alverciito
upload safetensors and refactor research files
dbd79bd
# - x - x - x - x - x - x - x - x - x - x - x - x - x - x - #
# #
# This file was created by: Alberto Palomo Alonso #
# Universidad de Alcalá - Escuela Politécnica Superior #
# #
# - x - x - x - x - x - x - x - x - x - x - x - x - x - x - #
# Import statements:
import torch
class MaskedBCELoss(torch.nn.Module):
"""
Binary Cross-Entropy loss with explicit masking support.
This loss function computes the binary cross-entropy over valid (non-padded)
elements only, as indicated by a boolean mask. It supports both logits and
probability inputs, and provides configurable reduction strategies.
Masking semantics can be adapted to match PyTorch-style padding conventions
or custom masking schemes.
"""
def __init__(
self,
reduction: str = 'mean',
valid_pad: bool = True,
eps: float = 1e-7,
logits: bool = True
):
"""
Initialize the masked binary cross-entropy loss.
Args:
reduction (str, optional): Reduction method applied over valid
elements. Must be either `'mean'` or `'sum'`. Defaults to `'mean'`.
valid_pad (bool, optional): Mask interpretation mode. If True,
`True` values in the mask indicate valid (non-padded) positions.
If False, `True` values indicate padded positions, following
PyTorch-style padding conventions. Defaults to True.
eps (float, optional): Small numerical constant used to clamp
probability inputs when `logits=False`. Defaults to 1e-7.
logits (bool, optional): Whether the input predictions are logits.
If True, `binary_cross_entropy_with_logits` is used; otherwise,
standard binary cross-entropy is applied. Defaults to True.
Raises:
ValueError: If an unsupported reduction mode is provided.
"""
super().__init__()
if reduction not in ['mean', 'sum']:
raise ValueError("[MASKED-BCE] Reduction must be 'mean' or 'sum'")
self.reduction = reduction
self.valid_pad = valid_pad
self.logits = logits
self.eps = eps
if logits:
self.loss = torch.nn.functional.binary_cross_entropy_with_logits
else:
self.loss = torch.nn.functional.binary_cross_entropy
def forward(
self,
x: torch.Tensor,
y: torch.Tensor,
mask: torch.Tensor
) -> torch.Tensor:
"""
Compute the masked binary cross-entropy loss.
Args:
x (torch.Tensor): Model predictions with shape (B, S). If
`logits=True`, values are interpreted as logits; otherwise,
as probabilities in [0, 1].
y (torch.Tensor): Ground-truth binary labels with shape (B, S).
mask (torch.Tensor): Boolean mask tensor with shape (B, S).
The interpretation of the mask depends on `valid_pad`.
If `valid_pad=True`, `True` indicates valid positions.
If `valid_pad=False`, `True` indicates padded positions.
Returns:
torch.Tensor: Scalar tensor containing the reduced loss value.
"""
# Determine valid positions:
if self.valid_pad:
valid_mask = mask
else:
valid_mask = torch.logical_not(mask)
# Numerical stability for probability inputs:
if not self.logits:
x = x.clamp(self.eps, 1.0 - self.eps)
# Element-wise BCE:
loss_per_token = self.loss(
x.float(),
y.float(),
reduction='none'
)
# Mask padded positions:
masked_loss = loss_per_token * valid_mask.float()
if self.reduction == 'mean':
denom = valid_mask.sum().clamp(min=1)
return masked_loss.sum() / denom
elif self.reduction == 'sum':
return masked_loss.sum()
else:
raise ValueError("[MASKED-BCE] Reduction must be 'mean' or 'sum'")
class WindowDiffLoss(torch.nn.Module):
"""
WindowDiff loss function for sequence-to-sequence models.
This loss function computes the difference between two sequences
using a sliding window approach, allowing for partial matches.
Why emphasize?
We want to equalize the following formula:
Being y a vector composed by 0 and 1 values where 1 is the positive class...
mean(y) = 0.5
This means that positive and negative classes are equally represented in the loss. However, we have unbalanced
data, so we want to emphasize the positive class in the loss calculation, so:
mean(y) != 0.5
Let k be a constant that compensates the imbalance, then we want to equalize the following formula:
mean(y * k) = 0.5
k * mean(y) = 0.5
k = 0.5 / mean(y)
k = 0.5 * len(y) / sum(y)
We call k the emphasis factor, and it is applied to the loss calculation to emphasize the positive class.
"""
def __init__(self, k: int = 1, normalize: bool = False, relaxed: bool = False):
"""
Initializes the WindowDiff loss function.
:param k: Window size.
:param normalize: If True, normalize the loss by the window size k.
:param relaxed: If True, use a relaxed version of the WindowDiff loss.
"""
super(WindowDiffLoss, self).__init__()
self.k = k
self.normalize = normalize
self.relaxed = relaxed
def forward(self, x: torch.Tensor, y: torch.Tensor, label_mask: torch.Tensor) -> torch.Tensor:
"""
Forward pass of the WindowDiff loss function.
:param x: Hypothesis logits or probabilities (B, S)
:param y: Ground truth binary sequence (B, S)
:param label_mask: Binary mask indicating valid labels (B, S)
:return: Scalar loss (float tensor).
"""
if self.relaxed:
return masked_window_diff_loss(x, y, label_mask, self.k, self.normalize)
else:
return original_window_diff(x, y, label_mask, self.k)
def masked_window_diff_loss(x: torch.Tensor, y: torch.Tensor, label_mask: torch.Tensor, k: int,
normalize: bool = False, emphasis: bool = False) -> torch.Tensor:
"""
Computes differentiable WindowDiff loss across a batch with per-sample variable-length candidate projections.
:param x: (B, S) predicted logits or probabilities
:param y: (B, S) ground truth binary labels
:param label_mask: (B, S) boolean mask with valid candidate positions
:param k: window size
:param normalize: whether to divide each diff by k
:param emphasis: whether to emphasize positive class
:return: scalar tensor loss
"""
x = x.float()
y = y.float()
total_loss = 0.0
valid_count = 0
B = x.size(0)
for b in range(B):
mask_b = label_mask[b].bool()
x_b = x[b][mask_b]
y_b = y[b][mask_b]
if x_b.numel() < k:
continue # not enough valid elements to form a window
if emphasis:
emph = 0.5 * len(y_b) / ((y_b == 1).float().sum() + 1e-6)
x_b = emph * x_b
y_b = emph * y_b
# build rolling window
x_win = x_b.unfold(0, k, 1).sum(dim=1)
y_win = y_b.unfold(0, k, 1).sum(dim=1)
diff = (x_win - y_win).abs()
if normalize:
diff = diff / k
total_loss += diff.mean()
valid_count += 1
if valid_count == 0:
return torch.tensor(0.0, device=x.device, requires_grad=True)
else:
return torch.tensor(total_loss / valid_count)
def original_window_diff(
hyp: torch.Tensor,
ref: torch.Tensor,
label_mask: torch.Tensor,
k: int
) -> torch.Tensor:
"""
WindowDiff original (no diferenciable), versión batch con máscara.
:param hyp: (B, S) hipótesis binaria {0,1}
:param ref: (B, S) referencia binaria {0,1}
:param label_mask: (B, S) máscara de posiciones válidas
:param k: tamaño de ventana
:return: escalar torch.Tensor
"""
hyp = hyp.int()
ref = ref.int()
total_errors = 0
total_windows = 0
B = hyp.size(0)
for b in range(B):
mask_b = label_mask[b].bool()
h = hyp[b][mask_b]
r = ref[b][mask_b]
n = h.numel()
if n < k:
continue
# Conteo por ventana
h_win = h.unfold(0, k, 1).sum(dim=1)
r_win = r.unfold(0, k, 1).sum(dim=1)
# Indicador de error (>0)
errors = (h_win != r_win).int()
total_errors += errors.sum().item()
total_windows += errors.numel()
if total_windows == 0:
return torch.tensor(0.0, device=hyp.device)
return torch.tensor(
total_errors / total_windows,
device=hyp.device,
dtype=torch.float
)
# - x - x - x - x - x - x - x - x - x - x - x - x - x - x - #
# END OF FILE #
# - x - x - x - x - x - x - x - x - x - x - x - x - x - x - #