File size: 13,643 Bytes
9e7c0a4 1d34969 0db5475 1d34969 9e7c0a4 1d34969 8d25aef 1d34969 0db5475 1d34969 9e7c0a4 1d34969 9e7c0a4 1d34969 0db5475 1d34969 0db5475 1d34969 9e7c0a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 |
---
license: mit
---
# Flow Matching & Diffusion Prediction Types
## A Practical Guide to Sol, Lune, and Epsilon Prediction
---
## Overview
This document covers three distinct prediction paradigms used in diffusion and flow-matching models. Each was designed for different purposes and requires specific sampling procedures.
| Model | Prediction Type | What It Learned | Output Character |
|-------|----------------|-----------------|------------------|
| **Standard SD1.5** | Ξ΅ (epsilon/noise) | Remove noise | General purpose |
| **Sol** | v (velocity) via DDPM | Geometric structure | Flat silhouettes, mass placement |
| **Lune** | v (velocity) via flow | Texture and detail | Rich, detailed images |
---
SD15-Flow-Sol (velocity prediction epsilon converted):
https://huggingface.co/AbstractPhil/tinyflux-experts/resolve/main/inference_sd15_flow_sol.py

SD15-Flow-Lune (rectified flow shift=2):
https://huggingface.co/AbstractPhil/tinyflux-experts/resolve/main/inference_sd15_flow_lune.py

TinyFlux-Lailah
tinyflux is currently in training and planning and is not yet ready to be used for production capacity.
https://huggingface.co/AbstractPhil/tiny-flux-deep

## 1. Epsilon (Ξ΅) Prediction β Standard Diffusion
### Core Concept
> **"Predict the noise that was added"**
The model learns to identify and remove noise from corrupted images.
### The Formula (Simplified)
```
TRAINING:
x_noisy = β(Ξ±) * x_clean + β(1-Ξ±) * noise
β
Model predicts: Ξ΅Μ = "what noise was added?"
β
Loss = ||Ξ΅Μ - noise||Β²
SAMPLING:
Start with pure noise
Repeatedly ask: "what noise is in this?"
Subtract a fraction of predicted noise
Repeat until clean
```
### Reading the Math
- **Ξ± (alpha)**: "How much original image remains" (1 = all original, 0 = all noise)
- **β(1-Ξ±)**: "How much noise was mixed in"
- **Ξ΅**: The actual noise that was added
- **Ξ΅Μ**: Model's guess of what noise was added
### Training Process
```python
# Forward diffusion (corruption)
noise = torch.randn_like(x_clean)
Ξ± = scheduler.alphas_cumprod[t]
x_noisy = βΞ± * x_clean + β(1-Ξ±) * noise
# Model predicts noise
Ξ΅_pred = model(x_noisy, t)
# Loss: "Did you correctly identify the noise?"
loss = MSE(Ξ΅_pred, noise)
```
### Sampling Process
```python
# DDPM/DDIM sampling
for t in reversed(timesteps): # 999 β 0
Ξ΅_pred = model(x, t)
x = scheduler.step(Ξ΅_pred, t, x) # Removes predicted noise
```
### Utility & Behavior
- **Strength**: General-purpose image generation
- **Weakness**: No explicit understanding of image structure
- **Use case**: Standard text-to-image generation
---
## 2. Velocity (v) Prediction β Sol (DDPM Framework)
### Core Concept
> **"Predict the direction from noise to data"**
Sol predicts velocity but operates within the DDPM scheduler framework, requiring conversion from velocity to epsilon for sampling.
### The Formula (Simplified)
```
TRAINING:
x_t = Ξ± * x_clean + Ο * noise (same as DDPM)
v = Ξ± * noise - Ο * x_clean (velocity target)
β
Model predicts: vΜ = "which way is the image?"
β
Loss = ||vΜ - v||Β²
SAMPLING:
Convert velocity β epsilon
Use standard DDPM scheduler stepping
```
### Reading the Math
- **v (velocity)**: Direction vector in latent space
- **Ξ± (alpha)**: β(Ξ±_cumprod) β signal strength
- **Ο (sigma)**: β(1 - Ξ±_cumprod) β noise strength
- **The velocity formula**: `v = Ξ± * Ξ΅ - Ο * xβ`
- "Velocity is the signal-weighted noise minus noise-weighted data"
### Why Velocity in DDPM?
Sol was trained with David (the geometric assessor) providing loss weighting. This setup used:
- DDPM noise schedule for interpolation
- Velocity prediction for training target
- Knowledge distillation from a teacher
The result: Sol learned **geometric structure** rather than textures.
### Training Process (David-Weighted)
```python
# DDPM-style corruption
noise = torch.randn_like(latents)
t = torch.randint(0, 1000, (batch,))
Ξ± = sqrt(scheduler.alphas_cumprod[t])
Ο = sqrt(1 - scheduler.alphas_cumprod[t])
x_t = Ξ± * latents + Ο * noise
# Velocity target (NOT epsilon!)
v_target = Ξ± * noise - Ο * latents
# Model predicts velocity
v_pred = model(x_t, t)
# David assesses geometric quality β adjusts loss weights
loss_weights = david_assessor(features, t)
loss = weighted_MSE(v_pred, v_target, loss_weights)
```
### Sampling Process (CRITICAL: v β Ξ΅ conversion)
```python
# Must convert velocity to epsilon for DDPM scheduler
scheduler = DDPMScheduler(num_train_timesteps=1000)
for t in scheduler.timesteps: # 999, 966, 933, ... β 0
v_pred = model(x, t)
# Convert velocity β epsilon
Ξ± = sqrt(scheduler.alphas_cumprod[t])
Ο = sqrt(1 - scheduler.alphas_cumprod[t])
# Solve: v = Ξ±*Ξ΅ - Ο*xβ and x_t = Ξ±*xβ + Ο*Ξ΅
# Result: xβ = (Ξ±*x_t - Ο*v) / (Ξ±Β² + ΟΒ²)
# Ξ΅ = (x_t - Ξ±*xβ) / Ο
x0_hat = (Ξ± * x - Ο * v_pred) / (Ξ±Β² + ΟΒ²)
Ξ΅_hat = (x - Ξ± * x0_hat) / Ο
x = scheduler.step(Ξ΅_hat, t, x) # Standard DDPM step with epsilon
```
### Utility & Behavior
- **What Sol learned**: Platonic forms, silhouettes, mass distribution
- **Visual output**: Flat geometric shapes, correct spatial layout, no texture
- **Why this happened**: David rewarded geometric coherence, Sol optimized for clean David classification
- **Use case**: Structural guidance, composition anchoring, "what goes where"
### Sol's Unique Property
Sol never "collapsed" β it learned the **skeleton** of images:
- Castle prompt β Castle silhouette, horizon line, sky gradient
- Portrait prompt β Head oval, shoulder mass, figure-ground separation
- City prompt β Building masses, street perspective, light positions
This is the "WHAT before HOW" that most diffusion models skip.
---
## 3. Velocity (v) Prediction β Lune (Rectified Flow)
### Core Concept
> **"Predict the straight-line direction from noise to data"**
Lune uses true rectified flow matching where data travels in straight lines through latent space.
### The Formula (Simplified)
```
TRAINING:
x_t = Ο * noise + (1-Ο) * data (linear interpolation)
v = noise - data (constant velocity)
β
Model predicts: vΜ = "straight line to noise"
β
Loss = ||vΜ - v||Β²
SAMPLING:
Start at Ο=1 (noise)
Walk OPPOSITE to velocity (toward data)
End at Ο=0 (clean image)
```
### Reading the Math
- **Ο (sigma)**: Interpolation parameter (1 = noise, 0 = data)
- **x_t = ΟΒ·noise + (1-Ο)Β·data**: Linear blend between noise and data
- **v = noise - data**: The velocity is CONSTANT along the path
- **Shift function**: `Ο' = shiftΒ·Ο / (1 + (shift-1)Β·Ο)`
- Biases sampling toward cleaner images (spends more steps refining)
### Key Difference from Sol
| Aspect | Sol | Lune |
|--------|-----|------|
| Interpolation | DDPM (Ξ±, Ο from scheduler) | Linear (Ο, 1-Ο) |
| Velocity meaning | Complex (Ξ±Β·Ξ΅ - ΟΒ·xβ) | Simple (noise - data) |
| Sampling | Convert vβΞ΅, use scheduler | Direct Euler integration |
| Output | Geometric skeletons | Detailed images |
### Training Process
```python
# Linear interpolation (NOT DDPM schedule!)
noise = torch.randn_like(latents)
Ο = torch.rand(batch) # Random sigma in [0, 1]
# Apply shift during training
Ο_shifted = (shift * Ο) / (1 + (shift - 1) * Ο)
Ο = Ο_shifted.view(-1, 1, 1, 1)
x_t = Ο * noise + (1 - Ο) * latents
# Velocity target: direction FROM data TO noise
v_target = noise - latents
# Model predicts velocity
v_pred = model(x_t, Ο * 1000) # Timestep = Ο * 1000
loss = MSE(v_pred, v_target)
```
### Sampling Process (Direct Euler)
```python
# Start from pure noise (Ο = 1)
x = torch.randn(1, 4, 64, 64)
# Sigma schedule: 1 β 0 with shift
sigmas = torch.linspace(1, 0, steps + 1)
sigmas = shift_sigma(sigmas, shift=3.0)
for i in range(steps):
Ο = sigmas[i]
Ο_next = sigmas[i + 1]
dt = Ο - Ο_next # Positive (going from 1 toward 0)
timestep = Ο * 1000
v_pred = model(x, timestep)
# SUBTRACT velocity (v points toward noise, we go toward data)
x = x - v_pred * dt
# x is now clean image latent
```
### Why SUBTRACT the Velocity?
```
v = noise - data (points FROM data TO noise)
We want to go FROM noise TO data (opposite direction!)
So: x_new = x_current - v * dt
= x_current - (noise - data) * dt
= x_current + (data - noise) * dt β Moving toward data β
```
### Utility & Behavior
- **What Lune learned**: Rich textures, fine details, realistic rendering
- **Visual output**: Full detailed images with lighting, materials, depth
- **Training focus**: Portrait/pose data with caption augmentation
- **Use case**: High-quality image generation, detail refinement
---
## Comparison Summary
### Training Targets
```
EPSILON (Ξ΅): target = noise
"What random noise was added?"
VELOCITY (Sol): target = Ξ±Β·noise - ΟΒ·data
"What's the DDPM-weighted direction?"
VELOCITY (Lune): target = noise - data
"What's the straight-line direction?"
```
### Sampling Directions
```
EPSILON: x_new = scheduler.step(Ξ΅_pred, t, x)
Scheduler handles noise removal internally
VELOCITY (Sol): Convert v β Ξ΅, then scheduler.step(Ξ΅, t, x)
Must translate to epsilon for DDPM math
VELOCITY (Lune): x_new = x - v_pred * dt
Direct Euler integration, subtract velocity
```
### Visual Intuition
```
EPSILON:
"There's noise hiding the image"
"I'll predict and remove the noise layer by layer"
β General-purpose denoising
VELOCITY (Sol):
"I know which direction the image is"
"But I speak through DDPM's noise schedule"
β Learned structure, outputs skeletons
VELOCITY (Lune):
"Straight line from noise to image"
"I'll walk that line step by step"
β Learned detail, outputs rich images
```
---
## Practical Implementation Checklist
### For Epsilon Models (Standard SD1.5)
- [ ] Use DDPM/DDIM/Euler scheduler
- [ ] Pass timestep as integer [0, 999]
- [ ] Scheduler handles everything
### For Sol (Velocity + DDPM)
- [ ] Use DDPMScheduler
- [ ] Model outputs velocity, NOT epsilon
- [ ] Convert: `x0 = (Ξ±Β·x - ΟΒ·v) / (Ξ±Β² + ΟΒ²)`, then `Ξ΅ = (x - Ξ±Β·x0) / Ο`
- [ ] Call `scheduler.step(Ξ΅, t, x)`
- [ ] Expect geometric/structural output
### For Lune (Velocity + Flow)
- [ ] NO scheduler needed β direct Euler
- [ ] Sigma goes 1 β 0 (not 0 β 1!)
- [ ] Apply shift: `Ο' = shiftΒ·Ο / (1 + (shift-1)Β·Ο)`
- [ ] Timestep to model: `Ο * 1000`
- [ ] SUBTRACT velocity: `x = x - v * dt`
- [ ] Expect detailed textured output
---
## Why This Matters for TinyFlux
TinyFlux can leverage both experts:
1. **Sol (early timesteps)**: Provides geometric anchoring
- "Where should the castle be?"
- "What's the horizon line?"
- "How is mass distributed?"
2. **Lune (mid/late timesteps)**: Provides detail refinement
- "What texture is the stone?"
- "How does light fall?"
- "What color is the sky?"
By combining geometric structure (Sol) with textural detail (Lune), TinyFlux can achieve better composition AND quality than either alone.
---
## Quick Reference Card
```
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β PREDICTION TYPES β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β EPSILON (Ξ΅) β
β Train: target = noise β
β Sample: scheduler.step(Ξ΅_pred, t, x) β
β Output: General images β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β VELOCITY - SOL (DDPM framework) β
β Train: target = Ξ±Β·Ξ΅ - ΟΒ·xβ β
β Sample: vβΞ΅ conversion, then scheduler.step(Ξ΅, t, x) β
β Output: Geometric skeletons β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β VELOCITY - LUNE (Rectified Flow) β
β Train: target = noise - data β
β Sample: x = x - vΒ·dt (Euler, Ο: 1β0) β
β Output: Detailed textured images β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
```
---
*Document Version: 1.0*
*Last Updated: January 2026*
*Authors: AbstractPhil & Claude OPUS 4.5*
License: MIT |