|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import copy |
|
|
import torch |
|
|
import random |
|
|
from torch import nn, Tensor |
|
|
import os |
|
|
import numpy as np |
|
|
import math |
|
|
import torch.nn.functional as F |
|
|
from torch import nn |
|
|
|
|
|
|
|
|
def _get_clones(module, N, layer_share=False): |
|
|
|
|
|
if layer_share: |
|
|
return nn.ModuleList([module for i in range(N)]) |
|
|
else: |
|
|
return nn.ModuleList([copy.deepcopy(module) for i in range(N)]) |
|
|
|
|
|
|
|
|
def get_sine_pos_embed( |
|
|
pos_tensor: torch.Tensor, |
|
|
num_pos_feats: int = 128, |
|
|
temperature: int = 10000, |
|
|
exchange_xy: bool = True, |
|
|
): |
|
|
"""generate sine position embedding from a position tensor |
|
|
Args: |
|
|
pos_tensor (torch.Tensor): shape: [..., n]. |
|
|
num_pos_feats (int): projected shape for each float in the tensor. |
|
|
temperature (int): temperature in the sine/cosine function. |
|
|
exchange_xy (bool, optional): exchange pos x and pos y. \ |
|
|
For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True. |
|
|
Returns: |
|
|
pos_embed (torch.Tensor): shape: [..., n*num_pos_feats]. |
|
|
""" |
|
|
scale = 2 * math.pi |
|
|
dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device) |
|
|
dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats) |
|
|
|
|
|
def sine_func(x: torch.Tensor): |
|
|
sin_x = x * scale / dim_t |
|
|
sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2) |
|
|
return sin_x |
|
|
|
|
|
pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)] |
|
|
if exchange_xy: |
|
|
pos_res[0], pos_res[1] = pos_res[1], pos_res[0] |
|
|
pos_res = torch.cat(pos_res, dim=-1) |
|
|
return pos_res |
|
|
|
|
|
|
|
|
def gen_encoder_output_proposals(memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None): |
|
|
""" |
|
|
Input: |
|
|
- memory: bs, \sum{hw}, d_model |
|
|
- memory_padding_mask: bs, \sum{hw} |
|
|
- spatial_shapes: nlevel, 2 |
|
|
- learnedwh: 2 |
|
|
Output: |
|
|
- output_memory: bs, \sum{hw}, d_model |
|
|
- output_proposals: bs, \sum{hw}, 4 |
|
|
""" |
|
|
N_, S_, C_ = memory.shape |
|
|
base_scale = 4.0 |
|
|
proposals = [] |
|
|
_cur = 0 |
|
|
for lvl, (H_, W_) in enumerate(spatial_shapes): |
|
|
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1) |
|
|
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) |
|
|
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) |
|
|
|
|
|
|
|
|
|
|
|
grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device), |
|
|
torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device)) |
|
|
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) |
|
|
|
|
|
scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2) |
|
|
grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale |
|
|
|
|
|
if learnedwh is not None: |
|
|
|
|
|
wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0 ** lvl) |
|
|
else: |
|
|
wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
proposal = torch.cat((grid, wh), -1).view(N_, -1, 4) |
|
|
proposals.append(proposal) |
|
|
_cur += (H_ * W_) |
|
|
|
|
|
output_proposals = torch.cat(proposals, 1) |
|
|
output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True) |
|
|
output_proposals = torch.log(output_proposals / (1 - output_proposals)) |
|
|
output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf')) |
|
|
output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf')) |
|
|
|
|
|
output_memory = memory |
|
|
output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0)) |
|
|
output_memory = output_memory.masked_fill(~output_proposals_valid, float(0)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return output_memory, output_proposals |
|
|
|
|
|
|
|
|
class RandomBoxPerturber(): |
|
|
def __init__(self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2) -> None: |
|
|
self.noise_scale = torch.Tensor([x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale]) |
|
|
|
|
|
def __call__(self, refanchors: Tensor) -> Tensor: |
|
|
nq, bs, query_dim = refanchors.shape |
|
|
device = refanchors.device |
|
|
|
|
|
noise_raw = torch.rand_like(refanchors) |
|
|
noise_scale = self.noise_scale.to(device)[:query_dim] |
|
|
|
|
|
new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale) |
|
|
return new_refanchors.clamp_(0, 1) |
|
|
|
|
|
|
|
|
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False): |
|
|
""" |
|
|
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. |
|
|
Args: |
|
|
inputs: A float tensor of arbitrary shape. |
|
|
The predictions for each example. |
|
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
|
classification label for each element in inputs |
|
|
(0 for the negative class and 1 for the positive class). |
|
|
alpha: (optional) Weighting factor in range (0,1) to balance |
|
|
positive vs negative examples. Default = -1 (no weighting). |
|
|
gamma: Exponent of the modulating factor (1 - p_t) to |
|
|
balance easy vs hard examples. |
|
|
Returns: |
|
|
Loss tensor |
|
|
""" |
|
|
prob = inputs.sigmoid() |
|
|
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") |
|
|
p_t = prob * targets + (1 - prob) * (1 - targets) |
|
|
loss = ce_loss * ((1 - p_t) ** gamma) |
|
|
|
|
|
if alpha >= 0: |
|
|
alpha_t = alpha * targets + (1 - alpha) * (1 - targets) |
|
|
loss = alpha_t * loss |
|
|
|
|
|
if no_reduction: |
|
|
return loss |
|
|
|
|
|
return loss.mean(1).sum() / num_boxes |
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
|
""" Very simple multi-layer perceptron (also called FFN)""" |
|
|
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): |
|
|
super().__init__() |
|
|
self.num_layers = num_layers |
|
|
h = [hidden_dim] * (num_layers - 1) |
|
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) |
|
|
|
|
|
def forward(self, x): |
|
|
for i, layer in enumerate(self.layers): |
|
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
|
return x |
|
|
|
|
|
|
|
|
def _get_activation_fn(activation, d_model=256, batch_dim=0): |
|
|
"""Return an activation function given a string""" |
|
|
if activation == "relu": |
|
|
return F.relu |
|
|
if activation == "gelu": |
|
|
return F.gelu |
|
|
if activation == "glu": |
|
|
return F.glu |
|
|
if activation == "prelu": |
|
|
return nn.PReLU() |
|
|
if activation == "selu": |
|
|
return F.selu |
|
|
|
|
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |
|
|
|
|
|
|
|
|
def gen_sineembed_for_position(pos_tensor): |
|
|
|
|
|
|
|
|
scale = 2 * math.pi |
|
|
dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device) |
|
|
dim_t = 10000 ** (2 * (dim_t // 2) / 128) |
|
|
x_embed = pos_tensor[:, :, 0] * scale |
|
|
y_embed = pos_tensor[:, :, 1] * scale |
|
|
pos_x = x_embed[:, :, None] / dim_t |
|
|
pos_y = y_embed[:, :, None] / dim_t |
|
|
pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) |
|
|
pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) |
|
|
if pos_tensor.size(-1) == 2: |
|
|
pos = torch.cat((pos_y, pos_x), dim=2) |
|
|
elif pos_tensor.size(-1) == 4: |
|
|
w_embed = pos_tensor[:, :, 2] * scale |
|
|
pos_w = w_embed[:, :, None] / dim_t |
|
|
pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2) |
|
|
|
|
|
h_embed = pos_tensor[:, :, 3] * scale |
|
|
pos_h = h_embed[:, :, None] / dim_t |
|
|
pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2) |
|
|
|
|
|
pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2) |
|
|
else: |
|
|
raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1))) |
|
|
return pos |
|
|
|
|
|
|
|
|
def oks_overlaps(kpt_preds, kpt_gts, kpt_valids, kpt_areas, sigmas): |
|
|
sigmas = kpt_preds.new_tensor(sigmas) |
|
|
variances = (sigmas * 2) ** 2 |
|
|
|
|
|
assert kpt_preds.size(0) == kpt_gts.size(0) |
|
|
kpt_preds = kpt_preds.reshape(-1, kpt_preds.size(-1) // 2, 2) |
|
|
kpt_gts = kpt_gts.reshape(-1, kpt_gts.size(-1) // 2, 2) |
|
|
|
|
|
squared_distance = (kpt_preds[:, :, 0] - kpt_gts[:, :, 0]) ** 2 + \ |
|
|
(kpt_preds[:, :, 1] - kpt_gts[:, :, 1]) ** 2 |
|
|
|
|
|
|
|
|
|
|
|
squared_distance0 = squared_distance / (kpt_areas[:, None] * variances[None, :] * 2) |
|
|
squared_distance1 = torch.exp(-squared_distance0) |
|
|
squared_distance1 = squared_distance1 * kpt_valids |
|
|
oks = squared_distance1.sum(dim=1) / (kpt_valids.sum(dim=1) + 1e-6) |
|
|
|
|
|
return oks |
|
|
|
|
|
|
|
|
def oks_loss(pred, |
|
|
target, |
|
|
valid=None, |
|
|
area=None, |
|
|
linear=False, |
|
|
sigmas=None, |
|
|
eps=1e-6): |
|
|
"""Oks loss. |
|
|
Computing the oks loss between a set of predicted poses and target poses. |
|
|
The loss is calculated as negative log of oks. |
|
|
Args: |
|
|
pred (torch.Tensor): Predicted poses of format (x1, y1, x2, y2, ...), |
|
|
shape (n, 2K). |
|
|
target (torch.Tensor): Corresponding gt poses, shape (n, 2K). |
|
|
linear (bool, optional): If True, use linear scale of loss instead of |
|
|
log scale. Default: False. |
|
|
eps (float): Eps to avoid log(0). |
|
|
Return: |
|
|
torch.Tensor: Loss tensor. |
|
|
""" |
|
|
oks = oks_overlaps(pred, target, valid, area, sigmas).clamp(min=eps) |
|
|
if linear: |
|
|
loss = 1 - oks |
|
|
else: |
|
|
loss = -oks.log() |
|
|
return loss |
|
|
|
|
|
|
|
|
class OKSLoss(nn.Module): |
|
|
"""IoULoss. |
|
|
Computing the oks loss between a set of predicted poses and target poses. |
|
|
Args: |
|
|
linear (bool): If True, use linear scale of loss instead of log scale. |
|
|
Default: False. |
|
|
eps (float): Eps to avoid log(0). |
|
|
reduction (str): Options are "none", "mean" and "sum". |
|
|
loss_weight (float): Weight of loss. |
|
|
""" |
|
|
|
|
|
def __init__(self, |
|
|
linear=False, |
|
|
num_keypoints=17, |
|
|
eps=1e-6, |
|
|
reduction='mean', |
|
|
loss_weight=1.0): |
|
|
super(OKSLoss, self).__init__() |
|
|
self.linear = linear |
|
|
self.eps = eps |
|
|
self.reduction = reduction |
|
|
self.loss_weight = loss_weight |
|
|
if num_keypoints == 68: |
|
|
self.sigmas = np.array([ |
|
|
.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, |
|
|
1.07, .87, .87, .89, .89, .25, .25, .25, .25, .25, .25, .25, .25, |
|
|
.25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, |
|
|
.25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, |
|
|
.25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, |
|
|
], dtype=np.float32) / 10.0 |
|
|
else: |
|
|
raise ValueError(f'Unsupported keypoints number {num_keypoints}') |
|
|
|
|
|
def forward(self, |
|
|
pred, |
|
|
target, |
|
|
valid, |
|
|
area, |
|
|
weight=None, |
|
|
avg_factor=None, |
|
|
reduction_override=None): |
|
|
"""Forward function. |
|
|
Args: |
|
|
pred (torch.Tensor): The prediction. |
|
|
target (torch.Tensor): The learning target of the prediction. |
|
|
valid (torch.Tensor): The visible flag of the target pose. |
|
|
area (torch.Tensor): The area of the target pose. |
|
|
weight (torch.Tensor, optional): The weight of loss for each |
|
|
prediction. Defaults to None. |
|
|
avg_factor (int, optional): Average factor that is used to average |
|
|
the loss. Defaults to None. |
|
|
reduction_override (str, optional): The reduction method used to |
|
|
override the original reduction method of the loss. |
|
|
Defaults to None. Options are "none", "mean" and "sum". |
|
|
""" |
|
|
assert reduction_override in (None, 'none', 'mean', 'sum') |
|
|
reduction = ( |
|
|
reduction_override if reduction_override else self.reduction) |
|
|
if (weight is not None) and (not torch.any(weight > 0)) and ( |
|
|
reduction != 'none'): |
|
|
if pred.dim() == weight.dim() + 1: |
|
|
weight = weight.unsqueeze(1) |
|
|
return (pred * weight).sum() |
|
|
if weight is not None and weight.dim() > 1: |
|
|
|
|
|
|
|
|
|
|
|
assert weight.shape == pred.shape |
|
|
weight = weight.mean(-1) |
|
|
loss = self.loss_weight * oks_loss( |
|
|
pred, |
|
|
target, |
|
|
valid=valid, |
|
|
area=area, |
|
|
linear=self.linear, |
|
|
sigmas=self.sigmas, |
|
|
eps=self.eps) |
|
|
return loss |
|
|
|