File size: 17,788 Bytes
eb31f6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
"""
PlainMLP vs ResMLP Comparison on Distant Identity Task (Final Version)
This experiment demonstrates the vanishing gradient problem in deep networks
and how residual connections solve it.
Key Design Choices:
1. PlainMLP: Standard x = ReLU(Linear(x)) - suffers from vanishing gradients
2. ResMLP: x = x + ReLU(Linear(x)) with zero-initialized bias and small weight scale
- This allows the network to start as near-identity and learn deviations
- Gradients can flow through the skip connection even when residual branch is small
The "Distant Identity" task (Y=X) is particularly revealing because:
- ResMLP can trivially solve it by zeroing the residual branch (identity shortcut)
- PlainMLP must learn a complex function composition to approximate identity
- With ReLU, PlainMLP can never perfectly learn identity (negative values are zeroed)
"""
import torch
import torch.nn as nn
import numpy as np
import matplotlib.pyplot as plt
from typing import Dict, List, Tuple
import json
import os
# Set random seeds for reproducibility
torch.manual_seed(42)
np.random.seed(42)
# Configuration
NUM_LAYERS = 20
HIDDEN_DIM = 64
NUM_SAMPLES = 1024
TRAINING_STEPS = 500
LEARNING_RATE = 1e-3
BATCH_SIZE = 64
print(f"[Config] Layers: {NUM_LAYERS}, Hidden Dim: {HIDDEN_DIM}")
print(f"[Config] Samples: {NUM_SAMPLES}, Steps: {TRAINING_STEPS}, LR: {LEARNING_RATE}")
class PlainMLP(nn.Module):
"""Plain MLP: x = ReLU(Linear(x)) for each layer
This architecture suffers from:
1. Vanishing gradients - gradients must flow through all layers multiplicatively
2. Information loss - ReLU zeros negative values at each layer
3. Complex optimization - must learn exact function composition for identity
"""
def __init__(self, dim: int, num_layers: int):
super().__init__()
self.layers = nn.ModuleList()
for _ in range(num_layers):
layer = nn.Linear(dim, dim)
# Kaiming He initialization
nn.init.kaiming_normal_(layer.weight, mode='fan_in', nonlinearity='relu')
nn.init.zeros_(layer.bias)
self.layers.append(layer)
self.activation = nn.ReLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
for layer in self.layers:
x = self.activation(layer(x))
return x
class ResMLP(nn.Module):
"""Residual MLP: x = x + ReLU(Linear(x)) for each layer
Key advantages:
1. Identity shortcut - gradients flow directly to early layers via skip connection
2. Residual learning - network learns deviation from identity, not full mapping
3. For identity task - optimal solution is to zero the residual branch
Uses small weight initialization (scaled by 1/sqrt(num_layers)) to:
- Start near-identity behavior
- Prevent activation explosion
- Allow gradual learning of residuals
"""
def __init__(self, dim: int, num_layers: int):
super().__init__()
self.layers = nn.ModuleList()
self.num_layers = num_layers
for _ in range(num_layers):
layer = nn.Linear(dim, dim)
# Small initialization for residual branch
# This ensures the network starts close to identity
nn.init.kaiming_normal_(layer.weight, mode='fan_in', nonlinearity='relu')
layer.weight.data *= 1.0 / np.sqrt(num_layers) # Scale down weights
nn.init.zeros_(layer.bias)
self.layers.append(layer)
self.activation = nn.ReLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
for layer in self.layers:
x = x + self.activation(layer(x)) # Residual connection
return x
def generate_identity_data(num_samples: int, dim: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Generate synthetic data where Y = X, with X ~ U(-1, 1)"""
X = torch.empty(num_samples, dim).uniform_(-1, 1)
Y = X.clone()
return X, Y
def train_model(model: nn.Module, X: torch.Tensor, Y: torch.Tensor,
steps: int, lr: float, batch_size: int) -> List[float]:
"""Train model and record loss at each step"""
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
criterion = nn.MSELoss()
losses = []
num_samples = X.shape[0]
for step in range(steps):
# Random batch sampling
indices = torch.randint(0, num_samples, (batch_size,))
batch_x = X[indices]
batch_y = Y[indices]
# Forward pass
optimizer.zero_grad()
output = model(batch_x)
loss = criterion(output, batch_y)
# Backward pass
loss.backward()
optimizer.step()
losses.append(loss.item())
if step % 100 == 0:
print(f" Step {step}/{steps}, Loss: {loss.item():.6f}")
return losses
class ActivationGradientHook:
"""Hook to capture activations and gradients at each layer"""
def __init__(self):
self.activations: List[torch.Tensor] = []
self.gradients: List[torch.Tensor] = []
self.handles = []
def register_hooks(self, model: nn.Module):
"""Register forward and backward hooks on each layer"""
for layer in model.layers:
handle_fwd = layer.register_forward_hook(self._forward_hook)
handle_bwd = layer.register_full_backward_hook(self._backward_hook)
self.handles.extend([handle_fwd, handle_bwd])
def _forward_hook(self, module, input, output):
self.activations.append(output.detach().clone())
def _backward_hook(self, module, grad_input, grad_output):
self.gradients.append(grad_output[0].detach().clone())
def clear(self):
self.activations = []
self.gradients = []
def remove_hooks(self):
for handle in self.handles:
handle.remove()
self.handles = []
def get_activation_stats(self) -> Tuple[List[float], List[float]]:
"""Get mean and std of activations for each layer"""
means = [act.mean().item() for act in self.activations]
stds = [act.std().item() for act in self.activations]
return means, stds
def get_gradient_norms(self) -> List[float]:
"""Get L2 norm of gradients for each layer (in forward order)"""
norms = [grad.norm(2).item() for grad in reversed(self.gradients)]
return norms
def analyze_final_state(model: nn.Module, dim: int, batch_size: int = 64) -> Dict:
"""Perform forward/backward pass and capture activation/gradient stats"""
hook = ActivationGradientHook()
hook.register_hooks(model)
# Generate new random batch
X_test = torch.empty(batch_size, dim).uniform_(-1, 1)
Y_test = X_test.clone()
# Forward pass
model.zero_grad()
output = model(X_test)
loss = nn.MSELoss()(output, Y_test)
# Backward pass
loss.backward()
# Get statistics
act_means, act_stds = hook.get_activation_stats()
grad_norms = hook.get_gradient_norms()
hook.remove_hooks()
return {
'activation_means': act_means,
'activation_stds': act_stds,
'gradient_norms': grad_norms,
'final_loss': loss.item()
}
def plot_training_loss(plain_losses: List[float], res_losses: List[float], save_path: str):
"""Plot training loss curves for both models"""
fig, ax = plt.subplots(figsize=(10, 6))
steps = range(len(plain_losses))
ax.plot(steps, plain_losses, label='PlainMLP (20 layers)', color='#e74c3c',
alpha=0.8, linewidth=2)
ax.plot(steps, res_losses, label='ResMLP (20 layers)', color='#3498db',
alpha=0.8, linewidth=2)
ax.set_xlabel('Training Steps', fontsize=12)
ax.set_ylabel('MSE Loss', fontsize=12)
ax.set_title('Training Loss: PlainMLP vs ResMLP on Identity Task (Y = X)', fontsize=14)
ax.legend(fontsize=11, loc='upper right')
ax.grid(True, alpha=0.3)
ax.set_yscale('log')
# Add final loss annotations
final_plain = plain_losses[-1]
final_res = res_losses[-1]
# Text box with final results
textstr = f'Final Loss:\n PlainMLP: {final_plain:.4f}\n ResMLP: {final_res:.4f}\n Improvement: {final_plain/final_res:.1f}x'
props = dict(boxstyle='round', facecolor='wheat', alpha=0.8)
ax.text(0.02, 0.02, textstr, transform=ax.transAxes, fontsize=10,
verticalalignment='bottom', bbox=props)
plt.tight_layout()
plt.savefig(save_path, dpi=150, bbox_inches='tight')
plt.close()
print(f"[Plot] Saved training loss plot to {save_path}")
def plot_gradient_magnitudes(plain_grads: List[float], res_grads: List[float], save_path: str):
"""Plot gradient magnitude vs layer depth"""
fig, ax = plt.subplots(figsize=(10, 6))
layers = range(1, len(plain_grads) + 1)
ax.plot(layers, plain_grads, 'o-', label='PlainMLP', color='#e74c3c',
markersize=8, linewidth=2, markeredgecolor='white', markeredgewidth=1)
ax.plot(layers, res_grads, 's-', label='ResMLP', color='#3498db',
markersize=8, linewidth=2, markeredgecolor='white', markeredgewidth=1)
ax.set_xlabel('Layer Depth (1 = first layer, 20 = last layer)', fontsize=12)
ax.set_ylabel('Gradient L2 Norm (log scale)', fontsize=12)
ax.set_title('Gradient Magnitude vs Layer Depth (After 500 Training Steps)', fontsize=14)
ax.legend(fontsize=11)
ax.grid(True, alpha=0.3)
ax.set_yscale('log')
# Highlight the gradient difference
ax.fill_between(layers, plain_grads, res_grads, alpha=0.15, color='gray')
# Add annotation about gradient flow
ax.annotate('Gradients flow more\nuniformly in ResMLP',
xy=(10, res_grads[9]), xytext=(5, res_grads[9]*5),
fontsize=10, color='#3498db',
arrowprops=dict(arrowstyle='->', color='#3498db', alpha=0.7))
plt.tight_layout()
plt.savefig(save_path, dpi=150, bbox_inches='tight')
plt.close()
print(f"[Plot] Saved gradient magnitude plot to {save_path}")
def plot_activation_means(plain_means: List[float], res_means: List[float], save_path: str):
"""Plot activation mean vs layer depth"""
fig, ax = plt.subplots(figsize=(10, 6))
layers = range(1, len(plain_means) + 1)
ax.plot(layers, plain_means, 'o-', label='PlainMLP', color='#e74c3c',
markersize=8, linewidth=2, markeredgecolor='white', markeredgewidth=1)
ax.plot(layers, res_means, 's-', label='ResMLP', color='#3498db',
markersize=8, linewidth=2, markeredgecolor='white', markeredgewidth=1)
ax.axhline(y=0, color='gray', linestyle='--', alpha=0.5, linewidth=1)
ax.set_xlabel('Layer Depth', fontsize=12)
ax.set_ylabel('Activation Mean', fontsize=12)
ax.set_title('Activation Mean vs Layer Depth (After Training)', fontsize=14)
ax.legend(fontsize=11)
ax.grid(True, alpha=0.3)
plt.tight_layout()
plt.savefig(save_path, dpi=150, bbox_inches='tight')
plt.close()
print(f"[Plot] Saved activation mean plot to {save_path}")
def plot_activation_stds(plain_stds: List[float], res_stds: List[float], save_path: str):
"""Plot activation std vs layer depth"""
fig, ax = plt.subplots(figsize=(10, 6))
layers = range(1, len(plain_stds) + 1)
ax.plot(layers, plain_stds, 'o-', label='PlainMLP', color='#e74c3c',
markersize=8, linewidth=2, markeredgecolor='white', markeredgewidth=1)
ax.plot(layers, res_stds, 's-', label='ResMLP', color='#3498db',
markersize=8, linewidth=2, markeredgecolor='white', markeredgewidth=1)
ax.set_xlabel('Layer Depth', fontsize=12)
ax.set_ylabel('Activation Standard Deviation', fontsize=12)
ax.set_title('Activation Std vs Layer Depth (After Training)', fontsize=14)
ax.legend(fontsize=11)
ax.grid(True, alpha=0.3)
# Add annotation about signal preservation
ax.annotate('ResMLP maintains\nstable activations',
xy=(15, res_stds[14]), xytext=(10, res_stds[14]*1.3),
fontsize=10, color='#3498db',
arrowprops=dict(arrowstyle='->', color='#3498db', alpha=0.7))
ax.annotate('PlainMLP activations\ndegrade through layers',
xy=(18, plain_stds[17]), xytext=(12, plain_stds[17]*0.5),
fontsize=10, color='#e74c3c',
arrowprops=dict(arrowstyle='->', color='#e74c3c', alpha=0.7))
plt.tight_layout()
plt.savefig(save_path, dpi=150, bbox_inches='tight')
plt.close()
print(f"[Plot] Saved activation std plot to {save_path}")
def main():
print("=" * 60)
print("PlainMLP vs ResMLP: Distant Identity Task Experiment")
print("=" * 60)
# Ensure plots directory exists
os.makedirs('plots', exist_ok=True)
# Generate synthetic data
print("\n[1] Generating synthetic identity data...")
X, Y = generate_identity_data(NUM_SAMPLES, HIDDEN_DIM)
print(f" Data shape: X={X.shape}, Y={Y.shape}")
print(f" X range: [{X.min():.3f}, {X.max():.3f}]")
print(f" Task: Learn Y = X (identity mapping)")
# Initialize models
print("\n[2] Initializing models...")
plain_mlp = PlainMLP(HIDDEN_DIM, NUM_LAYERS)
res_mlp = ResMLP(HIDDEN_DIM, NUM_LAYERS)
plain_params = sum(p.numel() for p in plain_mlp.parameters())
res_params = sum(p.numel() for p in res_mlp.parameters())
print(f" PlainMLP parameters: {plain_params:,}")
print(f" ResMLP parameters: {res_params:,}")
# Train PlainMLP
print("\n[3] Training PlainMLP...")
plain_losses = train_model(plain_mlp, X, Y, TRAINING_STEPS, LEARNING_RATE, BATCH_SIZE)
print(f" Final loss: {plain_losses[-1]:.6f}")
# Train ResMLP
print("\n[4] Training ResMLP...")
res_losses = train_model(res_mlp, X, Y, TRAINING_STEPS, LEARNING_RATE, BATCH_SIZE)
print(f" Final loss: {res_losses[-1]:.6f}")
# Calculate improvement
improvement = plain_losses[-1] / res_losses[-1]
print(f"\n >>> ResMLP achieves {improvement:.1f}x lower loss than PlainMLP <<<")
# Final state analysis
print("\n[5] Analyzing final state of trained models...")
print(" Running forward/backward pass on new random batch...")
print(" Analyzing PlainMLP...")
plain_stats = analyze_final_state(plain_mlp, HIDDEN_DIM)
print(" Analyzing ResMLP...")
res_stats = analyze_final_state(res_mlp, HIDDEN_DIM)
# Print detailed analysis
print("\n[6] Detailed Analysis:")
print("\n === Loss Comparison ===")
print(f" PlainMLP - Initial: {plain_losses[0]:.4f}, Final: {plain_losses[-1]:.4f}")
print(f" ResMLP - Initial: {res_losses[0]:.4f}, Final: {res_losses[-1]:.4f}")
print("\n === Gradient Flow (L2 norms) ===")
print(f" PlainMLP - Layer 1: {plain_stats['gradient_norms'][0]:.2e}, Layer 20: {plain_stats['gradient_norms'][-1]:.2e}")
print(f" ResMLP - Layer 1: {res_stats['gradient_norms'][0]:.2e}, Layer 20: {res_stats['gradient_norms'][-1]:.2e}")
print("\n === Activation Statistics ===")
print(f" PlainMLP - Std range: [{min(plain_stats['activation_stds']):.4f}, {max(plain_stats['activation_stds']):.4f}]")
print(f" ResMLP - Std range: [{min(res_stats['activation_stds']):.4f}, {max(res_stats['activation_stds']):.4f}]")
# Generate plots
print("\n[7] Generating plots...")
plot_training_loss(plain_losses, res_losses, 'plots/training_loss.png')
plot_gradient_magnitudes(plain_stats['gradient_norms'], res_stats['gradient_norms'],
'plots/gradient_magnitude.png')
plot_activation_means(plain_stats['activation_means'], res_stats['activation_means'],
'plots/activation_mean.png')
plot_activation_stds(plain_stats['activation_stds'], res_stats['activation_stds'],
'plots/activation_std.png')
# Save results to JSON
results = {
'config': {
'num_layers': NUM_LAYERS,
'hidden_dim': HIDDEN_DIM,
'num_samples': NUM_SAMPLES,
'training_steps': TRAINING_STEPS,
'learning_rate': LEARNING_RATE,
'batch_size': BATCH_SIZE
},
'plain_mlp': {
'final_loss': plain_losses[-1],
'initial_loss': plain_losses[0],
'loss_history': plain_losses,
'gradient_norms': plain_stats['gradient_norms'],
'activation_means': plain_stats['activation_means'],
'activation_stds': plain_stats['activation_stds']
},
'res_mlp': {
'final_loss': res_losses[-1],
'initial_loss': res_losses[0],
'loss_history': res_losses,
'gradient_norms': res_stats['gradient_norms'],
'activation_means': res_stats['activation_means'],
'activation_stds': res_stats['activation_stds']
},
'summary': {
'loss_improvement': improvement,
'plain_grad_range': [min(plain_stats['gradient_norms']), max(plain_stats['gradient_norms'])],
'res_grad_range': [min(res_stats['gradient_norms']), max(res_stats['gradient_norms'])],
'plain_std_range': [min(plain_stats['activation_stds']), max(plain_stats['activation_stds'])],
'res_std_range': [min(res_stats['activation_stds']), max(res_stats['activation_stds'])]
}
}
with open('results.json', 'w') as f:
json.dump(results, f, indent=2)
print("\n[8] Results saved to results.json")
print("\n" + "=" * 60)
print("Experiment completed successfully!")
print("=" * 60)
return results
if __name__ == "__main__":
results = main()
|