|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#include "main.h" |
|
|
#include <limits> |
|
|
#include <Eigen/Eigenvalues> |
|
|
#include <Eigen/LU> |
|
|
|
|
|
template<typename MatrixType> bool find_pivot(typename MatrixType::Scalar tol, MatrixType &diffs, Index col=0) |
|
|
{ |
|
|
bool match = diffs.diagonal().sum() <= tol; |
|
|
if(match || col==diffs.cols()) |
|
|
{ |
|
|
return match; |
|
|
} |
|
|
else |
|
|
{ |
|
|
Index n = diffs.cols(); |
|
|
std::vector<std::pair<Index,Index> > transpositions; |
|
|
for(Index i=col; i<n; ++i) |
|
|
{ |
|
|
Index best_index(0); |
|
|
if(diffs.col(col).segment(col,n-i).minCoeff(&best_index) > tol) |
|
|
break; |
|
|
|
|
|
best_index += col; |
|
|
|
|
|
diffs.row(col).swap(diffs.row(best_index)); |
|
|
if(find_pivot(tol,diffs,col+1)) return true; |
|
|
diffs.row(col).swap(diffs.row(best_index)); |
|
|
|
|
|
|
|
|
diffs.row(n-(i-col)-1).swap(diffs.row(best_index)); |
|
|
transpositions.push_back(std::pair<Index,Index>(n-(i-col)-1,best_index)); |
|
|
} |
|
|
|
|
|
for(Index k=transpositions.size()-1; k>=0; --k) |
|
|
diffs.row(transpositions[k].first).swap(diffs.row(transpositions[k].second)); |
|
|
} |
|
|
return false; |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
template<typename VectorType> |
|
|
void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) |
|
|
{ |
|
|
typedef typename VectorType::Scalar Scalar; |
|
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
|
|
|
VERIFY(vec1.cols() == 1); |
|
|
VERIFY(vec2.cols() == 1); |
|
|
VERIFY(vec1.rows() == vec2.rows()); |
|
|
|
|
|
Index n = vec1.rows(); |
|
|
RealScalar tol = test_precision<RealScalar>()*test_precision<RealScalar>()*numext::maxi(vec1.squaredNorm(),vec2.squaredNorm()); |
|
|
Matrix<RealScalar,Dynamic,Dynamic> diffs = (vec1.rowwise().replicate(n) - vec2.rowwise().replicate(n).transpose()).cwiseAbs2(); |
|
|
|
|
|
VERIFY( find_pivot(tol, diffs) ); |
|
|
} |
|
|
|
|
|
|
|
|
template<typename MatrixType> void eigensolver(const MatrixType& m) |
|
|
{ |
|
|
|
|
|
|
|
|
|
|
|
Index rows = m.rows(); |
|
|
Index cols = m.cols(); |
|
|
|
|
|
typedef typename MatrixType::Scalar Scalar; |
|
|
typedef typename NumTraits<Scalar>::Real RealScalar; |
|
|
|
|
|
MatrixType a = MatrixType::Random(rows,cols); |
|
|
MatrixType symmA = a.adjoint() * a; |
|
|
|
|
|
ComplexEigenSolver<MatrixType> ei0(symmA); |
|
|
VERIFY_IS_EQUAL(ei0.info(), Success); |
|
|
VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); |
|
|
|
|
|
ComplexEigenSolver<MatrixType> ei1(a); |
|
|
VERIFY_IS_EQUAL(ei1.info(), Success); |
|
|
VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); |
|
|
|
|
|
|
|
|
verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); |
|
|
|
|
|
ComplexEigenSolver<MatrixType> ei2; |
|
|
ei2.setMaxIterations(ComplexSchur<MatrixType>::m_maxIterationsPerRow * rows).compute(a); |
|
|
VERIFY_IS_EQUAL(ei2.info(), Success); |
|
|
VERIFY_IS_EQUAL(ei2.eigenvectors(), ei1.eigenvectors()); |
|
|
VERIFY_IS_EQUAL(ei2.eigenvalues(), ei1.eigenvalues()); |
|
|
if (rows > 2) { |
|
|
ei2.setMaxIterations(1).compute(a); |
|
|
VERIFY_IS_EQUAL(ei2.info(), NoConvergence); |
|
|
VERIFY_IS_EQUAL(ei2.getMaxIterations(), 1); |
|
|
} |
|
|
|
|
|
ComplexEigenSolver<MatrixType> eiNoEivecs(a, false); |
|
|
VERIFY_IS_EQUAL(eiNoEivecs.info(), Success); |
|
|
VERIFY_IS_APPROX(ei1.eigenvalues(), eiNoEivecs.eigenvalues()); |
|
|
|
|
|
|
|
|
MatrixType z = MatrixType::Zero(rows,cols); |
|
|
ComplexEigenSolver<MatrixType> eiz(z); |
|
|
VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); |
|
|
|
|
|
MatrixType id = MatrixType::Identity(rows, cols); |
|
|
VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); |
|
|
|
|
|
if (rows > 1 && rows < 20) |
|
|
{ |
|
|
|
|
|
a(0,0) = std::numeric_limits<typename MatrixType::RealScalar>::quiet_NaN(); |
|
|
ComplexEigenSolver<MatrixType> eiNaN(a); |
|
|
VERIFY_IS_EQUAL(eiNaN.info(), NoConvergence); |
|
|
} |
|
|
|
|
|
|
|
|
{ |
|
|
ComplexEigenSolver<MatrixType> eig(a.adjoint() * a); |
|
|
eig.compute(a.adjoint() * a); |
|
|
} |
|
|
|
|
|
|
|
|
{ |
|
|
a.setZero(); |
|
|
ComplexEigenSolver<MatrixType> ei3(a); |
|
|
VERIFY_IS_EQUAL(ei3.info(), Success); |
|
|
VERIFY_IS_MUCH_SMALLER_THAN(ei3.eigenvalues().norm(),RealScalar(1)); |
|
|
VERIFY((ei3.eigenvectors().transpose()*ei3.eigenvectors().transpose()).eval().isIdentity()); |
|
|
} |
|
|
} |
|
|
|
|
|
template<typename MatrixType> void eigensolver_verify_assert(const MatrixType& m) |
|
|
{ |
|
|
ComplexEigenSolver<MatrixType> eig; |
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
|
|
VERIFY_RAISES_ASSERT(eig.eigenvalues()); |
|
|
|
|
|
MatrixType a = MatrixType::Random(m.rows(),m.cols()); |
|
|
eig.compute(a, false); |
|
|
VERIFY_RAISES_ASSERT(eig.eigenvectors()); |
|
|
} |
|
|
|
|
|
void test_eigensolver_complex() |
|
|
{ |
|
|
int s = 0; |
|
|
for(int i = 0; i < g_repeat; i++) { |
|
|
CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); |
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
|
|
CALL_SUBTEST_2( eigensolver(MatrixXcd(s,s)) ); |
|
|
CALL_SUBTEST_3( eigensolver(Matrix<std::complex<float>, 1, 1>()) ); |
|
|
CALL_SUBTEST_4( eigensolver(Matrix3f()) ); |
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s) |
|
|
} |
|
|
CALL_SUBTEST_1( eigensolver_verify_assert(Matrix4cf()) ); |
|
|
s = internal::random<int>(1,EIGEN_TEST_MAX_SIZE/4); |
|
|
CALL_SUBTEST_2( eigensolver_verify_assert(MatrixXcd(s,s)) ); |
|
|
CALL_SUBTEST_3( eigensolver_verify_assert(Matrix<std::complex<float>, 1, 1>()) ); |
|
|
CALL_SUBTEST_4( eigensolver_verify_assert(Matrix3f()) ); |
|
|
|
|
|
|
|
|
CALL_SUBTEST_5(ComplexEigenSolver<MatrixXf> tmp(s)); |
|
|
|
|
|
TEST_SET_BUT_UNUSED_VARIABLE(s) |
|
|
} |
|
|
|