Update pscan.py
Browse files
pscan.py
CHANGED
|
@@ -3,30 +3,15 @@ import math
|
|
| 3 |
import torch
|
| 4 |
import torch.nn.functional as F
|
| 5 |
|
| 6 |
-
"""
|
| 7 |
|
| 8 |
-
An implementation of the parallel scan operation in PyTorch (Blelloch version).
|
| 9 |
-
Please see docs/pscan.ipynb for a detailed explanation of what happens here.
|
| 10 |
-
|
| 11 |
-
"""
|
| 12 |
|
| 13 |
def npo2(len):
|
| 14 |
-
|
| 15 |
-
Returns the next power of 2 above len
|
| 16 |
-
"""
|
| 17 |
|
| 18 |
return 2 ** math.ceil(math.log2(len))
|
| 19 |
|
| 20 |
def pad_npo2(X):
|
| 21 |
-
|
| 22 |
-
Pads input length dim to the next power of 2
|
| 23 |
-
|
| 24 |
-
Args:
|
| 25 |
-
X : (B, L, D, N)
|
| 26 |
-
|
| 27 |
-
Returns:
|
| 28 |
-
Y : (B, npo2(L), D, N)
|
| 29 |
-
"""
|
| 30 |
|
| 31 |
len_npo2 = npo2(X.size(1))
|
| 32 |
pad_tuple = (0, 0, 0, 0, 0, len_npo2 - X.size(1))
|
|
@@ -35,20 +20,12 @@ def pad_npo2(X):
|
|
| 35 |
class PScan(torch.autograd.Function):
|
| 36 |
@staticmethod
|
| 37 |
def pscan(A, X):
|
| 38 |
-
|
| 39 |
-
# X : (B, D, L, N)
|
| 40 |
-
|
| 41 |
-
# modifies X in place by doing a parallel scan.
|
| 42 |
-
# more formally, X will be populated by these values :
|
| 43 |
-
# H[t] = A[t] * H[t-1] + X[t] with H[0] = 0
|
| 44 |
-
# which are computed in parallel (2*log2(T) sequential steps (ideally), instead of T sequential steps)
|
| 45 |
-
|
| 46 |
-
# only supports L that is a power of two (mainly for a clearer code)
|
| 47 |
|
| 48 |
B, D, L, _ = A.size()
|
| 49 |
num_steps = int(math.log2(L))
|
| 50 |
|
| 51 |
-
|
| 52 |
Aa = A
|
| 53 |
Xa = X
|
| 54 |
for _ in range(num_steps-2):
|
|
@@ -62,7 +39,7 @@ class PScan(torch.autograd.Function):
|
|
| 62 |
Aa = Aa[:, :, :, 1]
|
| 63 |
Xa = Xa[:, :, :, 1]
|
| 64 |
|
| 65 |
-
|
| 66 |
if Xa.size(2) == 4:
|
| 67 |
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 0]))
|
| 68 |
Aa[:, :, 1].mul_(Aa[:, :, 0])
|
|
@@ -74,7 +51,7 @@ class PScan(torch.autograd.Function):
|
|
| 74 |
else:
|
| 75 |
return
|
| 76 |
|
| 77 |
-
|
| 78 |
Aa = A[:, :, 2**(num_steps-2)-1:L:2**(num_steps-2)]
|
| 79 |
Xa = X[:, :, 2**(num_steps-2)-1:L:2**(num_steps-2)]
|
| 80 |
Xa[:, :, 2].add_(Aa[:, :, 2].mul(Xa[:, :, 1]))
|
|
@@ -93,19 +70,12 @@ class PScan(torch.autograd.Function):
|
|
| 93 |
|
| 94 |
@staticmethod
|
| 95 |
def pscan_rev(A, X):
|
| 96 |
-
|
| 97 |
-
# X : (B, D, L, N)
|
| 98 |
-
|
| 99 |
-
# the same function as above, but in reverse
|
| 100 |
-
# (if you flip the input, call pscan, then flip the output, you get what this function outputs)
|
| 101 |
-
# it is used in the backward pass
|
| 102 |
-
|
| 103 |
-
# only supports L that is a power of two (mainly for a clearer code)
|
| 104 |
|
| 105 |
B, D, L, _ = A.size()
|
| 106 |
num_steps = int(math.log2(L))
|
| 107 |
|
| 108 |
-
|
| 109 |
Aa = A
|
| 110 |
Xa = X
|
| 111 |
for _ in range(num_steps-2):
|
|
@@ -119,7 +89,7 @@ class PScan(torch.autograd.Function):
|
|
| 119 |
Aa = Aa[:, :, :, 0]
|
| 120 |
Xa = Xa[:, :, :, 0]
|
| 121 |
|
| 122 |
-
|
| 123 |
if Xa.size(2) == 4:
|
| 124 |
Xa[:, :, 2].add_(Aa[:, :, 2].mul(Xa[:, :, 3]))
|
| 125 |
Aa[:, :, 2].mul_(Aa[:, :, 3])
|
|
@@ -131,7 +101,7 @@ class PScan(torch.autograd.Function):
|
|
| 131 |
else:
|
| 132 |
return
|
| 133 |
|
| 134 |
-
|
| 135 |
Aa = A[:, :, 0:L:2**(num_steps-2)]
|
| 136 |
Xa = X[:, :, 0:L:2**(num_steps-2)]
|
| 137 |
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 2]))
|
|
@@ -150,72 +120,53 @@ class PScan(torch.autograd.Function):
|
|
| 150 |
|
| 151 |
@staticmethod
|
| 152 |
def forward(ctx, A_in, X_in):
|
| 153 |
-
|
| 154 |
-
Applies the parallel scan operation, as defined above. Returns a new tensor.
|
| 155 |
-
If you can, privilege sequence lengths that are powers of two.
|
| 156 |
-
|
| 157 |
-
Args:
|
| 158 |
-
A_in : (B, L, D, N)
|
| 159 |
-
X_in : (B, L, D, N)
|
| 160 |
-
|
| 161 |
-
Returns:
|
| 162 |
-
H : (B, L, D, N)
|
| 163 |
-
"""
|
| 164 |
|
| 165 |
L = X_in.size(1)
|
| 166 |
|
| 167 |
-
|
| 168 |
if L == npo2(L):
|
| 169 |
A = A_in.clone()
|
| 170 |
X = X_in.clone()
|
| 171 |
else:
|
| 172 |
-
|
| 173 |
-
A = pad_npo2(A_in)
|
| 174 |
-
X = pad_npo2(X_in)
|
| 175 |
|
| 176 |
-
|
| 177 |
-
A = A.transpose(2, 1)
|
| 178 |
-
X = X.transpose(2, 1)
|
| 179 |
|
| 180 |
-
|
| 181 |
PScan.pscan(A, X)
|
| 182 |
|
| 183 |
ctx.save_for_backward(A_in, X)
|
| 184 |
|
| 185 |
-
|
| 186 |
return X.transpose(2, 1)[:, :L]
|
| 187 |
|
| 188 |
@staticmethod
|
| 189 |
def backward(ctx, grad_output_in):
|
| 190 |
-
|
| 191 |
-
Flows the gradient from the output to the input. Returns two new tensors.
|
| 192 |
-
|
| 193 |
-
Args:
|
| 194 |
-
ctx : A_in : (B, L, D, N), X : (B, D, L, N)
|
| 195 |
-
grad_output_in : (B, L, D, N)
|
| 196 |
-
|
| 197 |
-
Returns:
|
| 198 |
-
gradA : (B, L, D, N), gradX : (B, L, D, N)
|
| 199 |
-
"""
|
| 200 |
|
| 201 |
A_in, X = ctx.saved_tensors
|
| 202 |
|
| 203 |
L = grad_output_in.size(1)
|
| 204 |
|
| 205 |
-
|
| 206 |
if L == npo2(L):
|
| 207 |
grad_output = grad_output_in.clone()
|
| 208 |
-
|
| 209 |
else:
|
| 210 |
-
grad_output = pad_npo2(grad_output_in)
|
| 211 |
-
A_in = pad_npo2(A_in)
|
| 212 |
|
| 213 |
-
|
| 214 |
grad_output = grad_output.transpose(2, 1)
|
| 215 |
-
A_in = A_in.transpose(2, 1)
|
| 216 |
-
A = torch.nn.functional.pad(A_in[:, :, 1:], (0, 0, 0, 1))
|
| 217 |
|
| 218 |
-
|
| 219 |
PScan.pscan_rev(A, grad_output)
|
| 220 |
|
| 221 |
Q = torch.zeros_like(X)
|
|
|
|
| 3 |
import torch
|
| 4 |
import torch.nn.functional as F
|
| 5 |
|
|
|
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def npo2(len):
|
| 9 |
+
|
|
|
|
|
|
|
| 10 |
|
| 11 |
return 2 ** math.ceil(math.log2(len))
|
| 12 |
|
| 13 |
def pad_npo2(X):
|
| 14 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
len_npo2 = npo2(X.size(1))
|
| 17 |
pad_tuple = (0, 0, 0, 0, 0, len_npo2 - X.size(1))
|
|
|
|
| 20 |
class PScan(torch.autograd.Function):
|
| 21 |
@staticmethod
|
| 22 |
def pscan(A, X):
|
| 23 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
B, D, L, _ = A.size()
|
| 26 |
num_steps = int(math.log2(L))
|
| 27 |
|
| 28 |
+
|
| 29 |
Aa = A
|
| 30 |
Xa = X
|
| 31 |
for _ in range(num_steps-2):
|
|
|
|
| 39 |
Aa = Aa[:, :, :, 1]
|
| 40 |
Xa = Xa[:, :, :, 1]
|
| 41 |
|
| 42 |
+
|
| 43 |
if Xa.size(2) == 4:
|
| 44 |
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 0]))
|
| 45 |
Aa[:, :, 1].mul_(Aa[:, :, 0])
|
|
|
|
| 51 |
else:
|
| 52 |
return
|
| 53 |
|
| 54 |
+
|
| 55 |
Aa = A[:, :, 2**(num_steps-2)-1:L:2**(num_steps-2)]
|
| 56 |
Xa = X[:, :, 2**(num_steps-2)-1:L:2**(num_steps-2)]
|
| 57 |
Xa[:, :, 2].add_(Aa[:, :, 2].mul(Xa[:, :, 1]))
|
|
|
|
| 70 |
|
| 71 |
@staticmethod
|
| 72 |
def pscan_rev(A, X):
|
| 73 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
B, D, L, _ = A.size()
|
| 76 |
num_steps = int(math.log2(L))
|
| 77 |
|
| 78 |
+
|
| 79 |
Aa = A
|
| 80 |
Xa = X
|
| 81 |
for _ in range(num_steps-2):
|
|
|
|
| 89 |
Aa = Aa[:, :, :, 0]
|
| 90 |
Xa = Xa[:, :, :, 0]
|
| 91 |
|
| 92 |
+
|
| 93 |
if Xa.size(2) == 4:
|
| 94 |
Xa[:, :, 2].add_(Aa[:, :, 2].mul(Xa[:, :, 3]))
|
| 95 |
Aa[:, :, 2].mul_(Aa[:, :, 3])
|
|
|
|
| 101 |
else:
|
| 102 |
return
|
| 103 |
|
| 104 |
+
|
| 105 |
Aa = A[:, :, 0:L:2**(num_steps-2)]
|
| 106 |
Xa = X[:, :, 0:L:2**(num_steps-2)]
|
| 107 |
Xa[:, :, 1].add_(Aa[:, :, 1].mul(Xa[:, :, 2]))
|
|
|
|
| 120 |
|
| 121 |
@staticmethod
|
| 122 |
def forward(ctx, A_in, X_in):
|
| 123 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 124 |
|
| 125 |
L = X_in.size(1)
|
| 126 |
|
| 127 |
+
|
| 128 |
if L == npo2(L):
|
| 129 |
A = A_in.clone()
|
| 130 |
X = X_in.clone()
|
| 131 |
else:
|
| 132 |
+
|
| 133 |
+
A = pad_npo2(A_in)
|
| 134 |
+
X = pad_npo2(X_in)
|
| 135 |
|
| 136 |
+
|
| 137 |
+
A = A.transpose(2, 1)
|
| 138 |
+
X = X.transpose(2, 1)
|
| 139 |
|
| 140 |
+
|
| 141 |
PScan.pscan(A, X)
|
| 142 |
|
| 143 |
ctx.save_for_backward(A_in, X)
|
| 144 |
|
| 145 |
+
|
| 146 |
return X.transpose(2, 1)[:, :L]
|
| 147 |
|
| 148 |
@staticmethod
|
| 149 |
def backward(ctx, grad_output_in):
|
| 150 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
|
| 152 |
A_in, X = ctx.saved_tensors
|
| 153 |
|
| 154 |
L = grad_output_in.size(1)
|
| 155 |
|
| 156 |
+
|
| 157 |
if L == npo2(L):
|
| 158 |
grad_output = grad_output_in.clone()
|
| 159 |
+
|
| 160 |
else:
|
| 161 |
+
grad_output = pad_npo2(grad_output_in)
|
| 162 |
+
A_in = pad_npo2(A_in)
|
| 163 |
|
| 164 |
+
|
| 165 |
grad_output = grad_output.transpose(2, 1)
|
| 166 |
+
A_in = A_in.transpose(2, 1)
|
| 167 |
+
A = torch.nn.functional.pad(A_in[:, :, 1:], (0, 0, 0, 1))
|
| 168 |
|
| 169 |
+
|
| 170 |
PScan.pscan_rev(A, grad_output)
|
| 171 |
|
| 172 |
Q = torch.zeros_like(X)
|