File size: 31,130 Bytes
f43af3c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 |
from typing import Optional, Tuple
import torch as th
import torch.nn as nn
import torch.nn.functional as F
from .initializers import (
make_DPLR_HiPPO, # , lecun_normal_ # init_VinvB, init_log_steps,
)
MATRIX_SCALING_FACTOR = 1
class LLH(nn.Module):
"""
This is canon:
L -- number of layers
N -- number of events.
P -- Hidden dimension. Dimensionality of x.
H -- output dimension. Dimensionality of y/u.
"""
def __init__(
self,
P: int,
H: int,
dt_init_min: float = 1e-4,
dt_init_max: float = 0.1,
dropout_rate: float = 0.0,
act_func: str = "gelu", # F.gelu,
for_loop: bool = False,
pre_norm: bool = True,
post_norm: bool = False,
simple_mark: bool = True,
is_first_layer: bool = False,
relative_time: bool = False,
complex_values: bool = True,
):
"""
:param P:
:param H:
:param dt_init_min:
:param dt_init_max:
:param act_func:
"""
super(LLH, self).__init__()
# Inscribe the args.
self.P = P
self.H = H
self.dt_init_min = dt_init_min
self.dt_init_max = dt_init_max
self.dropout_rate = dropout_rate
self.complex_values = complex_values
# select the activation function.
if act_func == "gelu":
self.act_func = nn.Sequential(nn.GELU(), nn.Dropout(p=self.dropout_rate))
elif act_func == "full_glu":
self.act_func = nn.Sequential(
nn.Linear(self.H, 2 * self.H),
nn.Dropout(p=self.dropout_rate),
nn.GLU(),
nn.Dropout(p=self.dropout_rate),
)
elif (
act_func == "half_glu"
): # ref: https://github.com/lindermanlab/S5/blob/main/s5/layers.py#L76
self.act_func1 = nn.Sequential(
nn.Dropout(p=self.dropout_rate),
nn.GELU(),
nn.Linear(self.H, self.H),
)
self.act_func = lambda x: nn.Dropout(p=self.dropout_rate)(
x * nn.Sigmoid()(self.act_func1(x))
)
else:
raise NotImplementedError(
"Unrecognized activation function {}".format(act_func)
)
# Assume we always use conjugate symmetry.
self.conj_sym = True
# Allow a learnable initial state.
# Needs to be =/= 0 since we take the log to compute
if self.complex_values:
self.initial_state_P = nn.Parameter(
th.complex(
th.randn(
self.P,
),
th.randn(
self.P,
),
)
* 1e-3,
requires_grad=True,
)
else:
self.initial_state_P = nn.Parameter(
th.randn(
self.P,
),
requires_grad=True,
)
self.norm = nn.LayerNorm(self.H)
self.for_loop = for_loop
self.pre_norm = pre_norm
self.post_norm = post_norm
self.is_first_layer = is_first_layer
self.relative_time = relative_time
self._init_ssm_params()
self.simple_mark = simple_mark
if not simple_mark:
self.mark_a_net = nn.Linear(self.H, self.P, bias=True)
self.mark_u_net = nn.Linear(
self.H, self.P, bias=False
) # Only need one bias
self.mark_a_net.weight.data = th.complex(
nn.init.xavier_normal_(self.mark_a_net.weight.data) * 1e-3,
nn.init.xavier_normal_(self.mark_a_net.weight.data) * 1e-3,
)
self.mark_a_net.bias.data = th.complex(
nn.init.xavier_normal_(self.mark_a_net.bias.data) * 1e-3,
nn.init.xavier_normal_(self.mark_a_net.bias.data) * 1e-3,
)
self.mark_u_net.weight.data = th.complex(
nn.init.xavier_normal_(self.mark_u_net.weight.data) * 1e-3,
nn.init.xavier_normal_(self.mark_u_net.weight.data) * 1e-3,
)
if not self.complex_values:
self.mark_a_net.weight.data = self.mark_a_net.weight.data.real
self.mark_a_net.bias.data = self.mark_a_net.bias.data.real
self.mark_u_net.weight.data = self.self.mark_u_net.weight.data.real
def _init_ssm_params(self):
self._init_A()
if not self.is_first_layer:
self._init_B()
self._init_C()
if (
not self.is_first_layer
): # Could group, but left in same order to not mess with initialization
self._init_D()
self._init_E()
def _init_A(self):
# Define the initial diagonal HiPPO matrix.
# Te throw the HiPPO B away.
Lambda_P, _, _, V_PP, _ = make_DPLR_HiPPO(self.P)
self.Lambda_P_log_neg_real = th.nn.Parameter((-Lambda_P.real).log())
self.Lambda_P_imag = th.nn.Parameter(Lambda_P.imag)
# Store these for use later.
self._V_PP = V_PP
self._Vc_PP = V_PP.conj().T
# We also initialize the step size.
if self.relative_time:
self.delta_net = nn.Linear(
self.H, self.P, bias=True
) # nn.Parameter(init_log_steps(self.P, self.dt_init_min, self.dt_init_max))
with th.no_grad():
self.delta_net.weight.copy_(
nn.init.xavier_normal_(self.delta_net.weight)
)
bias = th.ones(
self.P,
)
bias += th.log(-th.expm1(-bias))
self.delta_net.bias.copy_(bias)
else:
self.log_step_size_P = nn.Parameter(
th.zeros(size=(self.P,)), requires_grad=False
)
@property
def Lambda_P(self):
if self.complex_values:
return th.complex(
-self.Lambda_P_log_neg_real.exp(),
self.Lambda_P_imag,
)
else:
return -self.Lambda_P_log_neg_real.exp()
def _init_B(self):
# Initialize the B outside the eigenbasis and then transform.
B = nn.init.xavier_normal_(th.zeros((self.P, self.H))) * MATRIX_SCALING_FACTOR
B_tilde_PH = self._Vc_PP @ B.type(th.complex64)
self.B_tilde_PH = (
th.nn.Parameter(B_tilde_PH)
if self.complex_values
else th.nn.Parameter(B_tilde_PH.real)
)
def _init_C(self):
# Use the "complex_normal" initialization.
# See ~https://github.com/lindermanlab/S5/blob/52cc7e22d6963459ad99a8674e4d3cfb0a480008/s5/ssm.py#L183
C = nn.init.xavier_normal_(th.zeros((self.H, self.P))) * MATRIX_SCALING_FACTOR
C_tilde_HP = C.type(th.complex64) @ self._V_PP
self.C_tilde_HP = (
th.nn.Parameter(C_tilde_HP)
if self.complex_values
else th.nn.Parameter(C_tilde_HP.real)
)
# self.C_tilde_HP.data *= 1e-3
def _init_D(self):
# Initialize feedthrough (D) matrix. Note the intensity depends on all layers.
D_HH = th.zeros(self.H)
nn.init.normal_(D_HH, std=1.0)
self.D_HH = nn.Parameter(D_HH, requires_grad=True)
def _init_E(self):
E = (
th.nn.init.xavier_normal_(th.zeros((self.P, self.H)))
* MATRIX_SCALING_FACTOR
)
E_tilde_PH = self._Vc_PP @ E.type(th.complex64)
self.E_tilde_PH = (
th.nn.Parameter(E_tilde_PH)
if self.complex_values
else th.nn.Parameter(E_tilde_PH.real)
)
def compute_impulse(self, right_u_H, mark_embedding_H):
# Compute impulse to add to left limit of x to make right limit.
alpha_P = th.einsum(
"ph,...h->...p",
self.E_tilde_PH,
mark_embedding_H.type(th.complex64)
if self.complex_values
else mark_embedding_H,
)
return alpha_P
def get_lambda(self, right_u_NH, shift_u=True):
if self.relative_time and (right_u_NH is not None):
if shift_u: # during "forward" when dts = [0, t1-t0, ..., t_N-t_{N-1}]
right_u_NH = F.pad(
right_u_NH[..., :-1, :], (0, 0, 1, 0)
) # pad default 0 at beginning of second to last dim
lambda_rescaled_NP = (
F.softplus(self.delta_net(right_u_NH)) * self.Lambda_P
) # predict delta_i from right_u_i
return {"lambda_rescaled_NP": lambda_rescaled_NP}
else:
if self.relative_time:
lambda_rescaled_P = F.softplus(self.delta_net.bias) * self.Lambda_P
else:
lambda_rescaled_P = th.exp(self.log_step_size_P) * self.Lambda_P
return {"lambda_rescaled_P": lambda_rescaled_P}
def forward(
self,
left_u_NH: Optional[th.Tensor], # Very first layer, should feed in `None`
right_u_NH: Optional[th.Tensor], # Very first layer, should feed in `None`
mark_embedding_NH: th.Tensor,
dt_N: th.Tensor,
initial_state_P: Optional[th.Tensor] = None,
) -> Tuple[th.Tensor, th.Tensor]:
"""
Apply the linear SSM to the inputs.
In the context of TPPs, this returns the right limit of the "intensity function".
This intensity will have been passed through a non-linearity, though, and so there is no
guarantee for it is positive.
:param u_NH: [..., seq_len, input_dim]
:param alpha_NP: [..., seq_len, hidden_dim]
:param dt_N: [..., seq_len]
:param initial_state_P: [..., hidden_dim]
:return:
"""
# Pull out the dimensions.
*leading_dims, _, _ = mark_embedding_NH.shape
num_leading_dims = len(leading_dims)
if initial_state_P is None:
# Pad and expand to match leading dimensions of input
initial_state_P = self.initial_state_P.view(
*[1 for _ in range(num_leading_dims)], -1
).expand(*leading_dims, -1)
# Add layer norm
prime_left_u_NH = left_u_NH
prime_right_u_NH = right_u_NH
if prime_left_u_NH is not None: # ONLY for backward variant
assert all(
u_d == a_d
for u_d, a_d in zip(prime_left_u_NH.shape, mark_embedding_NH.shape)
) # All but last dimensions should match
if self.pre_norm:
prime_left_u_NH = self.norm(prime_left_u_NH)
if prime_right_u_NH is not None:
assert all(
u_d == a_d
for u_d, a_d in zip(prime_right_u_NH.shape, mark_embedding_NH.shape)
) # All but last dimensions should match
if self.pre_norm:
prime_right_u_NH = self.norm(prime_right_u_NH)
right_x_NP, left_y_NH, right_y_NH = self._ssm(
left_u_NH=prime_left_u_NH,
right_u_NH=prime_right_u_NH,
impulse_NP=self.compute_impulse(prime_right_u_NH, mark_embedding_NH),
dt_N=dt_N,
initial_state_P=initial_state_P,
)
# Given the following:
# right_u: u0, u1, u2, ... <-> u_{t_0}, u_{t_1}, u_{t_2}, ...
# left_u: u0, u1, u2, ... <-> u_{t_0-}, u_{t_1-}, u_{t_2-}, ...
# a: a0, a1, a2, ... <-> mark embeddings for m_0, m_1, m_2, ... at times t_0, t_1, t_2
# dt: dt0, dt1, dt2, ... <-> 0, t_1-t_0, t_2-t_1, ...
# initial_state_p: hidden state to evolve to to compute x_{0}
# Returns the following:
# right_x: x0, x1, x2, ... <-> x_{t_0}, x_{t_1}, x_{t_2}, ...
# right_y: y0, y1, y2, ... <-> y_{t_0}, y_{t_1}, y_{t_2}, ...
# left_y: y0, y1, y2, ... <-> y_{t_0-}, y_{t_1-}, y_{t_2-}, ...
next_layer_left_u_NH = next_layer_right_u_NH = None
if left_y_NH is not None:
next_layer_left_u_NH = self.act_func(left_y_NH) + (
left_u_NH if left_u_NH is not None else 0.0
)
if self.post_norm:
next_layer_left_u_NH = self.norm(next_layer_left_u_NH)
if right_y_NH is not None:
next_layer_right_u_NH = self.act_func(right_y_NH) + (
right_u_NH if right_u_NH is not None else 0.0
)
if self.post_norm:
next_layer_right_u_NH = self.norm(next_layer_right_u_NH)
return right_x_NP, next_layer_left_u_NH, next_layer_right_u_NH
def _ssm(
self,
left_u_NH: Optional[th.Tensor], # Very first layer, should feed in `None`
right_u_NH: Optional[th.Tensor], # Very first layer, should feed in `None`
impulse_NP: th.Tensor,
dt_N: th.Tensor, # [0, t_1 - t_0, ..., t_N - t_{N-1}]
initial_state_P: th.Tensor,
):
*leading_dims, N, P = impulse_NP.shape
u_NH = right_u_NH # This implementation does not use left_u, nor does it compute left_y
if u_NH is not None:
impulse_NP = impulse_NP + th.einsum(
"ph,...nh->...np",
self.B_tilde_PH,
u_NH.type(th.complex64) if self.complex_values else u_NH,
)
y_u_res_NH = th.einsum(
"...nh,h->...nh", u_NH, self.D_HH
) # D_HH should really be D_H
else:
assert self.is_first_layer
y_u_res_NH = 0.0
lambda_res = self.get_lambda(right_u_NH=right_u_NH, shift_u=True)
if "lambda_rescaled_P" in lambda_res: # original formulation
lambda_dt_NP = th.einsum(
"...n,p->...np", dt_N, lambda_res["lambda_rescaled_P"]
)
else: # relative time
lambda_dt_NP = th.einsum(
"...n,...np->...np", dt_N, lambda_res["lambda_rescaled_NP"]
)
if self.for_loop:
right_x_P = initial_state_P
right_x_NP = []
for i in range(N):
right_x_P = (
lambda_dt_NP[..., i, :].exp() * right_x_P + impulse_NP[..., i, :]
)
right_x_NP.append(right_x_P)
right_x_NP = th.stack(right_x_NP, dim=-2)
else:
# Trick inspired by: https://github.com/PeaBrane/mamba-tiny/blob/master/scans.py
# .unsqueeze(-2) to add sequence dimension to initial state
log_impulse_Np1_P = th.concat(
(initial_state_P.unsqueeze(-2), impulse_NP), dim=-2
).log()
lamdba_dt_star = F.pad(lambda_dt_NP.cumsum(-2), (0, 0, 1, 0))
right_x_log_NP = (
th.logcumsumexp(log_impulse_Np1_P - lamdba_dt_star, -2) + lamdba_dt_star
)
right_x_NP = right_x_log_NP.exp()[..., 1:, :]
conj_sym_mult = 2 if self.conj_sym else 1
y_NH = (
conj_sym_mult
* th.einsum("...np,hp->...nh", right_x_NP, self.C_tilde_HP).real
+ y_u_res_NH
)
return right_x_NP, None, y_NH
def get_left_limit(
self,
right_limit_P: th.Tensor, # Along with dt, can have any number of leading dimensions, produces a tensor of dim ...MP
dt_G: th.Tensor,
current_right_u_H: th.Tensor,
next_left_u_GH: th.Tensor,
) -> th.Tensor:
"""
To get the left limit, we roll on the layer for the right dt.
Computed for a single point (vmap for multiple).
:param right_limit_P: at [t_0, ..., t_{N-1}]
:param dt: Length of time to roll the layer on for. at [t_1 - t_0, ..., t_N - t_{N-1}]
:param current_right_u_H: at [t_0, ..., t_{N-1}] -- for relative-time variant
:param next_left_u_GH: at [t_1, ..., t_N] -- for backward variant
:return:
"""
if current_right_u_H is not None and self.pre_norm:
current_right_u_H = self.norm(current_right_u_H)
lambda_res = self.get_lambda(
current_right_u_H, shift_u=False
) # U should already be shifted
if "lambda_rescaled_P" in lambda_res:
lambda_bar_GP = th.exp(
th.einsum("...g,p->...gp", dt_G, lambda_res["lambda_rescaled_P"])
)
else:
lambda_bar_GP = th.exp(
th.einsum("...g,...p->...gp", dt_G, lambda_res["lambda_rescaled_NP"])
)
return th.einsum("...p,...gp->...gp", right_limit_P, lambda_bar_GP)
def depth_pass(
self,
current_left_x_P: th.Tensor, # No leading dimensions (seq, batch, etc.) here because we accommodate any of them
current_left_u_H: Optional[
th.Tensor
], # Just assume that x and u match in the leading dimensions. Produces y_H with equivalent leading dimensions
prev_right_u_H: Optional[
th.Tensor
], # Just assume that x and u match in the leading dimensions. Produces y_H with equivalent leading dimensions
) -> th.Tensor:
if current_left_u_H is not None:
if self.pre_norm:
prime_u_H = self.norm(current_left_u_H)
else:
prime_u_H = current_left_u_H
y_u_res_H = th.einsum(
"...h,h->...h", prime_u_H, self.D_HH
) # D_HH should really be D_H
else:
assert self.is_first_layer
y_u_res_H = 0.0
conj_sym_mult = 2 if self.conj_sym else 1
y_H = (
conj_sym_mult
* th.einsum("...p,hp->...h", current_left_x_P, self.C_tilde_HP).real
+ y_u_res_H
)
# Apply an activation function.
if self.post_norm:
new_u_H = self.norm(
self.act_func(y_H)
+ (current_left_u_H if current_left_u_H is not None else 0.0)
)
else:
new_u_H = self.act_func(y_H) + (
current_left_u_H if current_left_u_H is not None else 0.0
)
return new_u_H
class Int_Forward_LLH(LLH):
# LLH but Bu_t is integrated w.r.t dt instead of dN_t
# After discretization, when evolving x_t to x_t', applies ZOH on u_t over [t,t'] forward in time
# (as opposed to u_{t'} backwards over [t,t'])
def _ssm(
self,
left_u_NH: Optional[th.Tensor], # Very first layer, should feed in `None`
right_u_NH: Optional[th.Tensor], # Very first layer, should feed in `None`
impulse_NP: th.Tensor,
dt_N: th.Tensor,
initial_state_P: th.Tensor,
) -> Tuple[th.Tensor, th.Tensor]:
"""
Apply the linear SSM to the inputs.
In the context of TPPs, this returns the right limit of the "intensity function".
This intensity will have been passed through a non-linearity, though, and so there is no
guarantee for it is positive.
:param u_NH: [..., seq_len, input_dim]
:param alpha_NP: [..., seq_len, hidden_dim]
:param dt_N: [..., seq_len]
:param initial_state_P: [..., hidden_dim]
:return:
"""
# Pull out the dimensions.
*leading_dims, N, P = impulse_NP.shape
lambda_res = self.get_lambda(right_u_NH=right_u_NH, shift_u=True)
if "lambda_rescaled_P" in lambda_res:
lambda_rescaled = lambda_res["lambda_rescaled_P"]
lambda_dt_NP = th.einsum(
"...n,p->...np", dt_N, lambda_res["lambda_rescaled_P"]
)
else:
lambda_rescaled = lambda_res["lambda_rescaled_NP"]
lambda_dt_NP = th.einsum(
"...n,...np->...np", dt_N, lambda_res["lambda_rescaled_NP"]
)
if left_u_NH is not None:
left_Du_NH = th.einsum(
"...nh,h->...nh",
left_u_NH,
self.D_HH,
)
else:
assert self.is_first_layer
left_Du_NH = 0.0
if right_u_NH is not None:
right_u_NH = F.pad(right_u_NH[..., :-1, :], (0, 0, 1, 0))
right_Bu_NP = th.einsum(
"...np,ph,...nh->...np",
lambda_dt_NP.exp() - 1.0, # dts: [0, t1-t0, t2-t1, ...]
self.B_tilde_PH,
right_u_NH.type(th.complex64) if self.complex_values else right_u_NH,
)
right_Du_NH = th.einsum(
"...nh,h->...nh",
right_u_NH,
self.D_HH,
)
else:
assert self.is_first_layer
right_Bu_NP = right_Du_NH = 0.0
if self.for_loop:
right_x_P = initial_state_P
left_x_NP, right_x_NP = [], []
for i in range(N):
left_x_P = lambda_dt_NP[..., i, :].exp() * right_x_P + (
right_Bu_NP[..., i, :] if left_u_NH is not None else 0.0
)
right_x_P = left_x_P + impulse_NP[..., i, :]
left_x_NP.append(left_x_P)
right_x_NP.append(right_x_P)
right_x_NP = th.stack(
right_x_NP, dim=-2
) # discard initial_hidden_states, right_limit of xs for [t0, t1, ...]
left_x_NP = th.stack(
left_x_NP, dim=-2
) # discard initial_hidden_states, left_limit of xs for [t0, t1, ...]
else:
# Trick inspired by: https://github.com/PeaBrane/mamba-tiny/blob/master/scans.py
# .unsqueeze(-2) to add sequence dimension to initial state
log_impulse_Np1_P = th.concat(
(initial_state_P.unsqueeze(-2), right_Bu_NP + impulse_NP), dim=-2
).log()
lamdba_dt_star = F.pad(lambda_dt_NP.cumsum(-2), (0, 0, 1, 0))
right_x_log_NP = (
th.logcumsumexp(log_impulse_Np1_P - lamdba_dt_star, -2) + lamdba_dt_star
)
right_x_NP = right_x_log_NP.exp() # Contains initial_state_P in index 0
left_x_NP = (
lambda_dt_NP.exp() * right_x_NP[..., :-1, :] + right_Bu_NP
) # Evolves previous hidden state forward to compute left limit
right_x_NP = right_x_NP[..., 1:, :]
conj_sym_mult = 2 if self.conj_sym else 1
left_y_NH = (
conj_sym_mult
* th.einsum("hp,...np->...nh", self.C_tilde_HP, left_x_NP).real
+ left_Du_NH
) # ys for [t0, t1, ...]
right_y_NH = (
conj_sym_mult
* th.einsum("hp,...np->...nh", self.C_tilde_HP, right_x_NP).real
+ right_Du_NH
) # ys for [t0, t1, ...]
return right_x_NP, left_y_NH, right_y_NH
def get_left_limit(
self,
right_limit_P: th.Tensor, # Along with dt, can have any number of leading dimensions, produces a tensor of dim ...MP
dt_G: th.Tensor,
current_right_u_H: Optional[th.Tensor],
next_left_u_GH: Optional[th.Tensor],
) -> th.Tensor:
"""
To get the left limit, we roll on the layer for the right dt.
Computed for a single point (vmap for multiple).
:param right_limit_P:
:param dt: Length of time to roll the layer on for.
:return:
"""
if current_right_u_H is not None and self.pre_norm:
current_right_u_H = self.norm(current_right_u_H)
lambda_res = self.get_lambda(
current_right_u_H, shift_u=False
) # U should already be shifted
if "lambda_rescaled_P" in lambda_res:
lambda_bar_GP = th.exp(
th.einsum("...g,p->...gp", dt_G, lambda_res["lambda_rescaled_P"])
)
else:
lambda_bar_GP = th.exp(
th.einsum("...g,...p->...gp", dt_G, lambda_res["lambda_rescaled_NP"])
)
# lambda_rescaled_P = th.exp(self.log_step_size_P) * self.Lambda_P
# lambda_bar_GP = th.exp(th.einsum('...g,p->...gp', dt_G, lambda_rescaled_P))
int_hidden_GP = th.einsum("...p,...gp->...gp", right_limit_P, lambda_bar_GP)
if current_right_u_H is None: # no Bu term
assert self.is_first_layer
return int_hidden_GP
else: # add Bu to impulse
if self.pre_norm:
current_right_u_H = self.norm(current_right_u_H)
impulse_GP = th.einsum(
"...gp,ph,...h->...gp",
lambda_bar_GP - 1.0,
self.B_tilde_PH,
current_right_u_H.type(th.complex64)
if self.complex_values
else current_right_u_H,
)
return int_hidden_GP + impulse_GP
class Int_Backward_LLH(Int_Forward_LLH):
# LLH but Bu_t is integrated w.r.t dt instead of dN_t
# After discretization, when evolving x_t to x_t', applies ZOH on u_t' over [t,t'] backwards in time
# (as opposed to u_{t} forwards over [t,t'])
def _ssm(
self,
left_u_NH: Optional[th.Tensor], # Very first layer, should feed in `None`
right_u_NH: Optional[th.Tensor], # Very first layer, should feed in `None`
impulse_NP: th.Tensor,
dt_N: th.Tensor,
initial_state_P: th.Tensor,
) -> Tuple[th.Tensor, th.Tensor]:
"""
Apply the linear SSM to the inputs.
In the context of TPPs, this returns the right limit of the "intensity function".
This intensity will have been passed through a non-linearity, though, and so there is no
guarantee for it is positive.
:param u_NH: [..., seq_len, input_dim]
:param alpha_NP: [..., seq_len, hidden_dim]
:param dt_N: [..., seq_len]
:param initial_state_P: [..., hidden_dim]
:return:
"""
# Pull out the dimensions.
*leading_dims, N, P = impulse_NP.shape
# lambda_rescaled_P = th.exp(self.log_step_size_P) * self.Lambda_P
# lambda_dt_NP = th.einsum('...n,p->...np', dt_N, lambda_rescaled_P)
lambda_res = self.get_lambda(right_u_NH=right_u_NH, shift_u=True)
if "lambda_rescaled_P" in lambda_res:
lambda_dt_NP = th.einsum(
"...n,p->...np", dt_N, lambda_res["lambda_rescaled_P"]
)
else:
lambda_dt_NP = th.einsum(
"...n,...np->...np", dt_N, lambda_res["lambda_rescaled_NP"]
)
if left_u_NH is not None:
left_Bu_NP = th.einsum(
"...np,ph,...nh->...np",
lambda_dt_NP.exp() - 1.0, # dts: [0, t1-t0, t2-t1, ...]
self.B_tilde_PH,
left_u_NH.type(th.complex64) if self.complex_values else left_u_NH,
)
left_Du_NH = th.einsum(
"...nh,h->...nh",
left_u_NH,
self.D_HH,
)
else:
assert self.is_first_layer
left_Bu_NP = left_Du_NH = 0.0
if right_u_NH is not None:
right_Du_NH = th.einsum(
"...nh,h->...nh",
right_u_NH,
self.D_HH,
)
else:
assert self.is_first_layer
right_Du_NH = 0.0
if self.for_loop:
right_x_P = initial_state_P
left_x_NP, right_x_NP = [], []
for i in range(N):
left_x_P = lambda_dt_NP[..., i, :].exp() * right_x_P + (
left_Bu_NP[..., i, :] if left_u_NH is not None else 0.0
)
right_x_P = left_x_P + impulse_NP[..., i, :]
left_x_NP.append(left_x_P)
right_x_NP.append(right_x_P)
right_x_NP = th.stack(
right_x_NP, dim=-2
) # discard initial_hidden_states, right_limit of xs for [t0, t1, ...]
left_x_NP = th.stack(
left_x_NP, dim=-2
) # discard initial_hidden_states, left_limit of xs for [t0, t1, ...]
else:
# Trick inspired by: https://github.com/PeaBrane/mamba-tiny/blob/master/scans.py
# .unsqueeze(-2) to add sequence dimension to initial state
log_impulse_Np1_P = th.concat(
(initial_state_P.unsqueeze(-2), left_Bu_NP + impulse_NP), dim=-2
).log()
lamdba_dt_star = F.pad(lambda_dt_NP.cumsum(-2), (0, 0, 1, 0))
right_x_log_NP = (
th.logcumsumexp(log_impulse_Np1_P - lamdba_dt_star, -2) + lamdba_dt_star
)
right_x_NP = right_x_log_NP.exp() # Contains initial_state_P in index 0
left_x_NP = (
lambda_dt_NP.exp() * right_x_NP[..., :-1, :] + left_Bu_NP
) # Evolves previous hidden state forward to compute left limit
right_x_NP = right_x_NP[..., 1:, :]
conj_sym_mult = 2 if self.conj_sym else 1
left_y_NH = (
conj_sym_mult
* th.einsum("hp,...np->...nh", self.C_tilde_HP, left_x_NP).real
+ left_Du_NH
) # ys for [t0, t1, ...]
right_y_NH = (
conj_sym_mult
* th.einsum("hp,...np->...nh", self.C_tilde_HP, right_x_NP).real
+ right_Du_NH
) # ys for [t0, t1, ...]
return right_x_NP, left_y_NH, right_y_NH
def get_left_limit(
self,
right_limit_P: th.Tensor, # Along with dt, can have any number of leading dimensions, produces a tensor of dim ...MP
dt_G: th.Tensor,
current_right_u_H: th.Tensor,
next_left_u_GH: th.Tensor,
) -> th.Tensor:
"""
To get the left limit, we roll on the layer for the right dt.
Computed for a single point (vmap for multiple).
:param right_limit_P:
:param dt: Length of time to roll the layer on for.
:return:
"""
if current_right_u_H is not None and self.pre_norm:
current_right_u_H = self.norm(current_right_u_H)
lambda_res = self.get_lambda(
current_right_u_H, shift_u=False
) # U should already be shifted
if "lambda_rescaled_P" in lambda_res:
lambda_bar_GP = th.exp(
th.einsum("...g,p->...gp", dt_G, lambda_res["lambda_rescaled_P"])
)
else:
lambda_bar_GP = th.exp(
th.einsum("...g,...p->...gp", dt_G, lambda_res["lambda_rescaled_NP"])
)
int_hidden_GP = th.einsum("...p,...gp->...gp", right_limit_P, lambda_bar_GP)
if next_left_u_GH is None: # no Bu term
assert self.is_first_layer
return int_hidden_GP
else: # add Bu to impulse
if self.pre_norm:
next_left_u_GH = self.norm(next_left_u_GH)
impulse_GP = th.einsum(
"...gp,ph,...gh->...gp",
lambda_bar_GP - 1.0,
self.B_tilde_PH,
next_left_u_GH.type(th.complex64)
if self.complex_values
else next_left_u_GH,
)
return int_hidden_GP + impulse_GP
|