| /* stbmv.f -- translated by f2c (version 20100827). | |
| You must link the resulting object file with libf2c: | |
| on Microsoft Windows system, link with libf2c.lib; | |
| on Linux or Unix systems, link with .../path/to/libf2c.a -lm | |
| or, if you install libf2c.a in a standard place, with -lf2c -lm | |
| -- in that order, at the end of the command line, as in | |
| cc *.o -lf2c -lm | |
| Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., | |
| http://www.netlib.org/f2c/libf2c.zip | |
| */ | |
| /* Subroutine */ int stbmv_(char *uplo, char *trans, char *diag, integer *n, | |
| integer *k, real *a, integer *lda, real *x, integer *incx, ftnlen | |
| uplo_len, ftnlen trans_len, ftnlen diag_len) | |
| { | |
| /* System generated locals */ | |
| integer a_dim1, a_offset, i__1, i__2, i__3, i__4; | |
| /* Local variables */ | |
| integer i__, j, l, ix, jx, kx, info; | |
| real temp; | |
| extern logical lsame_(char *, char *, ftnlen, ftnlen); | |
| integer kplus1; | |
| extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen); | |
| logical nounit; | |
| /* .. Scalar Arguments .. */ | |
| /* .. */ | |
| /* .. Array Arguments .. */ | |
| /* .. */ | |
| /* Purpose */ | |
| /* ======= */ | |
| /* STBMV performs one of the matrix-vector operations */ | |
| /* x := A*x, or x := A'*x, */ | |
| /* where x is an n element vector and A is an n by n unit, or non-unit, */ | |
| /* upper or lower triangular band matrix, with ( k + 1 ) diagonals. */ | |
| /* Arguments */ | |
| /* ========== */ | |
| /* UPLO - CHARACTER*1. */ | |
| /* On entry, UPLO specifies whether the matrix is an upper or */ | |
| /* lower triangular matrix as follows: */ | |
| /* UPLO = 'U' or 'u' A is an upper triangular matrix. */ | |
| /* UPLO = 'L' or 'l' A is a lower triangular matrix. */ | |
| /* Unchanged on exit. */ | |
| /* TRANS - CHARACTER*1. */ | |
| /* On entry, TRANS specifies the operation to be performed as */ | |
| /* follows: */ | |
| /* TRANS = 'N' or 'n' x := A*x. */ | |
| /* TRANS = 'T' or 't' x := A'*x. */ | |
| /* TRANS = 'C' or 'c' x := A'*x. */ | |
| /* Unchanged on exit. */ | |
| /* DIAG - CHARACTER*1. */ | |
| /* On entry, DIAG specifies whether or not A is unit */ | |
| /* triangular as follows: */ | |
| /* DIAG = 'U' or 'u' A is assumed to be unit triangular. */ | |
| /* DIAG = 'N' or 'n' A is not assumed to be unit */ | |
| /* triangular. */ | |
| /* Unchanged on exit. */ | |
| /* N - INTEGER. */ | |
| /* On entry, N specifies the order of the matrix A. */ | |
| /* N must be at least zero. */ | |
| /* Unchanged on exit. */ | |
| /* K - INTEGER. */ | |
| /* On entry with UPLO = 'U' or 'u', K specifies the number of */ | |
| /* super-diagonals of the matrix A. */ | |
| /* On entry with UPLO = 'L' or 'l', K specifies the number of */ | |
| /* sub-diagonals of the matrix A. */ | |
| /* K must satisfy 0 .le. K. */ | |
| /* Unchanged on exit. */ | |
| /* A - REAL array of DIMENSION ( LDA, n ). */ | |
| /* Before entry with UPLO = 'U' or 'u', the leading ( k + 1 ) */ | |
| /* by n part of the array A must contain the upper triangular */ | |
| /* band part of the matrix of coefficients, supplied column by */ | |
| /* column, with the leading diagonal of the matrix in row */ | |
| /* ( k + 1 ) of the array, the first super-diagonal starting at */ | |
| /* position 2 in row k, and so on. The top left k by k triangle */ | |
| /* of the array A is not referenced. */ | |
| /* The following program segment will transfer an upper */ | |
| /* triangular band matrix from conventional full matrix storage */ | |
| /* to band storage: */ | |
| /* DO 20, J = 1, N */ | |
| /* M = K + 1 - J */ | |
| /* DO 10, I = MAX( 1, J - K ), J */ | |
| /* A( M + I, J ) = matrix( I, J ) */ | |
| /* 10 CONTINUE */ | |
| /* 20 CONTINUE */ | |
| /* Before entry with UPLO = 'L' or 'l', the leading ( k + 1 ) */ | |
| /* by n part of the array A must contain the lower triangular */ | |
| /* band part of the matrix of coefficients, supplied column by */ | |
| /* column, with the leading diagonal of the matrix in row 1 of */ | |
| /* the array, the first sub-diagonal starting at position 1 in */ | |
| /* row 2, and so on. The bottom right k by k triangle of the */ | |
| /* array A is not referenced. */ | |
| /* The following program segment will transfer a lower */ | |
| /* triangular band matrix from conventional full matrix storage */ | |
| /* to band storage: */ | |
| /* DO 20, J = 1, N */ | |
| /* M = 1 - J */ | |
| /* DO 10, I = J, MIN( N, J + K ) */ | |
| /* A( M + I, J ) = matrix( I, J ) */ | |
| /* 10 CONTINUE */ | |
| /* 20 CONTINUE */ | |
| /* Note that when DIAG = 'U' or 'u' the elements of the array A */ | |
| /* corresponding to the diagonal elements of the matrix are not */ | |
| /* referenced, but are assumed to be unity. */ | |
| /* Unchanged on exit. */ | |
| /* LDA - INTEGER. */ | |
| /* On entry, LDA specifies the first dimension of A as declared */ | |
| /* in the calling (sub) program. LDA must be at least */ | |
| /* ( k + 1 ). */ | |
| /* Unchanged on exit. */ | |
| /* X - REAL array of dimension at least */ | |
| /* ( 1 + ( n - 1 )*abs( INCX ) ). */ | |
| /* Before entry, the incremented array X must contain the n */ | |
| /* element vector x. On exit, X is overwritten with the */ | |
| /* tranformed vector x. */ | |
| /* INCX - INTEGER. */ | |
| /* On entry, INCX specifies the increment for the elements of */ | |
| /* X. INCX must not be zero. */ | |
| /* Unchanged on exit. */ | |
| /* Further Details */ | |
| /* =============== */ | |
| /* Level 2 Blas routine. */ | |
| /* -- Written on 22-October-1986. */ | |
| /* Jack Dongarra, Argonne National Lab. */ | |
| /* Jeremy Du Croz, Nag Central Office. */ | |
| /* Sven Hammarling, Nag Central Office. */ | |
| /* Richard Hanson, Sandia National Labs. */ | |
| /* ===================================================================== */ | |
| /* .. Parameters .. */ | |
| /* .. */ | |
| /* .. Local Scalars .. */ | |
| /* .. */ | |
| /* .. External Functions .. */ | |
| /* .. */ | |
| /* .. External Subroutines .. */ | |
| /* .. */ | |
| /* .. Intrinsic Functions .. */ | |
| /* .. */ | |
| /* Test the input parameters. */ | |
| /* Parameter adjustments */ | |
| a_dim1 = *lda; | |
| a_offset = 1 + a_dim1; | |
| a -= a_offset; | |
| --x; | |
| /* Function Body */ | |
| info = 0; | |
| if (! lsame_(uplo, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, "L", ( | |
| ftnlen)1, (ftnlen)1)) { | |
| info = 1; | |
| } else if (! lsame_(trans, "N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, | |
| "T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, "C", (ftnlen)1, ( | |
| ftnlen)1)) { | |
| info = 2; | |
| } else if (! lsame_(diag, "U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag, | |
| "N", (ftnlen)1, (ftnlen)1)) { | |
| info = 3; | |
| } else if (*n < 0) { | |
| info = 4; | |
| } else if (*k < 0) { | |
| info = 5; | |
| } else if (*lda < *k + 1) { | |
| info = 7; | |
| } else if (*incx == 0) { | |
| info = 9; | |
| } | |
| if (info != 0) { | |
| xerbla_("STBMV ", &info, (ftnlen)6); | |
| return 0; | |
| } | |
| /* Quick return if possible. */ | |
| if (*n == 0) { | |
| return 0; | |
| } | |
| nounit = lsame_(diag, "N", (ftnlen)1, (ftnlen)1); | |
| /* Set up the start point in X if the increment is not unity. This */ | |
| /* will be ( N - 1 )*INCX too small for descending loops. */ | |
| if (*incx <= 0) { | |
| kx = 1 - (*n - 1) * *incx; | |
| } else if (*incx != 1) { | |
| kx = 1; | |
| } | |
| /* Start the operations. In this version the elements of A are */ | |
| /* accessed sequentially with one pass through A. */ | |
| if (lsame_(trans, "N", (ftnlen)1, (ftnlen)1)) { | |
| /* Form x := A*x. */ | |
| if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { | |
| kplus1 = *k + 1; | |
| if (*incx == 1) { | |
| i__1 = *n; | |
| for (j = 1; j <= i__1; ++j) { | |
| if (x[j] != 0.f) { | |
| temp = x[j]; | |
| l = kplus1 - j; | |
| /* Computing MAX */ | |
| i__2 = 1, i__3 = j - *k; | |
| i__4 = j - 1; | |
| for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) { | |
| x[i__] += temp * a[l + i__ + j * a_dim1]; | |
| /* L10: */ | |
| } | |
| if (nounit) { | |
| x[j] *= a[kplus1 + j * a_dim1]; | |
| } | |
| } | |
| /* L20: */ | |
| } | |
| } else { | |
| jx = kx; | |
| i__1 = *n; | |
| for (j = 1; j <= i__1; ++j) { | |
| if (x[jx] != 0.f) { | |
| temp = x[jx]; | |
| ix = kx; | |
| l = kplus1 - j; | |
| /* Computing MAX */ | |
| i__4 = 1, i__2 = j - *k; | |
| i__3 = j - 1; | |
| for (i__ = max(i__4,i__2); i__ <= i__3; ++i__) { | |
| x[ix] += temp * a[l + i__ + j * a_dim1]; | |
| ix += *incx; | |
| /* L30: */ | |
| } | |
| if (nounit) { | |
| x[jx] *= a[kplus1 + j * a_dim1]; | |
| } | |
| } | |
| jx += *incx; | |
| if (j > *k) { | |
| kx += *incx; | |
| } | |
| /* L40: */ | |
| } | |
| } | |
| } else { | |
| if (*incx == 1) { | |
| for (j = *n; j >= 1; --j) { | |
| if (x[j] != 0.f) { | |
| temp = x[j]; | |
| l = 1 - j; | |
| /* Computing MIN */ | |
| i__1 = *n, i__3 = j + *k; | |
| i__4 = j + 1; | |
| for (i__ = min(i__1,i__3); i__ >= i__4; --i__) { | |
| x[i__] += temp * a[l + i__ + j * a_dim1]; | |
| /* L50: */ | |
| } | |
| if (nounit) { | |
| x[j] *= a[j * a_dim1 + 1]; | |
| } | |
| } | |
| /* L60: */ | |
| } | |
| } else { | |
| kx += (*n - 1) * *incx; | |
| jx = kx; | |
| for (j = *n; j >= 1; --j) { | |
| if (x[jx] != 0.f) { | |
| temp = x[jx]; | |
| ix = kx; | |
| l = 1 - j; | |
| /* Computing MIN */ | |
| i__4 = *n, i__1 = j + *k; | |
| i__3 = j + 1; | |
| for (i__ = min(i__4,i__1); i__ >= i__3; --i__) { | |
| x[ix] += temp * a[l + i__ + j * a_dim1]; | |
| ix -= *incx; | |
| /* L70: */ | |
| } | |
| if (nounit) { | |
| x[jx] *= a[j * a_dim1 + 1]; | |
| } | |
| } | |
| jx -= *incx; | |
| if (*n - j >= *k) { | |
| kx -= *incx; | |
| } | |
| /* L80: */ | |
| } | |
| } | |
| } | |
| } else { | |
| /* Form x := A'*x. */ | |
| if (lsame_(uplo, "U", (ftnlen)1, (ftnlen)1)) { | |
| kplus1 = *k + 1; | |
| if (*incx == 1) { | |
| for (j = *n; j >= 1; --j) { | |
| temp = x[j]; | |
| l = kplus1 - j; | |
| if (nounit) { | |
| temp *= a[kplus1 + j * a_dim1]; | |
| } | |
| /* Computing MAX */ | |
| i__4 = 1, i__1 = j - *k; | |
| i__3 = max(i__4,i__1); | |
| for (i__ = j - 1; i__ >= i__3; --i__) { | |
| temp += a[l + i__ + j * a_dim1] * x[i__]; | |
| /* L90: */ | |
| } | |
| x[j] = temp; | |
| /* L100: */ | |
| } | |
| } else { | |
| kx += (*n - 1) * *incx; | |
| jx = kx; | |
| for (j = *n; j >= 1; --j) { | |
| temp = x[jx]; | |
| kx -= *incx; | |
| ix = kx; | |
| l = kplus1 - j; | |
| if (nounit) { | |
| temp *= a[kplus1 + j * a_dim1]; | |
| } | |
| /* Computing MAX */ | |
| i__4 = 1, i__1 = j - *k; | |
| i__3 = max(i__4,i__1); | |
| for (i__ = j - 1; i__ >= i__3; --i__) { | |
| temp += a[l + i__ + j * a_dim1] * x[ix]; | |
| ix -= *incx; | |
| /* L110: */ | |
| } | |
| x[jx] = temp; | |
| jx -= *incx; | |
| /* L120: */ | |
| } | |
| } | |
| } else { | |
| if (*incx == 1) { | |
| i__3 = *n; | |
| for (j = 1; j <= i__3; ++j) { | |
| temp = x[j]; | |
| l = 1 - j; | |
| if (nounit) { | |
| temp *= a[j * a_dim1 + 1]; | |
| } | |
| /* Computing MIN */ | |
| i__1 = *n, i__2 = j + *k; | |
| i__4 = min(i__1,i__2); | |
| for (i__ = j + 1; i__ <= i__4; ++i__) { | |
| temp += a[l + i__ + j * a_dim1] * x[i__]; | |
| /* L130: */ | |
| } | |
| x[j] = temp; | |
| /* L140: */ | |
| } | |
| } else { | |
| jx = kx; | |
| i__3 = *n; | |
| for (j = 1; j <= i__3; ++j) { | |
| temp = x[jx]; | |
| kx += *incx; | |
| ix = kx; | |
| l = 1 - j; | |
| if (nounit) { | |
| temp *= a[j * a_dim1 + 1]; | |
| } | |
| /* Computing MIN */ | |
| i__1 = *n, i__2 = j + *k; | |
| i__4 = min(i__1,i__2); | |
| for (i__ = j + 1; i__ <= i__4; ++i__) { | |
| temp += a[l + i__ + j * a_dim1] * x[ix]; | |
| ix += *incx; | |
| /* L150: */ | |
| } | |
| x[jx] = temp; | |
| jx += *incx; | |
| /* L160: */ | |
| } | |
| } | |
| } | |
| } | |
| return 0; | |
| /* End of STBMV . */ | |
| } /* stbmv_ */ | |