File size: 7,502 Bytes
d56c551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
'''
Functions about lighting mesh(changing colors/texture of mesh).
1. add light to colors/texture (shade each vertex)
2. fit light according to colors/texture & image.

Preparation knowledge:
lighting: https://cs184.eecs.berkeley.edu/lecture/pipeline
spherical harmonics in human face: '3D Face Reconstruction from a Single Image Using a Single Reference Face Shape'
'''

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

def get_normal(vertices, triangles):
    ''' calculate normal direction in each vertex
    Args:
        vertices: [nver, 3]
        triangles: [ntri, 3]
    Returns:
        normal: [nver, 3]
    '''
    pt0 = vertices[triangles[:, 0], :] # [ntri, 3]
    pt1 = vertices[triangles[:, 1], :] # [ntri, 3]
    pt2 = vertices[triangles[:, 2], :] # [ntri, 3]
    tri_normal = np.cross(pt0 - pt1, pt0 - pt2) # [ntri, 3]. normal of each triangle

    normal = np.zeros_like(vertices) # [nver, 3]
    for i in range(triangles.shape[0]):
        normal[triangles[i, 0], :] = normal[triangles[i, 0], :] + tri_normal[i, :]
        normal[triangles[i, 1], :] = normal[triangles[i, 1], :] + tri_normal[i, :]
        normal[triangles[i, 2], :] = normal[triangles[i, 2], :] + tri_normal[i, :]
    
    # normalize to unit length
    mag = np.sum(normal**2, 1) # [nver]
    zero_ind = (mag == 0)
    mag[zero_ind] = 1;
    normal[zero_ind, 0] = np.ones((np.sum(zero_ind)))

    normal = normal/np.sqrt(mag[:,np.newaxis])

    return normal

# TODO: test
def add_light_sh(vertices, triangles, colors, sh_coeff):
    ''' 
    In 3d face, usually assume:
    1. The surface of face is Lambertian(reflect only the low frequencies of lighting)
    2. Lighting can be an arbitrary combination of point sources
    --> can be expressed in terms of spherical harmonics(omit the lighting coefficients)
    I = albedo * (sh(n) x sh_coeff)
    
    albedo: n x 1
    sh_coeff: 9 x 1
    Y(n) = (1, n_x, n_y, n_z, n_xn_y, n_xn_z, n_yn_z, n_x^2 - n_y^2, 3n_z^2 - 1)': n x 9 
    # Y(n) = (1, n_x, n_y, n_z)': n x 4

    Args:
        vertices: [nver, 3]
        triangles: [ntri, 3]
        colors: [nver, 3] albedo
        sh_coeff: [9, 1] spherical harmonics coefficients

    Returns:
        lit_colors: [nver, 3]
    '''
    assert vertices.shape[0] == colors.shape[0]
    nver = vertices.shape[0]
    normal = get_normal(vertices, triangles) # [nver, 3]
    sh = np.array((np.ones(nver), n[:,0], n[:,1], n[:,2], n[:,0]*n[:,1], n[:,0]*n[:,2], n[:,1]*n[:,2], n[:,0]**2 - n[:,1]**2, 3*(n[:,2]**2) - 1)) # [nver, 9]
    ref = sh.dot(sh_coeff) #[nver, 1]
    lit_colors = colors*ref
    return lit_colors


def add_light(vertices, triangles, colors, light_positions = 0, light_intensities = 0):
    ''' Gouraud shading. add point lights.
    In 3d face, usually assume:
    1. The surface of face is Lambertian(reflect only the low frequencies of lighting)
    2. Lighting can be an arbitrary combination of point sources
    3. No specular (unless skin is oil, 23333)

    Ref: https://cs184.eecs.berkeley.edu/lecture/pipeline    
    Args:
        vertices: [nver, 3]
        triangles: [ntri, 3]
        light_positions: [nlight, 3] 
        light_intensities: [nlight, 3]
    Returns:
        lit_colors: [nver, 3]
    '''
    nver = vertices.shape[0]
    normals = get_normal(vertices, triangles) # [nver, 3]

    # ambient
    # La = ka*Ia

    # diffuse
    # Ld = kd*(I/r^2)max(0, nxl)
    direction_to_lights = vertices[np.newaxis, :, :] - light_positions[:, np.newaxis, :] # [nlight, nver, 3]
    direction_to_lights_n = np.sqrt(np.sum(direction_to_lights**2, axis = 2)) # [nlight, nver]
    direction_to_lights = direction_to_lights/direction_to_lights_n[:, :, np.newaxis]
    normals_dot_lights = normals[np.newaxis, :, :]*direction_to_lights # [nlight, nver, 3]
    normals_dot_lights = np.sum(normals_dot_lights, axis = 2) # [nlight, nver]
    diffuse_output = colors[np.newaxis, :, :]*normals_dot_lights[:, :, np.newaxis]*light_intensities[:, np.newaxis, :]
    diffuse_output = np.sum(diffuse_output, axis = 0) # [nver, 3]
    
    # specular
    # h = (v + l)/(|v + l|) bisector
    # Ls = ks*(I/r^2)max(0, nxh)^p
    # increasing p narrows the reflectionlob

    lit_colors = diffuse_output # only diffuse part here.
    lit_colors = np.minimum(np.maximum(lit_colors, 0), 1)
    return lit_colors



## TODO. estimate light(sh coeff)
## -------------------------------- estimate. can not use now. 
def fit_light(image, vertices, colors, triangles, vis_ind, lamb = 10, max_iter = 3):
    [h, w, c] = image.shape

    # surface normal
    norm = get_normal(vertices, triangles)
    
    nver = vertices.shape[1]

    # vertices --> corresponding image pixel
    pt2d = vertices[:2, :]

    pt2d[0,:] = np.minimum(np.maximum(pt2d[0,:], 0), w - 1)
    pt2d[1,:] = np.minimum(np.maximum(pt2d[1,:], 0), h - 1)
    pt2d = np.round(pt2d).astype(np.int32) # 2 x nver

    image_pixel = image[pt2d[1,:], pt2d[0,:], :] # nver x 3
    image_pixel = image_pixel.T # 3 x nver

    # vertices --> corresponding mean texture pixel with illumination
    # Spherical Harmonic Basis
    harmonic_dim = 9
    nx = norm[0,:];
    ny = norm[1,:];
    nz = norm[2,:];
    harmonic = np.zeros((nver, harmonic_dim))

    pi = np.pi
    harmonic[:,0] = np.sqrt(1/(4*pi)) * np.ones((nver,));
    harmonic[:,1] = np.sqrt(3/(4*pi)) * nx;
    harmonic[:,2] = np.sqrt(3/(4*pi)) * ny;
    harmonic[:,3] = np.sqrt(3/(4*pi)) * nz;
    harmonic[:,4] = 1/2. * np.sqrt(3/(4*pi)) * (2*nz**2 - nx**2 - ny**2);
    harmonic[:,5] = 3 * np.sqrt(5/(12*pi)) * (ny*nz);
    harmonic[:,6] = 3 * np.sqrt(5/(12*pi)) * (nx*nz);
    harmonic[:,7] = 3 * np.sqrt(5/(12*pi)) * (nx*ny);
    harmonic[:,8] = 3/2. * np.sqrt(5/(12*pi)) * (nx*nx - ny*ny);
    
    '''
    I' = sum(albedo * lj * hj) j = 0:9 (albedo = tex)
    set A = albedo*h (n x 9)
        alpha = lj (9 x 1)
        Y = I (n x 1)
        Y' = A.dot(alpha)

    opt function:
        ||Y - A*alpha|| + lambda*(alpha'*alpha)
    result:
        A'*(Y - A*alpha) + lambda*alpha = 0
        ==>
        (A'*A*alpha - lambda)*alpha = A'*Y
        left: 9 x 9
        right: 9 x 1
    '''
    n_vis_ind = len(vis_ind)
    n = n_vis_ind*c

    Y = np.zeros((n, 1))
    A = np.zeros((n, 9))
    light = np.zeros((3, 1))

    for k in range(c):
        Y[k*n_vis_ind:(k+1)*n_vis_ind, :] = image_pixel[k, vis_ind][:, np.newaxis]
        A[k*n_vis_ind:(k+1)*n_vis_ind, :] = texture[k, vis_ind][:, np.newaxis] * harmonic[vis_ind, :]
        Ac = texture[k, vis_ind][:, np.newaxis]
        Yc = image_pixel[k, vis_ind][:, np.newaxis]
        light[k] = (Ac.T.dot(Yc))/(Ac.T.dot(Ac))

    for i in range(max_iter):

        Yc = Y.copy()
        for k in range(c):
            Yc[k*n_vis_ind:(k+1)*n_vis_ind, :]  /= light[k]

        # update alpha
        equation_left = np.dot(A.T, A) + lamb*np.eye(harmonic_dim); # why + ?
        equation_right = np.dot(A.T, Yc) 
        alpha = np.dot(np.linalg.inv(equation_left), equation_right)

        # update light
        for k in range(c):
            Ac = A[k*n_vis_ind:(k+1)*n_vis_ind, :].dot(alpha)
            Yc = Y[k*n_vis_ind:(k+1)*n_vis_ind, :]
            light[k] = (Ac.T.dot(Yc))/(Ac.T.dot(Ac))

    appearance = np.zeros_like(texture)
    for k in range(c):
        tmp = np.dot(harmonic*texture[k, :][:, np.newaxis], alpha*light[k])
        appearance[k,:] = tmp.T

    appearance = np.minimum(np.maximum(appearance, 0), 1)

    return appearance