--- title: Math.log1p() short-title: log1p() slug: Web/JavaScript/Reference/Global_Objects/Math/log1p page-type: javascript-static-method browser-compat: javascript.builtins.Math.log1p sidebar: jsref --- The **`Math.log1p()`** static method returns the natural logarithm (base [e](/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/E)) of `1 + x`, where `x` is the argument. That is: βˆ€x>βˆ’1,π™ΌπšŠπšπš‘.πš•πš˜πšπŸ·πš™(𝚑)=ln(1+x)\forall x > -1,\;\mathtt{\operatorname{Math.log1p}(x)} = \ln(1 + x) {{InteractiveExample("JavaScript Demo: Math.log1p()")}} ```js interactive-example console.log(Math.log1p(1)); // Expected output: 0.6931471805599453 console.log(Math.log1p(0)); // Expected output: 0 console.log(Math.log1p(-1)); // Expected output: -Infinity console.log(Math.log1p(-2)); // Expected output: NaN ``` ## Syntax ```js-nolint Math.log1p(x) ``` ### Parameters - `x` - : A number greater than or equal to -1. ### Return value The natural logarithm (base [e](/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/E)) of `x + 1`. If `x` is -1, returns [`-Infinity`](/en-US/docs/Web/JavaScript/Reference/Global_Objects/Number/NEGATIVE_INFINITY). If `x < -1`, returns {{jsxref("NaN")}}. ## Description For very small values of _x_, adding 1 can reduce or eliminate precision. The double floats used in JS give you about 15 digits of precision. 1 + 1e-15 \= 1.000000000000001, but 1 + 1e-16 = 1.000000000000000 and therefore exactly 1.0 in that arithmetic, because digits past 15 are rounded off. When you calculate log(1 + _x_), where _x_ is a small positive number, you should get an answer very close to _x_ because: limxβ†’0log⁑(1+x)x=1\lim_{x \to 0} \frac{\log(1+x)}{x} = 1. If you calculate `Math.log(1 + 1.1111111111e-15)`, you should get an answer close to `1.1111111111e-15`. Instead, you will end up taking the logarithm of `1.00000000000000111022` (the roundoff is in binary, so sometimes it gets ugly), and get the answer 1.11022…e-15, with only 3 correct digits. If you calculate `Math.log1p(1.1111111111e-15)` instead, you will get a much more accurate answer, `1.1111111110999995e-15`, with 15 correct digits of precision (actually 16 in this case). If the value of `x` is less than -1, the return value is always {{jsxref("NaN")}}. Because `log1p()` is a static method of `Math`, you always use it as `Math.log1p()`, rather than as a method of a `Math` object you created (`Math` is not a constructor). ## Examples ### Using Math.log1p() ```js Math.log1p(-2); // NaN Math.log1p(-1); // -Infinity Math.log1p(-0); // -0 Math.log1p(0); // 0 Math.log1p(1); // 0.6931471805599453 Math.log1p(Infinity); // Infinity ``` ## Specifications {{Specifications}} ## Browser compatibility {{Compat}} ## See also - [Polyfill of `Math.log1p` in `core-js`](https://github.com/zloirock/core-js#ecmascript-math) - [es-shims polyfill of `Math.log1p`](https://www.npmjs.com/package/math.log1p) - {{jsxref("Math.exp()")}} - {{jsxref("Math.log()")}} - {{jsxref("Math.expm1()")}} - {{jsxref("Math.log10()")}} - {{jsxref("Math.log2()")}} - {{jsxref("Math.pow()")}}