AbstractPhil's picture
Create model.py
3d7d199 verified
# Cell 2
# === Capacity Head ============================================================
class CapacityHead(nn.Module):
def __init__(self, in_dim, feat_dim, init_capacity=1.0):
super().__init__()
self._raw_capacity = nn.Parameter(torch.tensor(math.log(math.exp(init_capacity) - 1)))
# GELU for cascade: smooth gradients needed for overflow propagation
self.evidence_net = nn.Sequential(
nn.Linear(in_dim, feat_dim), nn.GELU(), nn.Linear(feat_dim, 1))
self.feature_net = nn.Sequential(
nn.Linear(in_dim, feat_dim), nn.GELU(), nn.Linear(feat_dim, feat_dim))
self.retain_gate = nn.Sequential(
nn.Linear(feat_dim + 1, feat_dim), nn.Sigmoid())
self.overflow_gate = nn.Sequential(
nn.Linear(feat_dim + 1, feat_dim), nn.Sigmoid())
@property
def capacity(self):
return F.softplus(self._raw_capacity)
def forward(self, x):
cap = self.capacity
raw_ev = F.relu(self.evidence_net(x))
fill = torch.clamp(raw_ev / (cap + 1e-8), max=1.0)
sat = torch.clamp((raw_ev - cap) / (cap + 1e-8), min=0.0)
feat = self.feature_net(x)
retained = self.retain_gate(torch.cat([feat, fill], -1)) * feat * fill
overflow = self.overflow_gate(torch.cat([feat, sat], -1)) * feat * torch.clamp(sat, max=1.0)
return fill, overflow, retained, cap, raw_ev
# === Differentiation Gate =====================================================
class DifferentiationGate(nn.Module):
"""
Curvature direction analysis via occupancy field differentiation.
Computes gradient and Laplacian of the 3D occupancy field to determine:
- Curvature direction: convex (normals point outward) vs concave (inward)
- Curvature alternation: where sign flips (saddle points, torus inner/outer)
- Perturbation robustness: smoothed gradient features survive noise
The key insight: a hemisphere and bowl occupy nearly identical voxels,
but their occupancy gradients point in opposite directions relative
to the center of mass. The Laplacian's sign distinguishes them.
Outputs gate signals that modulate curvature features:
- direction_gate: learned weighting based on gradient analysis
- alternation_score: how much curvature sign varies spatially
- directional_features: rich features encoding curvature orientation
"""
def __init__(self, embed_dim=64):
super().__init__()
# Fixed 3D differentiation kernels — fused into single conv
# 4 output channels: [grad_x, grad_y, grad_z, laplacian]
diff_kernels = torch.zeros(4, 1, 3, 3, 3)
# Sobel X
diff_kernels[0, 0, 0, 1, 1] = -1; diff_kernels[0, 0, 2, 1, 1] = 1
# Sobel Y
diff_kernels[1, 0, 1, 0, 1] = -1; diff_kernels[1, 0, 1, 2, 1] = 1
# Sobel Z
diff_kernels[2, 0, 1, 1, 0] = -1; diff_kernels[2, 0, 1, 1, 2] = 1
# Laplacian
diff_kernels[3, 0, 1, 1, 1] = -6
diff_kernels[3, 0, 0, 1, 1] = 1; diff_kernels[3, 0, 2, 1, 1] = 1
diff_kernels[3, 0, 1, 0, 1] = 1; diff_kernels[3, 0, 1, 2, 1] = 1
diff_kernels[3, 0, 1, 1, 0] = 1; diff_kernels[3, 0, 1, 1, 2] = 1
self.register_buffer("diff_kernels", diff_kernels)
# Precompute coordinate grid
coords = torch.stack(torch.meshgrid(
torch.arange(GS, dtype=torch.float32),
torch.arange(GS, dtype=torch.float32),
torch.arange(GS, dtype=torch.float32),
indexing="ij"), dim=-1) # (5,5,5,3)
self.register_buffer("coords", coords)
# Process gradient-derived features
# Per-voxel: gradient direction, Laplacian sign, centroid-relative direction
# Summarized as histograms and statistics
# Gradient direction relative to centroid: 3 histogram bins per axis
# + Laplacian sign distribution: 3 values (frac_pos, frac_neg, frac_zero)
# + Alternation score: 1 value
# + Per-axis gradient asymmetry: 3 values
# + Radial gradient profile: 5 bins
raw_feat_dim = 3 + 3 + 1 + 3 + 5 # = 15
# Plus the 3D conv on the Laplacian field preserving spatial structure
self.lap_conv = nn.Sequential(
nn.Conv3d(1, 16, 3, padding=1), nn.GELU(),
nn.Conv3d(16, 16, 3, padding=1), nn.GELU(),
nn.AdaptiveAvgPool3d(2)) # -> (B, 16, 2, 2, 2) = 128
lap_conv_dim = 16 * 8 # 128
# Gradient magnitude 3D conv (encodes where boundaries are + direction)
self.grad_conv = nn.Sequential(
nn.Conv3d(3, 16, 3, padding=1), nn.GELU(), # 3-channel: dx, dy, dz
nn.Conv3d(16, 16, 3, padding=1), nn.GELU(),
nn.AdaptiveAvgPool3d(2)) # -> (B, 16, 2, 2, 2) = 128
grad_conv_dim = 16 * 8 # 128
total_feat_dim = raw_feat_dim + lap_conv_dim + grad_conv_dim # 15 + 128 + 128 = 271
# Direction gate: SwiGLU for sharp convex/concave gating
self.direction_net = nn.Sequential(
SwiGLU(total_feat_dim, embed_dim),
nn.Linear(embed_dim, embed_dim), nn.Sigmoid())
# Directional features: SwiGLU for crisp direction encoding
self.direction_feat_net = nn.Sequential(
SwiGLU(total_feat_dim, embed_dim),
nn.Linear(embed_dim, embed_dim))
def forward(self, grid):
"""
grid: (B, 5, 5, 5) binary occupancy
Returns:
direction_gate: (B, embed_dim) sigmoid gate for curvature features
direction_feat: (B, embed_dim) additive directional features
alternation_score: (B, 1) how much curvature alternates
"""
B = grid.shape[0]
device = grid.device
vox = grid.unsqueeze(1) # (B, 1, 5, 5, 5)
# === Smooth occupancy before differentiation ===
# Binary voxels produce spike gradients. Light blur creates
# a continuous field whose derivatives are geometrically meaningful.
vox_smooth = F.avg_pool3d(
F.pad(vox, (1,1,1,1,1,1), mode='replicate'),
kernel_size=3, stride=1, padding=0) # (B, 1, 5, 5, 5)
# === Compute gradients + Laplacian in single fused conv ===
diff = F.conv3d(vox_smooth, self.diff_kernels, padding=1) # (B, 4, 5, 5, 5)
grad_field = diff[:, :3] # (B, 3, 5, 5, 5) — gx, gy, gz
gx, gy, gz = diff[:, 0:1], diff[:, 1:2], diff[:, 2:3]
lap = diff[:, 3:4] # (B, 1, 5, 5, 5)
# === Centroid ===
flat_grid = grid.reshape(B, -1) # (B, 125)
flat_coords = self.coords.reshape(-1, 3) # (125, 3)
total_occ = flat_grid.sum(dim=-1, keepdim=True).clamp(min=1) # (B, 1)
centroids = (flat_grid.unsqueeze(-1) * flat_coords.unsqueeze(0)).sum(dim=1) / total_occ # (B, 3)
# === Gradient direction relative to centroid ===
grad_flat = grad_field.reshape(B, 3, -1).permute(0, 2, 1) # (B, 125, 3)
diff_from_center = flat_coords.unsqueeze(0) - centroids.unsqueeze(1) # (B, 125, 3)
diff_norm = diff_from_center / (diff_from_center.norm(dim=-1, keepdim=True) + 1e-8)
dot_products = (grad_flat * diff_norm).sum(dim=-1) # (B, 125)
grad_mag = grad_flat.norm(dim=-1) # (B, 125)
active = (flat_grid > 0.5) & (grad_mag > 0.01)
# Histogram of dot product signs (convex/concave/neutral fractions)
n_active = active.float().sum(-1).clamp(min=1)
frac_outward = ((dot_products > 0.1) & active).float().sum(-1) / n_active
frac_inward = ((dot_products < -0.1) & active).float().sum(-1) / n_active
frac_neutral = 1.0 - frac_outward - frac_inward
direction_hist = torch.stack([frac_outward, frac_inward, frac_neutral], dim=-1) # (B, 3)
# === Laplacian sign distribution (active voxels only) ===
lap_flat = lap.reshape(B, -1) # (B, 125)
lap_active = flat_grid > 0.5
n_lap_active = lap_active.float().sum(-1).clamp(min=1)
frac_pos_lap = ((lap_flat > 0.1) & lap_active).float().sum(-1) / n_lap_active
frac_neg_lap = ((lap_flat < -0.1) & lap_active).float().sum(-1) / n_lap_active
frac_zero_lap = 1.0 - frac_pos_lap - frac_neg_lap
lap_hist = torch.stack([frac_pos_lap, frac_neg_lap, frac_zero_lap], dim=-1) # (B, 3)
# === Alternation score (ACTIVE VOXELS ONLY) ===
# Only count sign flips between neighbor pairs where BOTH voxels are
# near occupied regions. Otherwise empty space dilutes the signal.
lap_3d = lap.squeeze(1) # (B, 5, 5, 5)
# Boundary mask: dilate occupancy by 1 to include immediate neighbors
boundary_mask = F.max_pool3d(vox, kernel_size=3, stride=1, padding=1).squeeze(1) # (B,5,5,5)
# X-axis: both neighbors must be in boundary region
bm_x = boundary_mask[:, 1:, :, :] * boundary_mask[:, :-1, :, :] # (B,4,5,5)
flip_x = (torch.sign(lap_3d[:, 1:, :, :]) * torch.sign(lap_3d[:, :-1, :, :]) < 0).float()
active_flips_x = (flip_x * bm_x).sum(dim=(1, 2, 3))
active_pairs_x = bm_x.sum(dim=(1, 2, 3)).clamp(min=1)
bm_y = boundary_mask[:, :, 1:, :] * boundary_mask[:, :, :-1, :]
flip_y = (torch.sign(lap_3d[:, :, 1:, :]) * torch.sign(lap_3d[:, :, :-1, :]) < 0).float()
active_flips_y = (flip_y * bm_y).sum(dim=(1, 2, 3))
active_pairs_y = bm_y.sum(dim=(1, 2, 3)).clamp(min=1)
bm_z = boundary_mask[:, :, :, 1:] * boundary_mask[:, :, :, :-1]
flip_z = (torch.sign(lap_3d[:, :, :, 1:]) * torch.sign(lap_3d[:, :, :, :-1]) < 0).float()
active_flips_z = (flip_z * bm_z).sum(dim=(1, 2, 3))
active_pairs_z = bm_z.sum(dim=(1, 2, 3)).clamp(min=1)
alternation = ((active_flips_x / active_pairs_x +
active_flips_y / active_pairs_y +
active_flips_z / active_pairs_z) / 3.0).unsqueeze(-1) # (B, 1)
# === Per-axis gradient asymmetry ===
# Asymmetry: mean gradient along each axis (nonzero = asymmetric curvature)
gx_mean = (gx.squeeze(1) * grid).sum(dim=(1, 2, 3)) / total_occ.squeeze(-1)
gy_mean = (gy.squeeze(1) * grid).sum(dim=(1, 2, 3)) / total_occ.squeeze(-1)
gz_mean = (gz.squeeze(1) * grid).sum(dim=(1, 2, 3)) / total_occ.squeeze(-1)
grad_asym = torch.stack([gx_mean, gy_mean, gz_mean], dim=-1) # (B, 3)
# === Radial gradient profile ===
# How does gradient magnitude vary with distance from centroid?
dists = diff_from_center.norm(dim=-1) # (B, 125)
# Arithmetic binning (Inductor-safe, no bucketize)
# nan_to_num prevents NaN→long producing garbage indices under BF16
bin_idx = torch.nan_to_num(dists * (5.0 / 3.5), nan=0.0).long().clamp(0, 4)
active_mask = (flat_grid > 0.5) # (B, 125)
radial_grad = torch.zeros(B, 5, device=device)
# Scatter-add: accumulate grad_mag and counts per bin
weighted_mag = grad_mag * active_mask.float() # zero out inactive
one_hot = F.one_hot(bin_idx, 5).float() # (B, 125, 5)
active_oh = one_hot * active_mask.float().unsqueeze(-1) # mask inactive
counts = active_oh.sum(dim=1).clamp(min=1) # (B, 5)
radial_grad = (weighted_mag.unsqueeze(-1) * active_oh).sum(dim=1) / counts
# (B, 5)
# === Conv on Laplacian field (spatial curvature map) ===
lap_feat = self.lap_conv(lap).reshape(B, -1) # (B, 128)
# === Conv on gradient field (directional boundaries) ===
grad_feat = self.grad_conv(grad_field).reshape(B, -1) # (B, 128)
# === Combine all ===
raw_feat = torch.cat([
direction_hist, # 3
lap_hist, # 3
alternation, # 1
grad_asym, # 3
radial_grad, # 5
], dim=-1) # (B, 15)
all_feat = torch.cat([raw_feat, lap_feat, grad_feat], dim=-1) # (B, 271)
direction_gate = self.direction_net(all_feat) # (B, embed_dim) sigmoid
direction_feat = self.direction_feat_net(all_feat) # (B, embed_dim)
return direction_gate, direction_feat, alternation
# === Deformation Augmentation =================================================
def deform_grid(grid, p_dropout=0.1, p_add=0.1, p_shift=0.15):
"""Fully vectorized voxel augmentation — zero CPU-GPU sync points."""
B = grid.shape[0]
device = grid.device
r = torch.rand(B, 3, device=device)
out = grid.clone()
# --- Voxel dropout (batched, no .any() sync) ---
drop_sel = (r[:, 0] < p_dropout).view(B, 1, 1, 1)
keep = torch.rand_like(out) > 0.15
out = torch.where(drop_sel, out * keep.float(), out)
# --- Boundary addition (batched, no .any() sync) ---
add_sel = (r[:, 1] < p_add).view(B, 1, 1, 1).float()
dilated = F.max_pool3d(out.unsqueeze(1), kernel_size=3, stride=1, padding=1).squeeze(1)
boundary = ((dilated > 0.5) & (out < 0.5)).float()
add_noise = (torch.rand_like(out) < 0.3).float()
out = (out + boundary * add_noise * add_sel).clamp(max=1.0)
# --- Small translation (fully vectorized, no loops, no boolean indexing) ---
shift_sel = (r[:, 2] < p_shift) # (B,)
axes = torch.randint(3, (B,), device=device)
dirs = torch.randint(0, 2, (B,), device=device) * 2 - 1
# Precompute all 6 shifted versions of full batch (cheap for 5x5x5)
# Encode: idx = axis * 2 + (dir==1) → [0..5], 6 = no shift
versions = []
for ax in range(3):
for d in [-1, 1]:
s = torch.roll(out, shifts=d, dims=ax + 1) # +1 for batch dim
# Zero wrapped edge
if d == 1:
if ax == 0: s[:, 0, :, :] = 0
elif ax == 1: s[:, :, 0, :] = 0
else: s[:, :, :, 0] = 0
else:
if ax == 0: s[:, -1, :, :] = 0
elif ax == 1: s[:, :, -1, :] = 0
else: s[:, :, :, -1] = 0
versions.append(s)
versions.append(out) # index 6 = no shift (identity)
stacked = torch.stack(versions, dim=0) # (7, B, 5, 5, 5)
# Per-sample assignment: which version to pick
assign = torch.where(shift_sel, axes * 2 + (dirs == 1).long(), torch.full_like(axes, 6))
# Gather: stacked[assign[b], b] for each b
out = stacked[assign, torch.arange(B, device=device)]
return out
# === Curvature Head (axis-aware) ==============================================
class CurvatureHead(nn.Module):
"""
Axis-aware curvature detection with differentiation gating.
1. Per-axis max projections -> 2D conv (keeps 2×2 spatial)
2. Radial occupancy profile from centroid
3. Axial symmetry + translation invariance scores
4. 3D conv with spatial preservation (2×2×2)
5. DifferentiationGate: gradient/Laplacian analysis for direction detection
The DifferentiationGate modulates curvature features so that
convex and concave shapes get distinct representations even when
their occupancy patterns are nearly identical.
"""
def __init__(self, rigid_feat_dim, fill_dim, embed_dim):
super().__init__()
self.plane_conv = nn.Sequential(
nn.Conv2d(1, 16, 3, padding=1), nn.GELU(),
nn.Conv2d(16, 16, 3, padding=1), nn.GELU(),
nn.AdaptiveAvgPool2d(2))
plane_feat_dim = 3 * 16 * 4 # 192
n_radial = 5
self.radial_net = nn.Sequential(
nn.Linear(n_radial, 32), nn.GELU(), nn.Linear(32, 16))
radial_feat_dim = 16
symmetry_feat_dim = 6
self.voxel_conv = nn.Sequential(
nn.Conv3d(1, 16, 3, padding=1), nn.GELU(),
nn.Conv3d(16, 32, 3, padding=1), nn.GELU(),
nn.AdaptiveAvgPool3d(2))
voxel3d_feat_dim = 32 * 8 # 256
# DifferentiationGate for curvature direction
self.diff_gate = DifferentiationGate(embed_dim)
# Pre-gate combine (without direction features)
pre_gate_dim = (plane_feat_dim + radial_feat_dim + symmetry_feat_dim +
voxel3d_feat_dim + rigid_feat_dim + fill_dim)
# Pre-gate feature projection: SwiGLU for sharp geometric feature gating
self.pre_gate_proj = nn.Sequential(
SwiGLU(pre_gate_dim, embed_dim * 2),
nn.Linear(embed_dim * 2, embed_dim))
# Post-gate: gated features + direction features + alternation + raw combine
# = embed_dim (gated) + embed_dim (direction) + 1 (alternation) + pre_gate_dim
post_gate_dim = embed_dim + embed_dim + 1 + pre_gate_dim
# SwiGLU for all curvature decision heads: sharp geometric classification
self.curved_head = nn.Sequential(
SwiGLU(post_gate_dim, embed_dim),
nn.Linear(embed_dim, 1), nn.Sigmoid())
self.curv_type_head = nn.Sequential(
SwiGLU(post_gate_dim, embed_dim),
nn.Linear(embed_dim, NUM_CURVATURES))
self.curv_features = nn.Sequential(
SwiGLU(post_gate_dim, embed_dim * 2),
nn.Linear(embed_dim * 2, embed_dim))
def forward(self, grid, rigid_retained, fill_ratios):
B = grid.shape[0]
proj_x = grid.max(dim=1).values
proj_y = grid.max(dim=2).values
proj_z = grid.max(dim=3).values
# Batch all 3 projections through plane_conv in single pass
projs_batched = torch.cat([
proj_x.unsqueeze(1), proj_y.unsqueeze(1), proj_z.unsqueeze(1)
], dim=0) # (3B, 1, 5, 5)
plane_all = self.plane_conv(projs_batched).reshape(3, B, -1) # (3, B, 64)
plane_feat = plane_all.permute(1, 0, 2).reshape(B, -1) # (B, 192)
radial = self._radial_profile(grid)
radial_feat = self.radial_net(radial)
sym_feat = self._symmetry_features(proj_x, proj_y, proj_z)
vox3d_feat = self.voxel_conv(grid.unsqueeze(1)).reshape(B, -1)
# Raw curvature features (shape-aware but direction-blind)
raw_combined = torch.cat([
plane_feat, radial_feat, sym_feat, vox3d_feat,
rigid_retained, fill_ratios], dim=-1)
# Project to gatable dimension
pre_gate = self.pre_gate_proj(raw_combined) # (B, embed_dim)
# Direction analysis
dir_gate, dir_feat, alternation = self.diff_gate(grid)
# Apply gate: direction-modulated curvature features
gated = pre_gate * dir_gate # (B, embed_dim) — convex/concave differentiation
# Full post-gate features
combined = torch.cat([gated, dir_feat, alternation, raw_combined], dim=-1)
is_curved = self.curved_head(combined)
curv_logits = self.curv_type_head(combined)
curv_feat = self.curv_features(combined)
return is_curved, curv_logits, curv_feat, alternation
def _radial_profile(self, grid):
B = grid.shape[0]
device = grid.device
coords = torch.stack(torch.meshgrid(
torch.arange(GS, device=device, dtype=torch.float32),
torch.arange(GS, device=device, dtype=torch.float32),
torch.arange(GS, device=device, dtype=torch.float32),
indexing="ij"), dim=-1)
flat_grid = grid.reshape(B, -1)
flat_coords = coords.reshape(-1, 3)
total_occ = flat_grid.sum(dim=-1, keepdim=True).clamp(min=1)
centroids = (flat_grid.unsqueeze(-1) * flat_coords.unsqueeze(0)).sum(dim=1) / total_occ
diffs = flat_coords.unsqueeze(0) - centroids.unsqueeze(1)
dists = diffs.norm(dim=-1) # (B, 125)
max_dist = 3.5
n_bins = 5
# Arithmetic binning (Inductor-safe, no bucketize)
bin_idx = torch.nan_to_num(dists * (float(n_bins) / max_dist), nan=0.0).long().clamp(0, n_bins - 1)
one_hot = F.one_hot(bin_idx, n_bins).float() # (B, 125, 5)
weighted = flat_grid.unsqueeze(-1) * one_hot # (B, 125, 5)
profile = weighted.sum(dim=1) / total_occ # (B, 5)
return profile
def _symmetry_features(self, proj_x, proj_y, proj_z):
projs = torch.stack([proj_x, proj_y, proj_z], dim=1) # (B, 3, H, W)
fh = torch.flip(projs, dims=[2])
fv = torch.flip(projs, dims=[3])
sym = 1.0 - ((projs - fh).abs().mean(dim=(2, 3)) +
(projs - fv).abs().mean(dim=(2, 3))) / 2 # (B, 3)
shift_diff = (projs[:, :, 1:, :] - projs[:, :, :-1, :]).abs().mean(dim=(2, 3)) # (B, 3)
trans_inv = 1.0 - shift_diff
# Interleave: [sym0, trans0, sym1, trans1, sym2, trans2]
return torch.stack([sym[:, 0], trans_inv[:, 0],
sym[:, 1], trans_inv[:, 1],
sym[:, 2], trans_inv[:, 2]], dim=-1) # (B, 6)
# === Confidence Computation ====================================================
def compute_confidence(logits):
"""
Compute real calibrated confidence metrics from logits.
Returns dict with:
max_prob: max(softmax(logits)) — calibrated top-class probability
margin: top1_prob - top2_prob — disambiguation strength
entropy: -sum(p * log(p)) — total uncertainty (lower = more confident)
confidence: margin — primary confidence signal for gating
"""
probs = F.softmax(logits, dim=-1)
max_prob, _ = probs.max(dim=-1)
top2 = probs.topk(2, dim=-1).values
margin = top2[:, 0] - top2[:, 1]
# Entropy normalized to [0, 1] range
log_probs = F.log_softmax(logits, dim=-1)
entropy = -(probs * log_probs).sum(dim=-1)
max_entropy = math.log(logits.shape[-1])
norm_entropy = entropy / max_entropy
return {
"max_prob": max_prob,
"margin": margin,
"entropy": norm_entropy,
"confidence": margin, # primary signal
}
# === Rectified Flow Arbiter ===================================================
class RectifiedFlowArbiter(nn.Module):
"""
Rectified flow matching for ambiguous classification refinement.
Real flow matching requires a target endpoint to define the velocity field.
We learn class prototypes in latent space as targets: for a sample of class c,
the target is prototype[c]. The velocity field learns to transport the
encoded feature z0 toward the correct prototype z1 in straight lines:
v_target = z1 - z0 (rectified: straight path from source to target)
loss = ||v_predicted - v_target||^2 (flow matching objective)
At inference, the arbiter integrates the learned velocity field from z0,
landing near the correct class prototype. Classification reads off the
nearest prototype.
Confidence gating: velocity magnitude is scaled by (1 - margin), so
confident first-pass predictions receive minimal correction.
"""
def __init__(self, feat_dim, n_classes, n_steps=4, latent_dim=128, embed_dim=64):
super().__init__()
self.n_steps = n_steps
self.n_classes = n_classes
self.dt = 1.0 / n_steps
self.latent_dim = latent_dim
# Project features to latent space
self.encode = nn.Sequential(
nn.Linear(feat_dim, latent_dim * 2), nn.GELU(),
nn.Linear(latent_dim * 2, latent_dim))
# Learnable class prototypes — target endpoints for flow
self.prototypes = nn.Parameter(torch.randn(n_classes, latent_dim) * 0.05)
# Timestep embedding
self.time_embed = nn.Sequential(
nn.Linear(16, embed_dim), nn.GELU(),
nn.Linear(embed_dim, embed_dim))
# Confidence embedding
self.conf_embed = nn.Sequential(
nn.Linear(3, embed_dim), nn.GELU(),
nn.Linear(embed_dim, embed_dim))
# Velocity network: predicts flow direction in latent space
vel_in = latent_dim + embed_dim + embed_dim
self.velocity = nn.Sequential(
SwiGLU(vel_in, latent_dim),
nn.Linear(latent_dim, latent_dim),
SwiGLU(latent_dim, latent_dim),
nn.Linear(latent_dim, latent_dim))
# Velocity gate: low confidence → full correction, high → minimal
self.vel_gate = nn.Sequential(
nn.Linear(embed_dim, latent_dim), nn.Sigmoid())
# Classification from latent: distance to prototypes + learned head
self.classifier_head = nn.Sequential(
SwiGLU(latent_dim + n_classes, 96),
nn.Linear(96, n_classes))
# Learned confidence head for blending (differentiable, not topk)
self.blend_head = nn.Sequential(
nn.Linear(feat_dim, 64), nn.GELU(),
nn.Linear(64, 1), nn.Sigmoid())
# Post-refinement confidence
self.refined_confidence = nn.Sequential(
SwiGLU(latent_dim, 32),
nn.Linear(32, 1), nn.Sigmoid())
def _time_encoding(self, t, device):
freqs = torch.exp(torch.linspace(0, -4, 8, device=device))
args = t.unsqueeze(-1) * freqs.unsqueeze(0)
return torch.cat([args.sin(), args.cos()], dim=-1)
def _proto_logits(self, z):
"""Classify by negative distance to prototypes."""
# (B, latent) vs (C, latent) → (B, C) distances
dists = torch.cdist(z.unsqueeze(0), self.prototypes.unsqueeze(0)).squeeze(0)
# Combine distance signal with learned head
combined = torch.cat([z, -dists], dim=-1) # (B, latent + n_classes)
return self.classifier_head(combined)
def forward(self, features, initial_logits, labels=None):
"""
features: (B, feat_dim)
initial_logits: (B, n_classes)
labels: (B,) — only during training, for flow matching target
Returns:
refined_logits, refined_conf, initial_conf, trajectory_logits, flow_loss
"""
B = features.shape[0]
device = features.device
# Confidence from initial logits
initial_conf = compute_confidence(initial_logits)
conf_input = torch.stack([
initial_conf["max_prob"],
initial_conf["margin"],
initial_conf["entropy"]], dim=-1)
conf_emb = self.conf_embed(conf_input)
# Confidence-gated velocity magnitude
gate = self.vel_gate(conf_emb)
inv_conf = (1.0 - initial_conf["margin"]).unsqueeze(-1)
adaptive_gate = gate * inv_conf
# Encode to latent
z0 = self.encode(features)
# === Flow matching target ===
flow_loss = torch.tensor(0.0, device=device)
if labels is not None:
# Target: class prototype for each sample
z1 = self.prototypes[labels] # (B, latent_dim)
# Target velocity: straight path z0 → z1
v_target = z1 - z0 # (B, latent_dim)
# Sample random timestep for flow matching training
t_rand = torch.rand(B, device=device)
t_emb = self.time_embed(self._time_encoding(t_rand, device))
# Interpolated position along straight path
z_t = z0 + t_rand.unsqueeze(-1) * v_target # (B, latent_dim)
# Predicted velocity at this point
vel_input = torch.cat([z_t, t_emb, conf_emb], dim=-1)
v_pred = self.velocity(vel_input) * adaptive_gate
v_pred = v_pred.clamp(-20, 20)
# Flow matching loss: predicted velocity should match target
flow_loss = F.mse_loss(v_pred, v_target.clamp(-20, 20))
# === Inference: integrate velocity field ===
z = z0
trajectory_logits = []
for step in range(self.n_steps):
t_val = torch.full((B,), step * self.dt, device=device)
t_emb = self.time_embed(self._time_encoding(t_val, device))
vel_input = torch.cat([z, t_emb, conf_emb], dim=-1)
v = self.velocity(vel_input) * adaptive_gate
# Prevent BF16 divergence: clamp velocity magnitude
v = v.clamp(-20, 20)
z = z + self.dt * v
trajectory_logits.append(self._proto_logits(z))
refined_logits = trajectory_logits[-1]
refined_conf = self.refined_confidence(z)
# Learned blend weight (differentiable, from initial features)
blend_weight = self.blend_head(features) # (B, 1)
return refined_logits, refined_conf, initial_conf, trajectory_logits, flow_loss, blend_weight
# === Model ====================================================================
class GeometricShapeClassifier(nn.Module):
def __init__(self, n_classes=NUM_CLASSES, embed_dim=64, n_tracers=5):
super().__init__()
self.n_tracers = n_tracers
self.embed_dim = embed_dim
self.voxel_embed = nn.Sequential(
nn.Linear(4, embed_dim), nn.GELU(), nn.Linear(embed_dim, embed_dim))
coords = torch.stack(torch.meshgrid(
torch.arange(GS, dtype=torch.float32),
torch.arange(GS, dtype=torch.float32),
torch.arange(GS, dtype=torch.float32),
indexing="ij"), dim=-1) / (GS - 1) # (5,5,5,3) normalized
self.register_buffer("pos_grid", coords)
self.tracer_tokens = nn.Parameter(torch.randn(n_tracers, embed_dim) * 0.02)
self.tracer_attn = nn.MultiheadAttention(embed_dim, num_heads=4, batch_first=True)
self.tracer_gate = nn.Sequential(nn.Linear(embed_dim * 2, embed_dim), nn.Sigmoid())
self.tracer_interact = nn.Sequential(
nn.Linear(embed_dim * 2, embed_dim), nn.GELU(), nn.Linear(embed_dim, embed_dim))
# SwiGLU for edge detection: sharp "edge present?" decision
self.edge_head = nn.Sequential(
SwiGLU(embed_dim * 2, 32), nn.Linear(32, 1))
# Precompute all C(n_tracers, 2) pair indices for vectorized interaction
_pi, _pj = [], []
for i in range(n_tracers):
for j in range(i + 1, n_tracers):
_pi.append(i); _pj.append(j)
self.register_buffer("_pair_i", torch.tensor(_pi, dtype=torch.long))
self.register_buffer("_pair_j", torch.tensor(_pj, dtype=torch.long))
self.n_pairs = len(_pi)
pool_dim = embed_dim * n_tracers
self.dim0 = CapacityHead(pool_dim, embed_dim, init_capacity=0.5)
self.dim1 = CapacityHead(pool_dim + embed_dim, embed_dim, init_capacity=1.0)
self.dim2 = CapacityHead(pool_dim + embed_dim, embed_dim, init_capacity=1.5)
self.dim3 = CapacityHead(pool_dim + embed_dim, embed_dim, init_capacity=2.0)
rigid_feat_dim = embed_dim * 4
self.curvature = CurvatureHead(rigid_feat_dim, fill_dim=4, embed_dim=embed_dim)
class_in = pool_dim + 4 + rigid_feat_dim + embed_dim + 1
self.class_in = class_in # Store for arbiter
self.classifier = nn.Sequential(
nn.Linear(class_in, 256), nn.GELU(), nn.Dropout(0.1),
nn.Linear(256, 128), nn.GELU(), nn.Linear(128, n_classes))
# SwiGLU for peak dimension: sharp "which dimension?" decision
self.peak_head = nn.Sequential(
SwiGLU(class_in, 32), nn.Linear(32, 4))
# Volume is continuous interpolation — keep GELU
self.volume_head = nn.Sequential(
nn.Linear(class_in, 64), nn.GELU(), nn.Linear(64, 1))
# SwiGLU for CM determinant sign: sharp geometric determinant
self.cm_head = nn.Sequential(
SwiGLU(class_in, 64), nn.Linear(64, 1), nn.Tanh())
# Rectified flow arbiter for ambiguous classification
self.arbiter = RectifiedFlowArbiter(
feat_dim=class_in, n_classes=n_classes,
n_steps=4, latent_dim=128, embed_dim=embed_dim)
def forward(self, grid, labels=None):
B = grid.shape[0]
occ = grid.reshape(B, GS**3, 1)
pos = self.pos_grid.reshape(1, GS**3, 3).expand(B, -1, -1)
voxel_emb = self.voxel_embed(torch.cat([occ, pos], dim=-1))
tracers = self.tracer_tokens.unsqueeze(0).expand(B, -1, -1)
tracers, _ = self.tracer_attn(tracers, voxel_emb, voxel_emb)
# Vectorized pair interaction: all C(5,2)=10 pairs at once
left = tracers[:, self._pair_i] # (B, 10, embed_dim)
right = tracers[:, self._pair_j] # (B, 10, embed_dim)
pairs = torch.cat([left, right], dim=-1) # (B, 10, embed_dim*2)
# Flatten to batch, run networks, reshape back
flat_pairs = pairs.reshape(B * self.n_pairs, -1)
gate = self.tracer_gate(flat_pairs).reshape(B, self.n_pairs, -1)
interaction = self.tracer_interact(flat_pairs).reshape(B, self.n_pairs, -1)
edge_lengths = self.edge_head(flat_pairs).reshape(B, self.n_pairs)
# Scatter-add gated interactions back to both tracers in each pair
gated = gate * interaction # (B, 10, embed_dim)
tracer_out = tracers.clone()
pi_exp = self._pair_i.view(1, self.n_pairs, 1).expand(B, -1, self.embed_dim)
pj_exp = self._pair_j.view(1, self.n_pairs, 1).expand(B, -1, self.embed_dim)
tracer_out.scatter_add_(1, pi_exp, gated)
tracer_out.scatter_add_(1, pj_exp, gated)
pooled = tracer_out.reshape(B, -1)
fill0, ovf0, ret0, cap0, _ = self.dim0(pooled)
fill1, ovf1, ret1, cap1, _ = self.dim1(torch.cat([pooled, ovf0], -1))
fill2, ovf2, ret2, cap2, _ = self.dim2(torch.cat([pooled, ovf1], -1))
fill3, ovf3, ret3, cap3, _ = self.dim3(torch.cat([pooled, ovf2], -1))
fill_ratios = torch.cat([fill0, fill1, fill2, fill3], dim=-1)
rigid_retained = torch.cat([ret0, ret1, ret2, ret3], dim=-1)
ovf_norms = torch.stack([
ovf0.norm(dim=-1), ovf1.norm(dim=-1),
ovf2.norm(dim=-1), ovf3.norm(dim=-1)], dim=-1)
is_curved, curv_logits, curv_feat, alternation = self.curvature(grid, rigid_retained, fill_ratios)
full = torch.cat([pooled, fill_ratios, rigid_retained, curv_feat, is_curved], dim=-1)
# === First pass classification ===
initial_logits = self.classifier(full)
# === Rectified flow arbitration ===
refined_logits, refined_conf, initial_conf, trajectory_logits, flow_loss, blend_weight = \
self.arbiter(full, initial_logits, labels=labels)
# === Blend: learned confidence head decides trust ===
# blend_weight is (B, 1) sigmoid output from learned head
final_logits = blend_weight * initial_logits + (1.0 - blend_weight) * refined_logits
return {
# Classification
"class_logits": final_logits,
"initial_logits": initial_logits,
"refined_logits": refined_logits,
"trajectory_logits": trajectory_logits,
# Flow matching
"flow_loss": flow_loss,
# Confidence
"confidence": initial_conf["confidence"],
"max_prob": initial_conf["max_prob"],
"entropy": initial_conf["entropy"],
"refined_confidence": refined_conf,
"blend_weight": blend_weight.squeeze(-1),
# Auxiliary heads
"peak_logits": self.peak_head(full),
"volume_pred": self.volume_head(full).squeeze(-1),
"cm_pred": self.cm_head(full).squeeze(-1),
"edge_lengths": edge_lengths,
"fill_ratios": fill_ratios,
"overflows": ovf_norms,
"capacities": torch.stack([cap0, cap1, cap2, cap3]),
"is_curved_pred": is_curved,
"curv_type_logits": curv_logits,
"alternation": alternation,
# Pre-classifier features (for cross-contrast)
"features": full,
}
# Quick sanity
_m = GeometricShapeClassifier()
print(f'GeometricShapeClassifier: {sum(p.numel() for p in _m.parameters()):,} params')
del _m