gradient_clipping_experiment / extended_experiment.py
AmberLJC's picture
Upload extended_experiment.py with huggingface_hub
11c4193 verified
"""
Extended Gradient Clipping Experiment: Testing Physics-of-AI Predictions
This script tests two predictions from our Physics-of-AI analysis:
Prediction 2: Representation Collapse
- Hypothesis: Without clipping, the effective dimensionality of embeddings
should show sudden drops at rare sample positions.
- Test: Track PCA-based effective dimension throughout training.
Prediction 4: Rare Sample Learning
- Hypothesis: With clipping, the model should achieve better accuracy on rare samples.
- Test: Track per-class accuracy throughout training.
Based on Ziming Liu's Physics-of-AI framework and the unigram toy model analysis.
"""
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt
import random
from typing import Dict, List, Tuple
# Set seeds for reproducibility
SEED = 42
def set_seeds(seed=SEED):
"""Set all random seeds for reproducibility."""
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# =============================================================================
# 1. MODEL DEFINITION
# =============================================================================
class SimpleNextTokenModel(nn.Module):
"""
Simple model that takes a token index and predicts the next token.
Architecture: Embedding -> Linear
"""
def __init__(self, vocab_size=4, embedding_dim=16):
super().__init__()
self.embedding = nn.Embedding(vocab_size, embedding_dim)
self.linear = nn.Linear(embedding_dim, vocab_size)
def forward(self, x):
embedded = self.embedding(x)
logits = self.linear(embedded)
return logits
def get_embeddings(self):
"""Return the embedding matrix for analysis."""
return self.embedding.weight.data.clone()
# =============================================================================
# 2. EFFECTIVE DIMENSIONALITY (PCA-based)
# =============================================================================
def compute_effective_dimension(embedding_matrix: torch.Tensor) -> float:
"""
Compute effective dimensionality using PCA entropy.
Following Ziming Liu's approach from the Unigram toy model analysis:
"We define effective dimensionality via PCA entropy"
Effective dimension = exp(entropy of normalized eigenvalues)
Args:
embedding_matrix: (vocab_size, embedding_dim) tensor
Returns:
Effective dimension (float between 1 and embedding_dim)
"""
# Center the embeddings
centered = embedding_matrix - embedding_matrix.mean(dim=0, keepdim=True)
# Compute covariance matrix
cov = torch.mm(centered.T, centered) / (embedding_matrix.shape[0] - 1)
# Get eigenvalues
eigenvalues = torch.linalg.eigvalsh(cov)
eigenvalues = torch.clamp(eigenvalues, min=1e-10) # Avoid log(0)
# Normalize to get probability distribution
eigenvalues = eigenvalues / eigenvalues.sum()
# Compute entropy
entropy = -torch.sum(eigenvalues * torch.log(eigenvalues))
# Effective dimension = exp(entropy)
effective_dim = torch.exp(entropy).item()
return effective_dim
def compute_embedding_stats(embedding_matrix: torch.Tensor) -> Dict[str, float]:
"""
Compute various statistics about the embedding matrix.
Returns:
Dictionary with embedding statistics
"""
# Effective dimension
eff_dim = compute_effective_dimension(embedding_matrix)
# Embedding norms per token
norms = torch.norm(embedding_matrix, dim=1)
# Pairwise cosine similarities
normalized = embedding_matrix / (norms.unsqueeze(1) + 1e-10)
cosine_sim = torch.mm(normalized, normalized.T)
# Get off-diagonal elements (exclude self-similarity)
mask = ~torch.eye(cosine_sim.shape[0], dtype=bool)
off_diag = cosine_sim[mask]
return {
'effective_dim': eff_dim,
'mean_norm': norms.mean().item(),
'std_norm': norms.std().item(),
'mean_cosine_sim': off_diag.mean().item(),
'max_cosine_sim': off_diag.max().item(),
}
# =============================================================================
# 3. PER-CLASS ACCURACY
# =============================================================================
def compute_per_class_accuracy(model: nn.Module, inputs: torch.Tensor,
targets: torch.Tensor) -> Dict[int, float]:
"""
Compute accuracy for each target class.
Args:
model: The neural network
inputs: Input token indices
targets: Target token indices
Returns:
Dictionary mapping class index to accuracy
"""
model.eval()
with torch.no_grad():
logits = model(inputs)
predictions = logits.argmax(dim=1)
accuracies = {}
for class_idx in range(4): # Vocab size = 4
mask = targets == class_idx
if mask.sum() > 0:
correct = (predictions[mask] == targets[mask]).float().mean().item()
accuracies[class_idx] = correct
else:
accuracies[class_idx] = None # No samples of this class
return accuracies
# =============================================================================
# 4. DATASET CREATION
# =============================================================================
def create_imbalanced_dataset(n_samples=1000, n_rare=10, seed=SEED):
"""
Create a synthetic dataset with imbalanced targets.
"""
set_seeds(seed)
inputs = torch.randint(0, 4, (n_samples,))
targets = torch.zeros(n_samples, dtype=torch.long)
rare_indices = random.sample(range(n_samples), n_rare)
targets[rare_indices] = 1 # Set to 'B'
return inputs, targets, sorted(rare_indices)
# =============================================================================
# 5. EXTENDED TRAINING LOOP
# =============================================================================
def train_with_tracking(inputs: torch.Tensor, targets: torch.Tensor,
rare_indices: List[int], clip_grad: bool = False,
max_norm: float = 1.0, n_epochs: int = 3,
lr: float = 0.1, init_weights=None,
track_every: int = 10) -> Dict:
"""
Train with extended tracking of:
- Loss, gradient norm, weight norm (as before)
- Effective dimensionality of embeddings
- Per-class accuracy
Args:
inputs, targets: Training data
rare_indices: Indices of rare 'B' samples
clip_grad: Whether to apply gradient clipping
max_norm: Clipping threshold
n_epochs: Number of epochs
lr: Learning rate
init_weights: Initial model weights
track_every: Track embedding stats every N steps
Returns:
Dictionary with all tracked metrics
"""
set_seeds(SEED)
model = SimpleNextTokenModel(vocab_size=4, embedding_dim=16)
if init_weights:
model.load_state_dict({k: v.clone() for k, v in init_weights.items()})
optimizer = optim.SGD(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
# Tracking arrays
metrics = {
'losses': [],
'grad_norms': [],
'weight_norms': [],
'effective_dims': [],
'effective_dim_steps': [],
'class_accuracies': {0: [], 1: [], 2: [], 3: []}, # A, B, C, D
'accuracy_steps': [],
'embedding_stats': [],
}
mode = "WITH" if clip_grad else "WITHOUT"
print(f"\n{'='*60}")
print(f"Training {mode} gradient clipping (max_norm={max_norm})")
print(f"{'='*60}")
step = 0
n_samples = len(inputs)
for epoch in range(n_epochs):
model.train()
epoch_losses = []
for i in range(n_samples):
x = inputs[i:i+1]
y = targets[i:i+1]
optimizer.zero_grad()
logits = model(x)
loss = criterion(logits, y)
loss.backward()
# Compute gradient norm BEFORE clipping
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), float('inf'))
# Apply clipping if requested
if clip_grad:
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm)
optimizer.step()
# Record basic metrics
metrics['losses'].append(loss.item())
metrics['grad_norms'].append(grad_norm.item())
# Weight norm
total_norm = sum(p.data.norm(2).item() ** 2 for p in model.parameters()) ** 0.5
metrics['weight_norms'].append(total_norm)
epoch_losses.append(loss.item())
# Track embedding stats periodically OR at rare sample positions
is_rare_position = i in rare_indices
should_track = (step % track_every == 0) or is_rare_position
if should_track:
emb_matrix = model.get_embeddings()
emb_stats = compute_embedding_stats(emb_matrix)
metrics['effective_dims'].append(emb_stats['effective_dim'])
metrics['effective_dim_steps'].append(step)
metrics['embedding_stats'].append(emb_stats)
# Per-class accuracy
class_acc = compute_per_class_accuracy(model, inputs, targets)
for cls_idx in range(4):
if class_acc[cls_idx] is not None:
metrics['class_accuracies'][cls_idx].append(class_acc[cls_idx])
else:
metrics['class_accuracies'][cls_idx].append(0.0)
metrics['accuracy_steps'].append(step)
step += 1
avg_loss = np.mean(epoch_losses)
# End of epoch: compute full accuracy
class_acc = compute_per_class_accuracy(model, inputs, targets)
print(f"Epoch {epoch+1}/{n_epochs}: Avg Loss={avg_loss:.4f}")
b_acc = f"{class_acc[1]:.3f}" if class_acc[1] is not None else "N/A"
print(f" Class Accuracies: A={class_acc[0]:.3f}, B={b_acc}")
eff_dim = compute_effective_dimension(model.get_embeddings())
print(f" Effective Dimension: {eff_dim:.3f}")
return metrics
# =============================================================================
# 6. PLOTTING FUNCTIONS
# =============================================================================
def plot_effective_dimension_comparison(metrics_no_clip: Dict, metrics_with_clip: Dict,
rare_indices: List[int], filename: str,
n_samples: int = 1000):
"""
Plot effective dimensionality comparison.
This tests Prediction 2: Without clipping, effective dimensionality
should show sudden drops at rare sample positions.
"""
fig, axes = plt.subplots(2, 1, figsize=(14, 10))
# Plot 1: Without Clipping
ax1 = axes[0]
steps_no = metrics_no_clip['effective_dim_steps']
dims_no = metrics_no_clip['effective_dims']
ax1.plot(steps_no, dims_no, 'b-', linewidth=1.5, marker='o', markersize=3, alpha=0.7)
ax1.set_ylabel('Effective Dimension', fontsize=12)
ax1.set_title('WITHOUT Gradient Clipping - Embedding Effective Dimensionality',
fontsize=13, fontweight='bold', color='red')
ax1.grid(True, alpha=0.3)
ax1.set_ylim([0, 16]) # Max is embedding_dim=16
# Mark rare sample positions
n_epochs = len(metrics_no_clip['losses']) // n_samples
for epoch in range(n_epochs):
for idx in rare_indices:
step = epoch * n_samples + idx
ax1.axvline(x=step, color='red', alpha=0.3, linewidth=1)
# Add annotation
ax1.axvline(x=-100, color='red', alpha=0.5, linewidth=2, label="Rare 'B' samples")
ax1.legend(loc='upper right')
# Plot 2: With Clipping
ax2 = axes[1]
steps_with = metrics_with_clip['effective_dim_steps']
dims_with = metrics_with_clip['effective_dims']
ax2.plot(steps_with, dims_with, 'g-', linewidth=1.5, marker='o', markersize=3, alpha=0.7)
ax2.set_ylabel('Effective Dimension', fontsize=12)
ax2.set_xlabel('Training Step', fontsize=12)
ax2.set_title('WITH Gradient Clipping - Embedding Effective Dimensionality',
fontsize=13, fontweight='bold', color='green')
ax2.grid(True, alpha=0.3)
ax2.set_ylim([0, 16])
for epoch in range(n_epochs):
for idx in rare_indices:
step = epoch * n_samples + idx
ax2.axvline(x=step, color='red', alpha=0.3, linewidth=1)
ax2.axvline(x=-100, color='red', alpha=0.5, linewidth=2, label="Rare 'B' samples")
ax2.legend(loc='upper right')
fig.suptitle('Prediction 2: Representation Collapse Test\n'
'(Hypothesis: Without clipping, effective dim drops at rare samples)',
fontsize=14, fontweight='bold', y=1.02)
plt.tight_layout()
plt.savefig(filename, dpi=150, bbox_inches='tight')
plt.close()
print(f"Effective dimension plot saved to: {filename}")
def plot_class_accuracy_comparison(metrics_no_clip: Dict, metrics_with_clip: Dict,
filename: str):
"""
Plot per-class accuracy comparison.
This tests Prediction 4: With clipping, the model should achieve
better accuracy on rare samples (class 'B').
"""
fig, axes = plt.subplots(2, 2, figsize=(14, 10))
# Class A (common) - Without vs With
ax_a = axes[0, 0]
steps_no = metrics_no_clip['accuracy_steps']
steps_with = metrics_with_clip['accuracy_steps']
ax_a.plot(steps_no, metrics_no_clip['class_accuracies'][0], 'r-',
linewidth=1.5, alpha=0.7, label='Without Clipping')
ax_a.plot(steps_with, metrics_with_clip['class_accuracies'][0], 'g-',
linewidth=1.5, alpha=0.7, label='With Clipping')
ax_a.set_ylabel('Accuracy', fontsize=11)
ax_a.set_title("Class 'A' (Common - 990 samples)", fontsize=12, fontweight='bold')
ax_a.legend()
ax_a.grid(True, alpha=0.3)
ax_a.set_ylim([0, 1.05])
# Class B (rare) - Without vs With
ax_b = axes[0, 1]
ax_b.plot(steps_no, metrics_no_clip['class_accuracies'][1], 'r-',
linewidth=1.5, alpha=0.7, label='Without Clipping')
ax_b.plot(steps_with, metrics_with_clip['class_accuracies'][1], 'g-',
linewidth=1.5, alpha=0.7, label='With Clipping')
ax_b.set_ylabel('Accuracy', fontsize=11)
ax_b.set_title("Class 'B' (Rare - 10 samples) ⭐ KEY PREDICTION",
fontsize=12, fontweight='bold', color='purple')
ax_b.legend()
ax_b.grid(True, alpha=0.3)
ax_b.set_ylim([0, 1.05])
# Accuracy difference (With - Without) for rare class
ax_diff = axes[1, 0]
acc_b_no = np.array(metrics_no_clip['class_accuracies'][1])
acc_b_with = np.array(metrics_with_clip['class_accuracies'][1])
min_len = min(len(acc_b_no), len(acc_b_with))
diff = acc_b_with[:min_len] - acc_b_no[:min_len]
colors = ['green' if d >= 0 else 'red' for d in diff]
ax_diff.bar(steps_no[:min_len], diff, color=colors, alpha=0.7, width=8)
ax_diff.axhline(y=0, color='black', linestyle='-', linewidth=1)
ax_diff.set_ylabel('Accuracy Difference\n(With Clip - Without Clip)', fontsize=11)
ax_diff.set_xlabel('Training Step', fontsize=11)
ax_diff.set_title("Rare Class 'B': Clipping Benefit", fontsize=12, fontweight='bold')
ax_diff.grid(True, alpha=0.3)
# Summary statistics
ax_summary = axes[1, 1]
ax_summary.axis('off')
# Compute final accuracies
final_acc_a_no = metrics_no_clip['class_accuracies'][0][-1]
final_acc_a_with = metrics_with_clip['class_accuracies'][0][-1]
final_acc_b_no = metrics_no_clip['class_accuracies'][1][-1]
final_acc_b_with = metrics_with_clip['class_accuracies'][1][-1]
summary_text = f"""
PREDICTION 4 TEST RESULTS
═══════════════════════════════════════
Hypothesis: With clipping, the model should
achieve better accuracy on rare samples.
FINAL ACCURACIES:
─────────────────────────────────────────
Class 'A' (Common):
Without Clipping: {final_acc_a_no:.1%}
With Clipping: {final_acc_a_with:.1%}
Difference: {final_acc_a_with - final_acc_a_no:+.1%}
Class 'B' (Rare):
Without Clipping: {final_acc_b_no:.1%}
With Clipping: {final_acc_b_with:.1%}
Difference: {final_acc_b_with - final_acc_b_no:+.1%}
─────────────────────────────────────────
VERDICT: {'✅ PREDICTION SUPPORTED' if final_acc_b_with >= final_acc_b_no else '❌ PREDICTION NOT SUPPORTED'}
(Clipping {'improves' if final_acc_b_with > final_acc_b_no else 'does not improve'} rare class accuracy)
"""
ax_summary.text(0.1, 0.5, summary_text, transform=ax_summary.transAxes,
fontsize=11, verticalalignment='center', fontfamily='monospace',
bbox=dict(boxstyle='round', facecolor='lightyellow', alpha=0.8))
fig.suptitle('Prediction 4: Rare Sample Learning Test\n'
'(Hypothesis: Clipping improves accuracy on rare samples)',
fontsize=14, fontweight='bold', y=1.02)
plt.tight_layout()
plt.savefig(filename, dpi=150, bbox_inches='tight')
plt.close()
print(f"Class accuracy plot saved to: {filename}")
def plot_combined_analysis(metrics_no_clip: Dict, metrics_with_clip: Dict,
rare_indices: List[int], filename: str,
n_samples: int = 1000):
"""
Create a comprehensive 6-panel analysis plot.
"""
fig = plt.figure(figsize=(18, 14))
# Create grid
gs = fig.add_gridspec(3, 2, hspace=0.3, wspace=0.25)
n_epochs = len(metrics_no_clip['losses']) // n_samples
# Row 1: Effective Dimension
ax1 = fig.add_subplot(gs[0, 0])
ax2 = fig.add_subplot(gs[0, 1])
# Without clipping
ax1.plot(metrics_no_clip['effective_dim_steps'], metrics_no_clip['effective_dims'],
'b-', linewidth=1.5, marker='o', markersize=2, alpha=0.7)
ax1.set_ylabel('Effective Dimension', fontsize=11)
ax1.set_title('Effective Dim - WITHOUT Clipping', fontsize=12, fontweight='bold', color='red')
ax1.grid(True, alpha=0.3)
ax1.set_ylim([0, 16])
for epoch in range(n_epochs):
for idx in rare_indices:
ax1.axvline(x=epoch * n_samples + idx, color='red', alpha=0.2, linewidth=1)
# With clipping
ax2.plot(metrics_with_clip['effective_dim_steps'], metrics_with_clip['effective_dims'],
'g-', linewidth=1.5, marker='o', markersize=2, alpha=0.7)
ax2.set_title('Effective Dim - WITH Clipping', fontsize=12, fontweight='bold', color='green')
ax2.grid(True, alpha=0.3)
ax2.set_ylim([0, 16])
for epoch in range(n_epochs):
for idx in rare_indices:
ax2.axvline(x=epoch * n_samples + idx, color='red', alpha=0.2, linewidth=1)
# Row 2: Class Accuracies
ax3 = fig.add_subplot(gs[1, 0])
ax4 = fig.add_subplot(gs[1, 1])
# Common class A
ax3.plot(metrics_no_clip['accuracy_steps'], metrics_no_clip['class_accuracies'][0],
'r-', linewidth=1.5, alpha=0.7, label='Without Clip')
ax3.plot(metrics_with_clip['accuracy_steps'], metrics_with_clip['class_accuracies'][0],
'g-', linewidth=1.5, alpha=0.7, label='With Clip')
ax3.set_ylabel('Accuracy', fontsize=11)
ax3.set_title("Common Class 'A' Accuracy", fontsize=12, fontweight='bold')
ax3.legend()
ax3.grid(True, alpha=0.3)
ax3.set_ylim([0, 1.05])
# Rare class B
ax4.plot(metrics_no_clip['accuracy_steps'], metrics_no_clip['class_accuracies'][1],
'r-', linewidth=1.5, alpha=0.7, label='Without Clip')
ax4.plot(metrics_with_clip['accuracy_steps'], metrics_with_clip['class_accuracies'][1],
'g-', linewidth=1.5, alpha=0.7, label='With Clip')
ax4.set_title("Rare Class 'B' Accuracy ⭐", fontsize=12, fontweight='bold', color='purple')
ax4.legend()
ax4.grid(True, alpha=0.3)
ax4.set_ylim([0, 1.05])
# Row 3: Gradient Norms and Weight Norms
ax5 = fig.add_subplot(gs[2, 0])
ax6 = fig.add_subplot(gs[2, 1])
steps = range(len(metrics_no_clip['grad_norms']))
# Gradient norms
ax5.plot(steps, metrics_no_clip['grad_norms'], 'r-', alpha=0.5, linewidth=0.5, label='Without Clip')
ax5.plot(steps, metrics_with_clip['grad_norms'], 'g-', alpha=0.5, linewidth=0.5, label='With Clip')
ax5.axhline(y=1.0, color='black', linestyle='--', linewidth=2, label='Clip threshold')
ax5.set_ylabel('Gradient Norm', fontsize=11)
ax5.set_xlabel('Training Step', fontsize=11)
ax5.set_title('Gradient Norms Comparison', fontsize=12, fontweight='bold')
ax5.legend()
ax5.grid(True, alpha=0.3)
# Weight norms
ax6.plot(steps, metrics_no_clip['weight_norms'], 'r-', alpha=0.7, linewidth=1, label='Without Clip')
ax6.plot(steps, metrics_with_clip['weight_norms'], 'g-', alpha=0.7, linewidth=1, label='With Clip')
ax6.set_xlabel('Training Step', fontsize=11)
ax6.set_title('Weight Norms Comparison', fontsize=12, fontweight='bold')
ax6.legend()
ax6.grid(True, alpha=0.3)
fig.suptitle('Extended Gradient Clipping Analysis: Testing Physics-of-AI Predictions\n'
'(Red vertical lines = rare sample positions)',
fontsize=14, fontweight='bold', y=1.01)
plt.savefig(filename, dpi=150, bbox_inches='tight')
plt.close()
print(f"Combined analysis plot saved to: {filename}")
# =============================================================================
# 7. MAIN EXECUTION
# =============================================================================
def main():
print("="*70)
print("EXTENDED GRADIENT CLIPPING EXPERIMENT")
print("Testing Physics-of-AI Predictions")
print("="*70)
# Create dataset
inputs, targets, rare_indices = create_imbalanced_dataset(n_samples=1000, n_rare=10, seed=SEED)
print(f"\nDataset created:")
print(f" Total samples: {len(inputs)}")
print(f" Target 'A' (0): {(targets == 0).sum().item()}")
print(f" Target 'B' (1): {(targets == 1).sum().item()}")
print(f" Rare 'B' indices: {rare_indices}")
# Get initial weights
set_seeds(SEED)
init_model = SimpleNextTokenModel(vocab_size=4, embedding_dim=16)
init_weights = {name: param.clone() for name, param in init_model.state_dict().items()}
# Initial effective dimension
init_eff_dim = compute_effective_dimension(init_model.get_embeddings())
print(f"\nInitial embedding effective dimension: {init_eff_dim:.3f}")
# Run training WITHOUT gradient clipping
metrics_no_clip = train_with_tracking(
inputs, targets, rare_indices,
clip_grad=False, n_epochs=3, lr=0.1,
init_weights=init_weights, track_every=5
)
# Run training WITH gradient clipping
metrics_with_clip = train_with_tracking(
inputs, targets, rare_indices,
clip_grad=True, max_norm=1.0, n_epochs=3, lr=0.1,
init_weights=init_weights, track_every=5
)
# Generate plots
print("\n" + "="*70)
print("GENERATING ANALYSIS PLOTS")
print("="*70)
plot_effective_dimension_comparison(
metrics_no_clip, metrics_with_clip, rare_indices,
"effective_dimension_comparison.png"
)
plot_class_accuracy_comparison(
metrics_no_clip, metrics_with_clip,
"class_accuracy_comparison.png"
)
plot_combined_analysis(
metrics_no_clip, metrics_with_clip, rare_indices,
"combined_analysis.png"
)
# Print summary
print("\n" + "="*70)
print("PREDICTION TEST RESULTS")
print("="*70)
# Prediction 2: Representation Collapse
print("\n📊 PREDICTION 2: Representation Collapse")
print("-" * 50)
dims_no = metrics_no_clip['effective_dims']
dims_with = metrics_with_clip['effective_dims']
print(f"Effective Dimension Statistics:")
print(f" WITHOUT Clipping:")
print(f" Initial: {dims_no[0]:.3f}")
print(f" Final: {dims_no[-1]:.3f}")
print(f" Min: {min(dims_no):.3f}")
print(f" Max: {max(dims_no):.3f}")
print(f" Std: {np.std(dims_no):.3f}")
print(f" WITH Clipping:")
print(f" Initial: {dims_with[0]:.3f}")
print(f" Final: {dims_with[-1]:.3f}")
print(f" Min: {min(dims_with):.3f}")
print(f" Max: {max(dims_with):.3f}")
print(f" Std: {np.std(dims_with):.3f}")
# Check if without clipping has more variance (indicating sudden drops)
collapse_supported = np.std(dims_no) > np.std(dims_with)
print(f"\n Verdict: {'✅ SUPPORTED' if collapse_supported else '❌ NOT SUPPORTED'}")
print(f" (Without clipping has {'higher' if collapse_supported else 'lower'} variance in effective dim)")
# Prediction 4: Rare Sample Learning
print("\n📊 PREDICTION 4: Rare Sample Learning")
print("-" * 50)
final_acc_b_no = metrics_no_clip['class_accuracies'][1][-1]
final_acc_b_with = metrics_with_clip['class_accuracies'][1][-1]
print(f"Final Rare Class 'B' Accuracy:")
print(f" WITHOUT Clipping: {final_acc_b_no:.1%}")
print(f" WITH Clipping: {final_acc_b_with:.1%}")
print(f" Difference: {final_acc_b_with - final_acc_b_no:+.1%}")
rare_learning_supported = final_acc_b_with >= final_acc_b_no
print(f"\n Verdict: {'✅ SUPPORTED' if rare_learning_supported else '❌ NOT SUPPORTED'}")
# Return results for further analysis
return {
'metrics_no_clip': metrics_no_clip,
'metrics_with_clip': metrics_with_clip,
'rare_indices': rare_indices,
'prediction_2_supported': collapse_supported,
'prediction_4_supported': rare_learning_supported,
}
if __name__ == "__main__":
results = main()
print("\n" + "="*70)
print("EXPERIMENT COMPLETE!")
print("="*70)