""" Micro-World Visualization: Understanding Residual Connections This script creates intuitive visualizations explaining: 1. Signal flow through layers (forward pass) 2. Gradient flow through layers (backward pass) 3. The "gradient highway" effect of residual connections 4. Layer-by-layer transformation visualization """ import torch import torch.nn as nn import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches from matplotlib.patches import FancyArrowPatch, FancyBboxPatch import json import os # Set seeds torch.manual_seed(42) np.random.seed(42) # Load results from experiment with open('results_fair.json', 'r') as f: results = json.load(f) os.makedirs('plots_micro', exist_ok=True) # ============================================================ # VISUALIZATION 1: Signal Flow Diagram (Forward Pass) # ============================================================ def plot_signal_flow(): """Visualize how signal magnitude changes through layers""" fig, axes = plt.subplots(1, 2, figsize=(14, 8)) plain_stds = results['plain_mlp']['activation_stds'] res_stds = results['res_mlp']['activation_stds'] # Normalize for visualization (input signal = 1.0) input_std = 0.577 # std of U(-1,1) plain_signal = [input_std] + plain_stds res_signal = [input_std] + res_stds layers = range(len(plain_signal)) # Left plot: PlainMLP signal decay ax = axes[0] ax.set_title('PlainMLP: Signal DIES\n(No Residual Connection)', fontsize=14, fontweight='bold', color='#c0392b') # Draw signal as decreasing bars colors_plain = plt.cm.Reds(np.linspace(0.3, 0.9, len(plain_signal))) bars = ax.bar(layers, plain_signal, color=colors_plain, edgecolor='darkred', linewidth=1.5) ax.set_xlabel('Layer (0=Input, 1-20=Hidden)', fontsize=12) ax.set_ylabel('Signal Strength (Activation Std)', fontsize=12) ax.set_ylim(0, 0.7) # Add annotation ax.annotate('Signal\ncollapses!', xy=(15, 0.02), fontsize=12, color='darkred', ha='center', fontweight='bold') ax.axhline(y=0.1, color='gray', linestyle='--', alpha=0.5, label='Healthy threshold') # Right plot: ResMLP signal preservation ax = axes[1] ax.set_title('ResMLP: Signal PRESERVED\n(With Residual Connection)', fontsize=14, fontweight='bold', color='#2980b9') colors_res = plt.cm.Blues(np.linspace(0.3, 0.9, len(res_signal))) bars = ax.bar(layers, res_signal, color=colors_res, edgecolor='darkblue', linewidth=1.5) ax.set_xlabel('Layer (0=Input, 1-20=Hidden)', fontsize=12) ax.set_ylabel('Signal Strength (Activation Std)', fontsize=12) ax.set_ylim(0, 0.7) # Add annotation ax.annotate('Signal stays\nhealthy!', xy=(15, 0.25), fontsize=12, color='darkblue', ha='center', fontweight='bold') ax.axhline(y=0.1, color='gray', linestyle='--', alpha=0.5, label='Healthy threshold') plt.tight_layout() plt.savefig('plots_micro/1_signal_flow.png', dpi=150, bbox_inches='tight') plt.close() print("[Plot 1] Signal flow visualization saved") # ============================================================ # VISUALIZATION 2: Gradient Flow Diagram (Backward Pass) # ============================================================ def plot_gradient_flow(): """Visualize gradient magnitude through layers""" fig, axes = plt.subplots(1, 2, figsize=(14, 8)) plain_grads = results['plain_mlp']['gradient_norms'] res_grads = results['res_mlp']['gradient_norms'] layers = range(1, 21) # Left: PlainMLP gradient vanishing ax = axes[0] ax.set_title('PlainMLP: Gradients VANISH\n(Backward Pass)', fontsize=14, fontweight='bold', color='#c0392b') # Use log scale bar chart colors = plt.cm.Reds(np.linspace(0.9, 0.3, 20)) ax.bar(layers, plain_grads, color=colors, edgecolor='darkred', linewidth=1) ax.set_yscale('log') ax.set_xlabel('Layer (1=First, 20=Last)', fontsize=12) ax.set_ylabel('Gradient Magnitude (log scale)', fontsize=12) ax.set_ylim(1e-20, 1e-1) # Annotations ax.annotate(f'Layer 20:\n{plain_grads[-1]:.1e}', xy=(20, plain_grads[-1]), xytext=(17, 1e-4), fontsize=10, color='darkred', arrowprops=dict(arrowstyle='->', color='darkred')) ax.annotate(f'Layer 1:\n{plain_grads[0]:.1e}\n(DEAD!)', xy=(1, max(plain_grads[0], 1e-20)), xytext=(4, 1e-15), fontsize=10, color='darkred', fontweight='bold', arrowprops=dict(arrowstyle='->', color='darkred')) # Right: ResMLP healthy gradients ax = axes[1] ax.set_title('ResMLP: Gradients FLOW\n(Backward Pass)', fontsize=14, fontweight='bold', color='#2980b9') colors = plt.cm.Blues(np.linspace(0.9, 0.3, 20)) ax.bar(layers, res_grads, color=colors, edgecolor='darkblue', linewidth=1) ax.set_yscale('log') ax.set_xlabel('Layer (1=First, 20=Last)', fontsize=12) ax.set_ylabel('Gradient Magnitude (log scale)', fontsize=12) ax.set_ylim(1e-20, 1e-1) # Annotations ax.annotate(f'Layer 20:\n{res_grads[-1]:.1e}', xy=(20, res_grads[-1]), xytext=(17, 1e-4), fontsize=10, color='darkblue', arrowprops=dict(arrowstyle='->', color='darkblue')) ax.annotate(f'Layer 1:\n{res_grads[0]:.1e}\n(Healthy!)', xy=(1, res_grads[0]), xytext=(4, 1e-4), fontsize=10, color='darkblue', fontweight='bold', arrowprops=dict(arrowstyle='->', color='darkblue')) plt.tight_layout() plt.savefig('plots_micro/2_gradient_flow.png', dpi=150, bbox_inches='tight') plt.close() print("[Plot 2] Gradient flow visualization saved") # ============================================================ # VISUALIZATION 3: The Residual "Highway" Concept # ============================================================ def plot_highway_concept(): """Visual diagram showing the gradient highway concept""" fig, axes = plt.subplots(2, 1, figsize=(14, 10)) # Top: PlainMLP - no highway ax = axes[0] ax.set_xlim(0, 12) ax.set_ylim(0, 3) ax.set_aspect('equal') ax.axis('off') ax.set_title('PlainMLP: Gradient Must Pass Through EVERY Layer\n(Like a winding mountain road)', fontsize=14, fontweight='bold', color='#c0392b', pad=20) # Draw layers as boxes for i in range(6): x = 1 + i * 1.8 box = FancyBboxPatch((x, 1), 1.2, 1, boxstyle="round,pad=0.05", facecolor='#e74c3c', edgecolor='darkred', linewidth=2) ax.add_patch(box) ax.text(x + 0.6, 1.5, f'L{i+1}', ha='center', va='center', fontsize=11, color='white', fontweight='bold') # Draw arrows between layers (getting thinner = gradient vanishing) if i < 5: thickness = 3 * (0.5 ** i) # Exponential decay alpha = max(0.2, 1 - i * 0.18) ax.annotate('', xy=(x + 1.8, 1.5), xytext=(x + 1.2, 1.5), arrowprops=dict(arrowstyle='->', color='darkred', lw=thickness, alpha=alpha)) # Add gradient flow label ax.text(0.3, 1.5, 'Gradient\n→', fontsize=10, ha='center', va='center', color='darkred') ax.text(11.5, 1.5, '→ Loss', fontsize=10, ha='center', va='center', color='darkred') # Add "vanishing" annotation ax.annotate('Gradient shrinks\nat each layer!', xy=(8, 0.5), fontsize=11, color='darkred', style='italic') # Bottom: ResMLP - with highway ax = axes[1] ax.set_xlim(0, 12) ax.set_ylim(0, 3.5) ax.set_aspect('equal') ax.axis('off') ax.set_title('ResMLP: Gradient Has a Direct HIGHWAY\n(Skip connections = express lane)', fontsize=14, fontweight='bold', color='#2980b9', pad=20) # Draw the highway (skip connection) at top ax.plot([1, 11], [2.8, 2.8], color='#27ae60', linewidth=6, alpha=0.8) ax.annotate('', xy=(11, 2.8), xytext=(10.5, 2.8), arrowprops=dict(arrowstyle='->', color='#27ae60', lw=3)) ax.text(6, 3.2, '✓ GRADIENT HIGHWAY (Identity Path)', ha='center', fontsize=12, color='#27ae60', fontweight='bold') # Draw layers as boxes for i in range(6): x = 1 + i * 1.8 box = FancyBboxPatch((x, 1), 1.2, 1, boxstyle="round,pad=0.05", facecolor='#3498db', edgecolor='darkblue', linewidth=2) ax.add_patch(box) ax.text(x + 0.6, 1.5, f'L{i+1}', ha='center', va='center', fontsize=11, color='white', fontweight='bold') # Draw arrows between layers (constant thickness = gradient preserved) if i < 5: ax.annotate('', xy=(x + 1.8, 1.5), xytext=(x + 1.2, 1.5), arrowprops=dict(arrowstyle='->', color='darkblue', lw=2)) # Draw skip connections going up to highway ax.plot([x + 0.6, x + 0.6], [2, 2.8], color='#27ae60', linewidth=2, alpha=0.5) ax.text(0.3, 1.5, 'Gradient\n→', fontsize=10, ha='center', va='center', color='darkblue') ax.text(11.5, 1.5, '→ Loss', fontsize=10, ha='center', va='center', color='darkblue') # Add explanation ax.annotate('Gradient flows on highway\neven if layers block it!', xy=(8, 0.3), fontsize=11, color='#27ae60', style='italic') plt.tight_layout() plt.savefig('plots_micro/3_highway_concept.png', dpi=150, bbox_inches='tight') plt.close() print("[Plot 3] Highway concept visualization saved") # ============================================================ # VISUALIZATION 4: Mathematical View - Chain Rule # ============================================================ def plot_chain_rule(): """Visualize the chain rule multiplication effect""" fig, axes = plt.subplots(1, 2, figsize=(14, 7)) # Simulate gradient flow num_layers = 20 # PlainMLP: gradient = product of layer gradients (each < 1) plain_layer_grad = 0.7 # Each layer shrinks gradient by 0.7x plain_cumulative = [1.0] for i in range(num_layers): plain_cumulative.append(plain_cumulative[-1] * plain_layer_grad) # ResMLP: gradient = 1 + small_contribution (always >= 1 path) res_layer_contrib = 0.05 # Small contribution from each layer res_cumulative = [1.0] for i in range(num_layers): # The "1" from identity ensures gradient doesn't vanish res_cumulative.append(res_cumulative[-1] * (1.0 + res_layer_contrib * (0.9 ** i))) layers = range(num_layers + 1) # Left: Show the multiplication effect ax = axes[0] ax.semilogy(layers, plain_cumulative, 'o-', color='#e74c3c', linewidth=2, markersize=8, label='PlainMLP: 0.7 × 0.7 × 0.7 × ...') ax.semilogy(layers, res_cumulative, 's-', color='#3498db', linewidth=2, markersize=8, label='ResMLP: (1+ε) × (1+ε) × ...') ax.set_xlabel('Layers Traversed (backward from loss)', fontsize=12) ax.set_ylabel('Cumulative Gradient Scale (log)', fontsize=12) ax.set_title('Chain Rule: Why Gradients Vanish\n(Multiplication Effect)', fontsize=14, fontweight='bold') ax.legend(fontsize=11) ax.grid(True, alpha=0.3) ax.set_ylim(1e-8, 10) # Add annotations ax.annotate(f'After 20 layers:\n{plain_cumulative[-1]:.1e}', xy=(20, plain_cumulative[-1]), xytext=(15, 1e-6), fontsize=10, color='#c0392b', arrowprops=dict(arrowstyle='->', color='#c0392b')) ax.annotate(f'After 20 layers:\n{res_cumulative[-1]:.2f}', xy=(20, res_cumulative[-1]), xytext=(15, 3), fontsize=10, color='#2980b9', arrowprops=dict(arrowstyle='->', color='#2980b9')) # Right: Show the formula ax = axes[1] ax.axis('off') ax.set_xlim(0, 10) ax.set_ylim(0, 10) ax.text(5, 9, 'The Math Behind It', fontsize=16, fontweight='bold', ha='center', va='center') # PlainMLP formula ax.text(5, 7.5, 'PlainMLP Gradient:', fontsize=13, fontweight='bold', ha='center', color='#c0392b') ax.text(5, 6.5, r'$\frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial x_{20}} \times \prod_{i=1}^{20} \frac{\partial x_{i+1}}{\partial x_i}$', fontsize=14, ha='center', color='#c0392b') ax.text(5, 5.5, '= (small) × (small) × ... × (small) = TINY!', fontsize=11, ha='center', color='#c0392b', style='italic') # ResMLP formula ax.text(5, 4, 'ResMLP Gradient:', fontsize=13, fontweight='bold', ha='center', color='#2980b9') ax.text(5, 3, r'$\frac{\partial L}{\partial x_1} = \frac{\partial L}{\partial x_{20}} \times \prod_{i=1}^{20} (1 + \frac{\partial f_i}{\partial x_i})$', fontsize=14, ha='center', color='#2980b9') ax.text(5, 2, '= (1+ε) × (1+ε) × ... = PRESERVED!', fontsize=11, ha='center', color='#2980b9', style='italic') # Key insight box = FancyBboxPatch((1, 0.3), 8, 1.2, boxstyle="round,pad=0.1", facecolor='#f9e79f', edgecolor='#f39c12', linewidth=2) ax.add_patch(box) ax.text(5, 0.9, '💡 Key Insight: The "+x" in residual adds a "1" to each gradient term,\n' 'preventing the product from shrinking to zero!', fontsize=11, ha='center', va='center', fontweight='bold') plt.tight_layout() plt.savefig('plots_micro/4_chain_rule.png', dpi=150, bbox_inches='tight') plt.close() print("[Plot 4] Chain rule visualization saved") # ============================================================ # VISUALIZATION 5: Layer-by-Layer Transformation # ============================================================ def plot_layer_transformation(): """Show what happens to a single input vector through layers""" # Create simple models for visualization class PlainMLP(nn.Module): def __init__(self, dim, num_layers): super().__init__() self.layers = nn.ModuleList() for _ in range(num_layers): layer = nn.Linear(dim, dim) nn.init.kaiming_normal_(layer.weight) layer.weight.data *= 1.0 / np.sqrt(num_layers) nn.init.zeros_(layer.bias) self.layers.append(layer) self.activation = nn.ReLU() def forward_with_intermediates(self, x): intermediates = [x.clone()] for layer in self.layers: x = self.activation(layer(x)) intermediates.append(x.clone()) return intermediates class ResMLP(nn.Module): def __init__(self, dim, num_layers): super().__init__() self.layers = nn.ModuleList() for _ in range(num_layers): layer = nn.Linear(dim, dim) nn.init.kaiming_normal_(layer.weight) layer.weight.data *= 1.0 / np.sqrt(num_layers) nn.init.zeros_(layer.bias) self.layers.append(layer) self.activation = nn.ReLU() def forward_with_intermediates(self, x): intermediates = [x.clone()] for layer in self.layers: x = x + self.activation(layer(x)) intermediates.append(x.clone()) return intermediates # Create models dim = 64 num_layers = 20 plain = PlainMLP(dim, num_layers) res = ResMLP(dim, num_layers) # Single input vector x = torch.randn(1, dim) * 0.5 # Get intermediates plain_ints = plain.forward_with_intermediates(x) res_ints = res.forward_with_intermediates(x) # Extract norms and first 2 dimensions for visualization plain_norms = [p.norm().item() for p in plain_ints] res_norms = [r.norm().item() for r in res_ints] plain_2d = [p[0, :2].detach().numpy() for p in plain_ints] res_2d = [r[0, :2].detach().numpy() for r in res_ints] fig, axes = plt.subplots(2, 2, figsize=(14, 12)) # Top left: Vector magnitude through layers ax = axes[0, 0] layers = range(len(plain_norms)) ax.plot(layers, plain_norms, 'o-', color='#e74c3c', linewidth=2, markersize=6, label='PlainMLP') ax.plot(layers, res_norms, 's-', color='#3498db', linewidth=2, markersize=6, label='ResMLP') ax.set_xlabel('Layer (0=Input)', fontsize=12) ax.set_ylabel('Vector Magnitude (L2 norm)', fontsize=12) ax.set_title('Signal Magnitude Through Network', fontsize=13, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) # Top right: 2D trajectory visualization ax = axes[0, 1] # PlainMLP trajectory plain_x = [p[0] for p in plain_2d] plain_y = [p[1] for p in plain_2d] ax.plot(plain_x, plain_y, 'o-', color='#e74c3c', linewidth=1.5, markersize=4, alpha=0.7, label='PlainMLP path') ax.scatter(plain_x[0], plain_y[0], s=100, color='#e74c3c', marker='*', zorder=5) ax.scatter(plain_x[-1], plain_y[-1], s=100, color='#e74c3c', marker='X', zorder=5) # ResMLP trajectory res_x = [r[0] for r in res_2d] res_y = [r[1] for r in res_2d] ax.plot(res_x, res_y, 's-', color='#3498db', linewidth=1.5, markersize=4, alpha=0.7, label='ResMLP path') ax.scatter(res_x[0], res_y[0], s=100, color='#3498db', marker='*', zorder=5) ax.scatter(res_x[-1], res_y[-1], s=100, color='#3498db', marker='X', zorder=5) ax.set_xlabel('Dimension 1', fontsize=12) ax.set_ylabel('Dimension 2', fontsize=12) ax.set_title('2D Projection of Vector Path\n(★=start, ✕=end)', fontsize=13, fontweight='bold') ax.legend() ax.grid(True, alpha=0.3) ax.axhline(y=0, color='gray', linestyle='-', alpha=0.3) ax.axvline(x=0, color='gray', linestyle='-', alpha=0.3) # Bottom left: PlainMLP heatmap of activations ax = axes[1, 0] plain_acts = np.array([p[0, :32].detach().numpy() for p in plain_ints]) # First 32 dims im = ax.imshow(plain_acts.T, aspect='auto', cmap='Reds', interpolation='nearest') ax.set_xlabel('Layer', fontsize=12) ax.set_ylabel('Dimension (first 32)', fontsize=12) ax.set_title('PlainMLP: Activations Die Out', fontsize=13, fontweight='bold', color='#c0392b') plt.colorbar(im, ax=ax, label='Activation Value') # Bottom right: ResMLP heatmap of activations ax = axes[1, 1] res_acts = np.array([r[0, :32].detach().numpy() for r in res_ints]) # First 32 dims im = ax.imshow(res_acts.T, aspect='auto', cmap='Blues', interpolation='nearest') ax.set_xlabel('Layer', fontsize=12) ax.set_ylabel('Dimension (first 32)', fontsize=12) ax.set_title('ResMLP: Activations Stay Alive', fontsize=13, fontweight='bold', color='#2980b9') plt.colorbar(im, ax=ax, label='Activation Value') plt.tight_layout() plt.savefig('plots_micro/5_layer_transformation.png', dpi=150, bbox_inches='tight') plt.close() print("[Plot 5] Layer transformation visualization saved") # ============================================================ # VISUALIZATION 6: Before/After Training Comparison # ============================================================ def plot_learning_comparison(): """Show what each model learned (or didn't learn)""" fig, axes = plt.subplots(2, 2, figsize=(14, 12)) plain_losses = results['plain_mlp']['loss_history'] res_losses = results['res_mlp']['loss_history'] # Top left: Loss curves with annotations ax = axes[0, 0] steps = range(len(plain_losses)) ax.plot(steps, plain_losses, color='#e74c3c', linewidth=2, label='PlainMLP') ax.plot(steps, res_losses, color='#3498db', linewidth=2, label='ResMLP') ax.set_xlabel('Training Steps', fontsize=12) ax.set_ylabel('MSE Loss', fontsize=12) ax.set_title('Learning Progress', fontsize=13, fontweight='bold') ax.set_yscale('log') ax.legend() ax.grid(True, alpha=0.3) # Add phase annotations ax.axvspan(0, 50, alpha=0.1, color='gray') ax.text(25, 5, 'Early\nTraining', ha='center', fontsize=9, color='gray') ax.axvspan(450, 500, alpha=0.1, color='green') ax.text(475, 5, 'Final', ha='center', fontsize=9, color='gray') # Top right: Loss reduction bar chart ax = axes[0, 1] plain_initial = plain_losses[0] plain_final = plain_losses[-1] res_initial = res_losses[0] res_final = res_losses[-1] plain_reduction = (1 - plain_final / plain_initial) * 100 res_reduction = (1 - res_final / res_initial) * 100 bars = ax.bar(['PlainMLP', 'ResMLP'], [plain_reduction, res_reduction], color=['#e74c3c', '#3498db'], edgecolor='black', linewidth=2) ax.set_ylabel('Loss Reduction (%)', fontsize=12) ax.set_title('How Much Did Each Model Learn?', fontsize=13, fontweight='bold') ax.set_ylim(0, 110) # Add value labels ax.text(0, plain_reduction + 3, f'{plain_reduction:.1f}%', ha='center', fontsize=14, fontweight='bold') ax.text(1, res_reduction + 3, f'{res_reduction:.1f}%', ha='center', fontsize=14, fontweight='bold') # Add verdict ax.text(0, plain_reduction/2, 'FAILED\nTO LEARN', ha='center', va='center', fontsize=11, color='white', fontweight='bold') ax.text(1, res_reduction/2, 'LEARNED\nSUCCESSFULLY', ha='center', va='center', fontsize=11, color='white', fontweight='bold') # Bottom: Gradient comparison at different training stages ax = axes[1, 0] plain_grads = results['plain_mlp']['gradient_norms'] res_grads = results['res_mlp']['gradient_norms'] layers = range(1, 21) width = 0.35 ax.bar([l - width/2 for l in layers], plain_grads, width, label='PlainMLP', color='#e74c3c', alpha=0.8) ax.bar([l + width/2 for l in layers], res_grads, width, label='ResMLP', color='#3498db', alpha=0.8) ax.set_xlabel('Layer', fontsize=12) ax.set_ylabel('Gradient Magnitude', fontsize=12) ax.set_title('Final Gradient Distribution by Layer', fontsize=13, fontweight='bold') ax.set_yscale('log') ax.legend() ax.grid(True, alpha=0.3, axis='y') # Bottom right: Summary diagram ax = axes[1, 1] ax.axis('off') ax.set_xlim(0, 10) ax.set_ylim(0, 10) ax.text(5, 9.5, '📊 Summary: Why Residuals Work', fontsize=16, fontweight='bold', ha='center') # PlainMLP box box1 = FancyBboxPatch((0.5, 5), 4, 3.5, boxstyle="round,pad=0.1", facecolor='#fadbd8', edgecolor='#c0392b', linewidth=2) ax.add_patch(box1) ax.text(2.5, 8, 'PlainMLP ❌', fontsize=13, fontweight='bold', ha='center', color='#c0392b') ax.text(2.5, 7, f'• Loss: {plain_final:.3f}', fontsize=11, ha='center') ax.text(2.5, 6.3, f'• Gradient L1: {plain_grads[0]:.1e}', fontsize=11, ha='center') ax.text(2.5, 5.6, '• Status: UNTRAINABLE', fontsize=11, ha='center', color='#c0392b') # ResMLP box box2 = FancyBboxPatch((5.5, 5), 4, 3.5, boxstyle="round,pad=0.1", facecolor='#d4e6f1', edgecolor='#2980b9', linewidth=2) ax.add_patch(box2) ax.text(7.5, 8, 'ResMLP ✓', fontsize=13, fontweight='bold', ha='center', color='#2980b9') ax.text(7.5, 7, f'• Loss: {res_final:.3f}', fontsize=11, ha='center') ax.text(7.5, 6.3, f'• Gradient L1: {res_grads[0]:.1e}', fontsize=11, ha='center') ax.text(7.5, 5.6, '• Status: TRAINED', fontsize=11, ha='center', color='#2980b9') # Key insight box box3 = FancyBboxPatch((1, 0.5), 8, 3.5, boxstyle="round,pad=0.1", facecolor='#fef9e7', edgecolor='#f39c12', linewidth=2) ax.add_patch(box3) ax.text(5, 3.5, '💡 The Residual Connection:', fontsize=13, fontweight='bold', ha='center') ax.text(5, 2.6, '1. Creates a "gradient highway" for backpropagation', fontsize=11, ha='center') ax.text(5, 1.9, '2. Preserves signal magnitude through forward pass', fontsize=11, ha='center') ax.text(5, 1.2, '3. Allows training of very deep networks', fontsize=11, ha='center') plt.tight_layout() plt.savefig('plots_micro/6_learning_comparison.png', dpi=150, bbox_inches='tight') plt.close() print("[Plot 6] Learning comparison visualization saved") # ============================================================ # MAIN # ============================================================ if __name__ == "__main__": print("=" * 60) print("Creating Micro-World Visualizations") print("=" * 60) plot_signal_flow() plot_gradient_flow() plot_highway_concept() plot_chain_rule() plot_layer_transformation() plot_learning_comparison() print("\n" + "=" * 60) print("All visualizations saved to plots_micro/") print("=" * 60)