typename Func::JacobianType j(f.values(),f.inputs()), jref(f.values(),f.inputs());
jref.setZero();
yref.setZero();
f(x,&yref,&jref);
// std::cerr << y.transpose() << "\n\n";;
// std::cerr << j << "\n\n";;
j.setZero();
y.setZero();
AutoDiffJacobian<Func> autoj(f);
autoj(x, &y, &j);
// std::cerr << y.transpose() << "\n\n";;
// std::cerr << j << "\n\n";;
VERIFY_IS_APPROX(y, yref);
VERIFY_IS_APPROX(j, jref);
}
// TODO also check actual derivatives!
template <int>
void test_autodiff_scalar()
{
Vector2f p = Vector2f::Random();
typedef AutoDiffScalar<Vector2f> AD;
AD ax(p.x(),Vector2f::UnitX());
AD ay(p.y(),Vector2f::UnitY());
AD res = foo<AD>(ax,ay);
VERIFY_IS_APPROX(res.value(), foo(p.x(),p.y()));
}
// TODO also check actual derivatives!
template <int>
void test_autodiff_vector()
{
Vector2f p = Vector2f::Random();
typedef AutoDiffScalar<Vector2f> AD;
typedef Matrix<AD,2,1> VectorAD;
VectorAD ap = p.cast<AD>();
ap.x().derivatives() = Vector2f::UnitX();
ap.y().derivatives() = Vector2f::UnitY();
AD res = foo<VectorAD>(ap);
VERIFY_IS_APPROX(res.value(), foo(p));
}
template <int>
void test_autodiff_jacobian()
{
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,2>()) ));
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,2,3>()) ));
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,2>()) ));
CALL_SUBTEST(( forward_jacobian(TestFunc1<double,3,3>()) ));
CALL_SUBTEST(( forward_jacobian(TestFunc1<double>(3,3)) ));
#if EIGEN_HAS_VARIADIC_TEMPLATES
CALL_SUBTEST(( forward_jacobian_cpp11(integratorFunctor<double>(10)) ));
#endif
}
template <int>
void test_autodiff_hessian()
{
typedef AutoDiffScalar<VectorXd> AD;
typedef Matrix<AD,Eigen::Dynamic,1> VectorAD;
typedef AutoDiffScalar<VectorAD> ADD;
typedef Matrix<ADD,Eigen::Dynamic,1> VectorADD;
VectorADD x(2);
double s1 = internal::random<double>(), s2 = internal::random<double>(), s3 = internal::random<double>(), s4 = internal::random<double>();
x(0).value()=s1;
x(1).value()=s2;
//set unit vectors for the derivative directions (partial derivatives of the input vector)
x(0).derivatives().resize(2);
x(0).derivatives().setZero();
x(0).derivatives()(0)= 1;
x(1).derivatives().resize(2);
x(1).derivatives().setZero();
x(1).derivatives()(1)=1;
//repeat partial derivatives for the inner AutoDiffScalar
x(0).value().derivatives() = VectorXd::Unit(2,0);
x(1).value().derivatives() = VectorXd::Unit(2,1);
//set the hessian matrix to zero
for(int idx=0; idx<2; idx++) {
x(0).derivatives()(idx).derivatives() = VectorXd::Zero(2);
x(1).derivatives()(idx).derivatives() = VectorXd::Zero(2);
}
ADD y = sin(AD(s3)*x(0) + AD(s4)*x(1));
VERIFY_IS_APPROX(y.value().derivatives()(0), y.derivatives()(0).value());
VERIFY_IS_APPROX(y.value().derivatives()(1), y.derivatives()(1).value());
VERIFY_IS_APPROX(y.value().derivatives()(0), s3*std::cos(s1*s3+s2*s4));
VERIFY_IS_APPROX(y.value().derivatives()(1), s4*std::cos(s1*s3+s2*s4));
VERIFY_IS_APPROX(y.derivatives()(0).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s3,s4*s3));
VERIFY_IS_APPROX(y.derivatives()(1).derivatives(), -std::sin(s1*s3+s2*s4)*Vector2d(s3*s4,s4*s4));
ADD z = x(0)*x(1);
VERIFY_IS_APPROX(z.derivatives()(0).derivatives(), Vector2d(0,1));
VERIFY_IS_APPROX(z.derivatives()(1).derivatives(), Vector2d(1,0));
}
double bug_1222() {
typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
const double _cv1_3 = 1.0;
const AD chi_3 = 1.0;
// this line did not work, because operator+ returns ADS<DerType&>, which then cannot be converted to ADS<DerType>
const AD denom = chi_3 + _cv1_3;
return denom.value();
}
#ifdef EIGEN_TEST_PART_5
double bug_1223() {
using std::min;
typedef Eigen::AutoDiffScalar<Eigen::Vector3d> AD;
const double _cv1_3 = 1.0;
const AD chi_3 = 1.0;
const AD denom = 1.0;
// failed because implementation of min attempts to construct ADS<DerType&> via constructor AutoDiffScalar(const Real& value)
// without initializing m_derivatives (which is a reference in this case)
#define EIGEN_TEST_SPACE
const AD t = min EIGEN_TEST_SPACE (denom / chi_3, 1.0);
const AD t2 = min EIGEN_TEST_SPACE (denom / (chi_3 * _cv1_3), 1.0);
return t.value() + t2.value();
}
// regression test for some compilation issues with specializations of ScalarBinaryOpTraits
void bug_1260() {
Matrix4d A = Matrix4d::Ones();
Vector4d v = Vector4d::Ones();
A*v;
}
// check a compilation issue with numext::max
double bug_1261() {
typedef AutoDiffScalar<Matrix2d> AD;
typedef Matrix<AD,2,1> VectorAD;
VectorAD v(0.,0.);
const AD maxVal = v.maxCoeff();
const AD minVal = v.minCoeff();
return maxVal.value() + minVal.value();
}
double bug_1264() {
typedef AutoDiffScalar<Vector2d> AD;
const AD s = 0.;
const Matrix<AD, 3, 1> v1(0.,0.,0.);
const Matrix<AD, 3, 1> v2 = (s + 3.0) * v1;
return v2(0).value();
}
#endif
void test_autodiff()
{
for(int i = 0; i < g_repeat; i++) {
CALL_SUBTEST_1( test_autodiff_scalar<1>() );
CALL_SUBTEST_2( test_autodiff_vector<1>() );
CALL_SUBTEST_3( test_autodiff_jacobian<1>() );
CALL_SUBTEST_4( test_autodiff_hessian<1>() );
}
CALL_SUBTEST_5( bug_1222() );
CALL_SUBTEST_5( bug_1223() );
CALL_SUBTEST_5( bug_1260() );
CALL_SUBTEST_5( bug_1261() );
}
|