Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,384 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# K-Simplex Language Model Prototype
|
| 2 |
+
|
| 3 |
+
A geometric autoregressive language model using Cayley-Menger validated k-simplex channels. This architecture replaces traditional transformer embeddings with geometrically-constrained structures that maintain mathematical validity throughout training.
|
| 4 |
+
|
| 5 |
+
## Overview
|
| 6 |
+
|
| 7 |
+
This model explores whether **geometric inductive bias** can improve language modeling by representing each token position as a hierarchy of k-simplices (edge → triangle → tetrahedron → 5-cell) with learnable deformations validated by the Cayley-Menger determinant.
|
| 8 |
+
|
| 9 |
+
**Key Results:**
|
| 10 |
+
- Shakespeare corpus: **Val PPL 113.74** at epoch 8
|
| 11 |
+
- 100% geometric validity maintained throughout training
|
| 12 |
+
- Coherent dialogue generation with proper character attribution
|
| 13 |
+
- 54M parameters (due to 50k BPE vocabulary)
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## Architecture
|
| 18 |
+
|
| 19 |
+
### Conceptual Foundation
|
| 20 |
+
|
| 21 |
+
Traditional transformers represent tokens as flat vectors. This architecture represents each token as a **stack of k-simplex structures** where:
|
| 22 |
+
|
| 23 |
+
| K-Level | Structure | Vertices | Distance Pairs | Geometric Meaning |
|
| 24 |
+
|---------|-----------|----------|----------------|-------------------|
|
| 25 |
+
| k=1 | Edge | 2 | 1 | 1D linear relationship |
|
| 26 |
+
| k=2 | Triangle | 3 | 3 | 2D planar structure |
|
| 27 |
+
| k=3 | Tetrahedron | 4 | 6 | 3D volumetric structure |
|
| 28 |
+
| k=4 | 5-cell | 5 | 10 | 4D hypervolume |
|
| 29 |
+
|
| 30 |
+
Each k-level captures progressively higher-dimensional geometric relationships, providing a structured representation space that traditional embeddings lack.
|
| 31 |
+
|
| 32 |
+
### Token Flow
|
| 33 |
+
|
| 34 |
+
```
|
| 35 |
+
Token ID
|
| 36 |
+
↓
|
| 37 |
+
Embedding Layer (vocab_size × embed_dim)
|
| 38 |
+
↓
|
| 39 |
+
Positional Encoding
|
| 40 |
+
↓
|
| 41 |
+
┌─────────────────────────────────────────┐
|
| 42 |
+
│ TokenToKChannels │
|
| 43 |
+
│ Projects to [B, T, K, feat_dim] │
|
| 44 |
+
│ Each position gets K simplex channels │
|
| 45 |
+
└─────────────────────────────────────────┘
|
| 46 |
+
↓
|
| 47 |
+
┌─────────────────────────────────────────┐
|
| 48 |
+
│ GeoBlock × num_blocks │
|
| 49 |
+
│ ┌─────────────────────────────────┐ │
|
| 50 |
+
│ │ KChannelCrossAttention │ │
|
| 51 |
+
│ │ K-levels attend to each other │ │
|
| 52 |
+
│ │ (within each token position) │ │
|
| 53 |
+
│ └─────────────────────────────────┘ │
|
| 54 |
+
│ ┌─────────────────────────────────┐ │
|
| 55 |
+
│ │ CausalSequenceAttention │ │
|
| 56 |
+
│ │ Tokens attend causally │ │
|
| 57 |
+
│ │ (across sequence, masked) │ │
|
| 58 |
+
│ └─────────────────────────────────┘ │
|
| 59 |
+
│ ┌─────────────────────────────────┐ │
|
| 60 |
+
│ │ MLP │ │
|
| 61 |
+
│ └─────────────────────────────────┘ │
|
| 62 |
+
└─────────────────────────────────────────┘
|
| 63 |
+
↓
|
| 64 |
+
LM Head → Logits [B, T, vocab_size]
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
---
|
| 68 |
+
|
| 69 |
+
## Geometric Formulas
|
| 70 |
+
|
| 71 |
+
### Cayley-Menger Determinant
|
| 72 |
+
|
| 73 |
+
For a k-simplex with vertices $v_0, v_1, \ldots, v_k$, the squared volume is computed via:
|
| 74 |
+
|
| 75 |
+
$$
|
| 76 |
+
\text{Vol}^2 = \frac{(-1)^{k+1}}{2^k (k!)^2} \det(CM)
|
| 77 |
+
$$
|
| 78 |
+
|
| 79 |
+
Where the Cayley-Menger matrix is:
|
| 80 |
+
|
| 81 |
+
$$
|
| 82 |
+
CM = \begin{pmatrix}
|
| 83 |
+
0 & 1 & 1 & \cdots & 1 \\
|
| 84 |
+
1 & 0 & d_{01}^2 & \cdots & d_{0k}^2 \\
|
| 85 |
+
1 & d_{01}^2 & 0 & \cdots & d_{1k}^2 \\
|
| 86 |
+
\vdots & \vdots & \vdots & \ddots & \vdots \\
|
| 87 |
+
1 & d_{0k}^2 & d_{1k}^2 & \cdots & 0
|
| 88 |
+
\end{pmatrix}
|
| 89 |
+
$$
|
| 90 |
+
|
| 91 |
+
**Validity Criterion:** $\text{Vol}^2 > 0$ indicates a non-degenerate simplex.
|
| 92 |
+
|
| 93 |
+
### Template Deformation
|
| 94 |
+
|
| 95 |
+
Each k-simplex starts from a regular (equilateral) template and learns deformations:
|
| 96 |
+
|
| 97 |
+
$$
|
| 98 |
+
v_i^{(\text{deformed})} = v_i^{(\text{template})} + \alpha \cdot \Delta v_i
|
| 99 |
+
$$
|
| 100 |
+
|
| 101 |
+
Where:
|
| 102 |
+
- $v_i^{(\text{template})}$ = vertices of regular k-simplex
|
| 103 |
+
- $\alpha$ = deformation scale (BASE_DEFORM = 0.05)
|
| 104 |
+
- $\Delta v_i$ = learned offset from neural network
|
| 105 |
+
|
| 106 |
+
### Geometric Gating
|
| 107 |
+
|
| 108 |
+
Features are gated by geometric validity:
|
| 109 |
+
|
| 110 |
+
$$
|
| 111 |
+
\text{output} = \text{features} \odot \text{gate}(\text{geo}) \odot \sigma(\text{Vol}^2 \cdot 10^6)
|
| 112 |
+
$$
|
| 113 |
+
|
| 114 |
+
Where:
|
| 115 |
+
- $\text{gate}(\text{geo}) = \sigma(W \cdot [d^2 \| \text{Vol}^2])$
|
| 116 |
+
- The sigmoid on Vol² acts as a soft validity mask
|
| 117 |
+
- Invalid simplices (Vol² < 0) have their features suppressed
|
| 118 |
+
|
| 119 |
+
### Loss Function
|
| 120 |
+
|
| 121 |
+
$$
|
| 122 |
+
\mathcal{L} = \mathcal{L}_{CE} + \lambda \cdot \mathcal{L}_{validity}
|
| 123 |
+
$$
|
| 124 |
+
|
| 125 |
+
Where:
|
| 126 |
+
- $\mathcal{L}_{CE}$ = Cross-entropy for next-token prediction
|
| 127 |
+
- $\mathcal{L}_{validity} = \text{mean}(\text{ReLU}(-\text{Vol}^2))$ penalizes collapsed simplices
|
| 128 |
+
- $\lambda = 0.1$ (validity weight)
|
| 129 |
+
|
| 130 |
+
---
|
| 131 |
+
|
| 132 |
+
## Safe Deformation Analysis
|
| 133 |
+
|
| 134 |
+
Extensive testing via the K-Simplex Geometric Explorer revealed critical stability zones:
|
| 135 |
+
|
| 136 |
+
### Stability Zones by K-Depth
|
| 137 |
+
|
| 138 |
+
| Configuration | Differentiation Zone | Collapse Threshold |
|
| 139 |
+
|---------------|---------------------|-------------------|
|
| 140 |
+
| k=1-4, edim=16 | 0.15 - 0.35 | ~0.50 |
|
| 141 |
+
| k=1-4, edim=32 | 0.15 - 0.50 | >2.0 |
|
| 142 |
+
| k=1-6, edim=16 | 0.35 - 0.45 | ~0.50 |
|
| 143 |
+
| k=1-6, edim=32 | 0.25 - 0.60 | >2.0 |
|
| 144 |
+
|
| 145 |
+
### Key Findings
|
| 146 |
+
|
| 147 |
+
1. **Deformation Scale Safety**: BASE_DEFORM=0.05 is extremely conservative. The geometry can safely handle 10-40× more deformation.
|
| 148 |
+
|
| 149 |
+
2. **Embedding Dimension as Stability Buffer**:
|
| 150 |
+
```
|
| 151 |
+
edim / k_max = stability_ratio
|
| 152 |
+
|
| 153 |
+
ratio ≥ 8× → Very stable, deform up to 2.0
|
| 154 |
+
ratio ≥ 4× → Comfortable margin
|
| 155 |
+
ratio ≥ 2× → Tight but functional
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
3. **Vol² Behavior Under Deformation**:
|
| 159 |
+
- Low deform (0-0.15): Clear k-level hierarchy, Vol² decreases exponentially with k
|
| 160 |
+
- Medium deform (0.15-0.35): **Optimal zone** - distinct geometric signatures per k
|
| 161 |
+
- High deform (>0.5): Noise dominates, k-levels converge, geometric meaning lost
|
| 162 |
+
|
| 163 |
+
4. **Vol² Scaling**:
|
| 164 |
+
```
|
| 165 |
+
k=1: Vol² ~ 1e+0 (edge length squared)
|
| 166 |
+
k=2: Vol² ~ 1e-1 (triangle area squared)
|
| 167 |
+
k=3: Vol² ~ 1e-2 (tetrahedron volume squared)
|
| 168 |
+
k=4: Vol² ~ 1e-3 (5-cell hypervolume squared)
|
| 169 |
+
```
|
| 170 |
+
Exponential decay is expected and healthy.
|
| 171 |
+
|
| 172 |
+
### Recommended Production Settings
|
| 173 |
+
|
| 174 |
+
```python
|
| 175 |
+
# Conservative (proven)
|
| 176 |
+
BASE_DEFORM = 0.05
|
| 177 |
+
edim = 16
|
| 178 |
+
depth = 4 # k=1,2,3,4
|
| 179 |
+
|
| 180 |
+
# Aggressive (tested safe)
|
| 181 |
+
BASE_DEFORM = 0.15
|
| 182 |
+
edim = 32
|
| 183 |
+
depth = 4
|
| 184 |
+
|
| 185 |
+
# Experimental
|
| 186 |
+
BASE_DEFORM = learnable_per_k # Allow network to find optimal
|
| 187 |
+
edim = 2 * depth # Minimum viable
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
---
|
| 191 |
+
|
| 192 |
+
## Training Configuration
|
| 193 |
+
|
| 194 |
+
### Model Hyperparameters
|
| 195 |
+
|
| 196 |
+
```python
|
| 197 |
+
config = {
|
| 198 |
+
"vocab_size": 50257, # GPT-2 BPE tokenizer
|
| 199 |
+
"max_seq_len": 256,
|
| 200 |
+
"embed_dim": 384,
|
| 201 |
+
"depth": 4, # k=1,2,3,4
|
| 202 |
+
"edim": 16, # Vertex coordinate dimension
|
| 203 |
+
"feat_dim": 96, # Features per vertex
|
| 204 |
+
"hidden": 384,
|
| 205 |
+
"num_heads": 8,
|
| 206 |
+
"num_blocks": 8,
|
| 207 |
+
"dropout": 0.1,
|
| 208 |
+
}
|
| 209 |
+
```
|
| 210 |
+
|
| 211 |
+
### Training Hyperparameters
|
| 212 |
+
|
| 213 |
+
```python
|
| 214 |
+
training = {
|
| 215 |
+
"batch_size": 48,
|
| 216 |
+
"seq_len": 256,
|
| 217 |
+
"lr": 3e-4,
|
| 218 |
+
"weight_decay": 0.1,
|
| 219 |
+
"num_epochs": 50,
|
| 220 |
+
"grad_clip": 1.0,
|
| 221 |
+
"ce_weight": 1.0,
|
| 222 |
+
"validity_weight": 0.1,
|
| 223 |
+
"scheduler": "CosineAnnealingLR",
|
| 224 |
+
"stride": 128, # Non-overlapping sequences
|
| 225 |
+
}
|
| 226 |
+
```
|
| 227 |
+
|
| 228 |
+
---
|
| 229 |
+
|
| 230 |
+
## Results
|
| 231 |
+
|
| 232 |
+
### Training Progression
|
| 233 |
+
|
| 234 |
+
| Epoch | Train PPL | Val PPL | Status |
|
| 235 |
+
|-------|-----------|---------|--------|
|
| 236 |
+
| 1 | 492 | 299 | Learning |
|
| 237 |
+
| 5 | 77 | 132 | Improving |
|
| 238 |
+
| 8 | 44 | **114** | **Best** |
|
| 239 |
+
| 15 | 15 | 145 | Overfitting |
|
| 240 |
+
|
| 241 |
+
### Geometric Health
|
| 242 |
+
|
| 243 |
+
Throughout training:
|
| 244 |
+
- **Validity**: 100% at all k-levels
|
| 245 |
+
- **Vol² k=1**: ~0.92 (stable)
|
| 246 |
+
- **Vol² k=2**: ~0.16 (stable)
|
| 247 |
+
- **Vol² k=3**: ~0.03 (stable)
|
| 248 |
+
- **Vol² k=4**: ~0.001 (stable)
|
| 249 |
+
|
| 250 |
+
### Generation Quality
|
| 251 |
+
|
| 252 |
+
**Epoch 1:**
|
| 253 |
+
```
|
| 254 |
+
ROMEO: , If, and a head I am IAB, What,
|
| 255 |
+
```
|
| 256 |
+
|
| 257 |
+
**Epoch 15+:**
|
| 258 |
+
```
|
| 259 |
+
ROMEO: if thou swear'st the Duke of love of it.
|
| 260 |
+
MERCUTIO: Why, is it good.
|
| 261 |
+
ROMEO: And for the jest love that.
|
| 262 |
+
```
|
| 263 |
+
|
| 264 |
+
The model learns:
|
| 265 |
+
- Character names and dialogue structure
|
| 266 |
+
- Turn-taking conventions
|
| 267 |
+
- Shakespearean vocabulary and cadence
|
| 268 |
+
- Coherent multi-turn exchanges
|
| 269 |
+
|
| 270 |
+
---
|
| 271 |
+
|
| 272 |
+
## Geometric Dimensions Output
|
| 273 |
+
|
| 274 |
+
Each k-level contributes to the final representation:
|
| 275 |
+
|
| 276 |
+
| K | Geo Dim | Components | Info Content |
|
| 277 |
+
|---|---------|------------|--------------|
|
| 278 |
+
| 1 | 2 | 1 d² + 1 vol² | Edge metric |
|
| 279 |
+
| 2 | 4 | 3 d² + 1 vol² | Triangle shape |
|
| 280 |
+
| 3 | 7 | 6 d² + 1 vol² | Tetrahedron form |
|
| 281 |
+
| 4 | 11 | 10 d² + 1 vol² | 5-cell structure |
|
| 282 |
+
| **Total** | **24** | | Pure geometry |
|
| 283 |
+
|
| 284 |
+
With feat_dim=96: Output = 96 + 24 = 120 dims per k-level, ×4 k-levels = 480 total geometric dims per token.
|
| 285 |
+
|
| 286 |
+
---
|
| 287 |
+
|
| 288 |
+
## File Structure
|
| 289 |
+
|
| 290 |
+
```
|
| 291 |
+
AbstractPhil/ksimplex-llm-prototype/
|
| 292 |
+
├── README.md # This file
|
| 293 |
+
├── trainer.py # Training script
|
| 294 |
+
├── inference.py # Generation script
|
| 295 |
+
├── config.json # Model configuration
|
| 296 |
+
├── checkpoints/
|
| 297 |
+
│ ├── checkpoint_epoch_001.pt
|
| 298 |
+
│ ├── checkpoint_epoch_008.pt # Best val PPL
|
| 299 |
+
│ └── checkpoint_latest.pt
|
| 300 |
+
└── samples/
|
| 301 |
+
└── samples_epoch_*.json # Generated text samples
|
| 302 |
+
```
|
| 303 |
+
|
| 304 |
+
---
|
| 305 |
+
|
| 306 |
+
## Usage
|
| 307 |
+
|
| 308 |
+
### Inference
|
| 309 |
+
|
| 310 |
+
```python
|
| 311 |
+
from inference import load_model, generate
|
| 312 |
+
|
| 313 |
+
model, tokenizer = load_model("AbstractPhil/ksimplex-llm-prototype")
|
| 314 |
+
|
| 315 |
+
text = generate(
|
| 316 |
+
model,
|
| 317 |
+
tokenizer,
|
| 318 |
+
prompt="ROMEO: ",
|
| 319 |
+
max_tokens=100,
|
| 320 |
+
temperature=0.8,
|
| 321 |
+
top_k=50
|
| 322 |
+
)
|
| 323 |
+
print(text)
|
| 324 |
+
```
|
| 325 |
+
|
| 326 |
+
### Training
|
| 327 |
+
|
| 328 |
+
```bash
|
| 329 |
+
python trainer.py \
|
| 330 |
+
--data shakespeare.txt \
|
| 331 |
+
--epochs 50 \
|
| 332 |
+
--batch_size 48 \
|
| 333 |
+
--lr 3e-4
|
| 334 |
+
```
|
| 335 |
+
|
| 336 |
+
---
|
| 337 |
+
|
| 338 |
+
## Future Directions
|
| 339 |
+
|
| 340 |
+
### Planned Experiments
|
| 341 |
+
|
| 342 |
+
1. **Learnable Deformation Scale**: Per-k learnable α parameter
|
| 343 |
+
2. **Volume Consistency Loss**: Maintain k-level differentiation
|
| 344 |
+
```python
|
| 345 |
+
coherence_loss = -torch.std(torch.log(vol2_stack + 1e-10))
|
| 346 |
+
```
|
| 347 |
+
3. **K-Depth Ablation**: Test k=1,2,3 only (remove k=4 noise floor)
|
| 348 |
+
4. **Vol² Normalization**: Scale by k to equalize magnitudes
|
| 349 |
+
5. **Larger Data**: WikiText-103, OpenWebText
|
| 350 |
+
|
| 351 |
+
### Theoretical Questions
|
| 352 |
+
|
| 353 |
+
- Does the geometric structure provide better length generalization?
|
| 354 |
+
- Can we interpret k-level activations semantically?
|
| 355 |
+
- Does geometric validity correlate with generation quality?
|
| 356 |
+
- Can we prune k-levels without performance loss?
|
| 357 |
+
|
| 358 |
+
---
|
| 359 |
+
|
| 360 |
+
## Citation
|
| 361 |
+
|
| 362 |
+
```bibtex
|
| 363 |
+
@misc{ksimplex-llm-2026,
|
| 364 |
+
author = {AbstractPhil},
|
| 365 |
+
title = {K-Simplex Language Model: Geometric Autoregression with Cayley-Menger Validation},
|
| 366 |
+
year = {2026},
|
| 367 |
+
publisher = {HuggingFace},
|
| 368 |
+
url = {https://huggingface.co/AbstractPhil/ksimplex-llm-prototype}
|
| 369 |
+
}
|
| 370 |
+
```
|
| 371 |
+
|
| 372 |
+
---
|
| 373 |
+
|
| 374 |
+
## License
|
| 375 |
+
|
| 376 |
+
MIT License - Free to use, modify, and distribute.
|
| 377 |
+
|
| 378 |
+
---
|
| 379 |
+
|
| 380 |
+
## Acknowledgments
|
| 381 |
+
|
| 382 |
+
Built on the foundation of geometric deep learning research exploring k-simplex structures, pentachoron navigation, and Cayley-Menger determinant validation for neural network regularization.
|
| 383 |
+
|
| 384 |
+
*"The geometry is the representation."*
|