File size: 20,653 Bytes
8ef2d83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
//! # Subspace Containers for HAT
//!
//! This module implements subspace-aware container representations for HAT.
//! Instead of representing containers as single centroid points, we model them
//! as subspaces that capture the "shape" and "spread" of points within.
//!
//! ## Key Insight (from journal 006)
//!
//! "A session isn't a single point - it's a *region* of the manifold."
//!
//! ## Grassmann-Inspired Approach
//!
//! - Each container is represented by its centroid PLUS principal directions
//! - Similarity between containers uses subspace angles (principal angles)
//! - Better captures diverse content within a container
//!
//! ## Benefits
//!
//! 1. **Better Routing**: Query can match containers even if not close to centroid
//! 2. **Diversity Awareness**: Wide containers (diverse content) vs narrow containers
//! 3. **Geometric Fidelity**: More accurate representation of point distributions

use crate::core::Point;

/// Configuration for subspace representation
#[derive(Debug, Clone)]
pub struct SubspaceConfig {
    /// Number of principal components to track (subspace rank)
    pub rank: usize,

    /// Minimum points before computing subspace (need enough for covariance)
    pub min_points_for_subspace: usize,

    /// Weight of subspace similarity vs centroid similarity (0.0 = centroid only)
    pub subspace_weight: f32,

    /// Enable incremental covariance updates during insertion (vs only during consolidation)
    /// When false, subspace is only computed during consolidation - much faster inserts
    pub incremental_covariance: bool,
}

impl Default for SubspaceConfig {
    fn default() -> Self {
        Self {
            rank: 3,                        // Track top 3 principal directions
            min_points_for_subspace: 5,     // Need at least 5 points for meaningful covariance
            subspace_weight: 0.3,           // 30% subspace, 70% centroid by default
            incremental_covariance: false,  // Default: only compute during consolidation (faster)
        }
    }
}

impl SubspaceConfig {
    pub fn new() -> Self {
        Self::default()
    }

    pub fn with_rank(mut self, rank: usize) -> Self {
        self.rank = rank;
        self
    }

    pub fn with_subspace_weight(mut self, weight: f32) -> Self {
        self.subspace_weight = weight.clamp(0.0, 1.0);
        self
    }
}

/// Subspace representation for a container
///
/// Stores the centroid plus principal directions that capture
/// the variance/spread of points within the container.
#[derive(Debug, Clone)]
pub struct Subspace {
    /// Centroid (mean of points)
    pub centroid: Point,

    /// Principal directions (orthonormal basis for subspace)
    /// Each direction is a unit vector
    pub principal_directions: Vec<Point>,

    /// Eigenvalues (variance in each principal direction)
    /// Stored in decreasing order
    pub eigenvalues: Vec<f32>,

    /// Number of points used to compute this subspace
    pub point_count: usize,

    /// Running sum for incremental centroid updates
    accumulated_sum: Vec<f32>,

    /// Running covariance matrix (upper triangle only for efficiency)
    /// For incremental updates: cov = (sum of outer products) / n - mean * mean^T
    accumulated_outer_product: Vec<f32>,
}

impl Subspace {
    /// Create a new empty subspace
    pub fn new(dimensionality: usize) -> Self {
        Self {
            centroid: Point::origin(dimensionality),
            principal_directions: Vec::new(),
            eigenvalues: Vec::new(),
            point_count: 0,
            accumulated_sum: vec![0.0; dimensionality],
            // Upper triangle of d x d matrix: d * (d + 1) / 2 elements
            accumulated_outer_product: vec![0.0; dimensionality * (dimensionality + 1) / 2],
        }
    }

    /// Create from a single point
    pub fn from_point(point: &Point) -> Self {
        Self {
            centroid: point.clone(),
            principal_directions: Vec::new(),
            eigenvalues: Vec::new(),
            point_count: 1,
            accumulated_sum: point.dims().to_vec(),
            accumulated_outer_product: Self::outer_product_upper(point.dims()),
        }
    }

    /// Dimensionality of the ambient space
    pub fn dimensionality(&self) -> usize {
        self.centroid.dimensionality()
    }

    /// Check if subspace has meaningful principal directions
    pub fn has_subspace(&self) -> bool {
        !self.principal_directions.is_empty()
    }

    /// Get the subspace rank (number of principal directions)
    pub fn rank(&self) -> usize {
        self.principal_directions.len()
    }

    /// Compute upper triangle of outer product v * v^T
    fn outer_product_upper(v: &[f32]) -> Vec<f32> {
        let n = v.len();
        let mut result = vec![0.0; n * (n + 1) / 2];
        let mut idx = 0;
        for i in 0..n {
            for j in i..n {
                result[idx] = v[i] * v[j];
                idx += 1;
            }
        }
        result
    }

    /// Get element from upper triangle storage
    fn get_upper(&self, i: usize, j: usize) -> f32 {
        let (row, col) = if i <= j { (i, j) } else { (j, i) };
        let n = self.dimensionality();
        // Index into upper triangle
        let idx = row * (2 * n - row - 1) / 2 + col;
        self.accumulated_outer_product[idx]
    }

    /// Add element to upper triangle storage
    fn add_to_upper(&mut self, i: usize, j: usize, value: f32) {
        let (row, col) = if i <= j { (i, j) } else { (j, i) };
        let n = self.dimensionality();
        let idx = row * (2 * n - row - 1) / 2 + col;
        self.accumulated_outer_product[idx] += value;
    }

    /// Incrementally add a point
    pub fn add_point(&mut self, point: &Point) {
        let dims = point.dims();

        // Update running sum
        for (i, &v) in dims.iter().enumerate() {
            self.accumulated_sum[i] += v;
        }

        // Update outer product accumulator
        for i in 0..dims.len() {
            for j in i..dims.len() {
                self.add_to_upper(i, j, dims[i] * dims[j]);
            }
        }

        self.point_count += 1;

        // Update centroid
        let n = self.point_count as f32;
        let centroid_dims: Vec<f32> = self.accumulated_sum.iter()
            .map(|&s| s / n)
            .collect();
        self.centroid = Point::new(centroid_dims).normalize();
    }

    /// Compute covariance matrix from accumulated statistics
    fn compute_covariance(&self) -> Vec<Vec<f32>> {
        let n = self.dimensionality();
        let count = self.point_count as f32;

        if count < 2.0 {
            return vec![vec![0.0; n]; n];
        }

        // Mean vector
        let mean: Vec<f32> = self.accumulated_sum.iter()
            .map(|&s| s / count)
            .collect();

        // Covariance = E[X*X^T] - E[X]*E[X]^T
        let mut cov = vec![vec![0.0; n]; n];
        for i in 0..n {
            for j in i..n {
                let exx = self.get_upper(i, j) / count;
                let exex = mean[i] * mean[j];
                let c = exx - exex;
                cov[i][j] = c;
                cov[j][i] = c;  // Symmetric
            }
        }

        cov
    }

    /// Recompute principal directions from covariance
    /// Uses power iteration for efficiency (avoids full eigendecomposition)
    pub fn recompute_subspace(&mut self, rank: usize) {
        if self.point_count < 3 {
            // Not enough points for meaningful subspace
            self.principal_directions.clear();
            self.eigenvalues.clear();
            return;
        }

        let cov = self.compute_covariance();
        let n = self.dimensionality();

        // Extract top-k eigenvectors using power iteration with deflation
        let mut directions = Vec::new();
        let mut values = Vec::new();
        let mut working_cov = cov.clone();

        for _ in 0..rank.min(n) {
            // Power iteration for dominant eigenvector
            let (eigval, eigvec) = self.power_iteration(&working_cov, 50);

            if eigval < 1e-8 {
                break;  // No more significant variance
            }

            values.push(eigval);
            directions.push(Point::new(eigvec.clone()).normalize());

            // Deflate: remove this eigenvector's contribution
            for i in 0..n {
                for j in 0..n {
                    working_cov[i][j] -= eigval * eigvec[i] * eigvec[j];
                }
            }
        }

        self.principal_directions = directions;
        self.eigenvalues = values;
    }

    /// Power iteration to find dominant eigenvector
    fn power_iteration(&self, matrix: &[Vec<f32>], max_iters: usize) -> (f32, Vec<f32>) {
        let n = matrix.len();

        // Initialize with random-ish vector (use first column of matrix + perturbation)
        let mut v: Vec<f32> = (0..n).map(|i| 1.0 + (i as f32) * 0.1).collect();
        let mut norm: f32 = v.iter().map(|x| x * x).sum::<f32>().sqrt();
        for x in &mut v {
            *x /= norm;
        }

        let mut eigenvalue = 0.0f32;

        for _ in 0..max_iters {
            // v_new = A * v
            let mut v_new = vec![0.0; n];
            for i in 0..n {
                for j in 0..n {
                    v_new[i] += matrix[i][j] * v[j];
                }
            }

            // Compute eigenvalue approximation
            eigenvalue = v_new.iter().zip(v.iter()).map(|(a, b)| a * b).sum();

            // Normalize
            norm = v_new.iter().map(|x| x * x).sum::<f32>().sqrt();
            if norm < 1e-10 {
                return (0.0, vec![0.0; n]);
            }

            let converged = v.iter().zip(v_new.iter())
                .map(|(a, b)| (a - b / norm).abs())
                .sum::<f32>() < 1e-8;

            for i in 0..n {
                v[i] = v_new[i] / norm;
            }

            if converged {
                break;
            }
        }

        (eigenvalue.abs(), v)
    }
}

/// Compute subspace similarity using principal angles
///
/// Based on Grassmann geometry: the similarity between two subspaces
/// is determined by the principal angles between them.
///
/// For k-dimensional subspaces, there are k principal angles θ₁...θₖ
/// where 0 ≤ θ₁ ≤ ... ≤ θₖ ≤ π/2
///
/// Common measures:
/// - Projection similarity: Σ cos²(θᵢ) / k  (ranges 0-1)
/// - Geodesic distance: sqrt(Σ θᵢ²)
/// - Chordal distance: sqrt(Σ sin²(θᵢ))
pub fn subspace_similarity(a: &Subspace, b: &Subspace) -> f32 {
    // If either has no subspace, fall back to centroid similarity
    if !a.has_subspace() || !b.has_subspace() {
        return centroid_similarity(&a.centroid, &b.centroid);
    }

    // Compute inner products between principal directions
    let rank_a = a.rank();
    let rank_b = b.rank();
    let k = rank_a.min(rank_b);

    if k == 0 {
        return centroid_similarity(&a.centroid, &b.centroid);
    }

    // Build matrix M where M[i][j] = <a_i, b_j> (dot products)
    let mut m = vec![vec![0.0f32; rank_b]; rank_a];
    for i in 0..rank_a {
        for j in 0..rank_b {
            let dot: f32 = a.principal_directions[i].dims().iter()
                .zip(b.principal_directions[j].dims().iter())
                .map(|(x, y)| x * y)
                .sum();
            m[i][j] = dot;
        }
    }

    // SVD of M gives principal angles: σᵢ = cos(θᵢ)
    // For simplicity, use a greedy approximation:
    // Find k maximum entries while avoiding row/column reuse
    let cos_angles = greedy_max_matching(&m, k);

    // Projection similarity: mean of cos²(θᵢ)
    let similarity: f32 = cos_angles.iter()
        .map(|&c| c * c)  // cos²(θ)
        .sum::<f32>() / k as f32;

    similarity
}

/// Greedy approximation to find k largest entries with no repeated rows/columns
fn greedy_max_matching(m: &[Vec<f32>], k: usize) -> Vec<f32> {
    let rows = m.len();
    let cols = if rows > 0 { m[0].len() } else { 0 };

    let mut used_rows = vec![false; rows];
    let mut used_cols = vec![false; cols];
    let mut result = Vec::new();

    for _ in 0..k {
        let mut best = (0, 0, 0.0f32);

        for i in 0..rows {
            if used_rows[i] { continue; }
            for j in 0..cols {
                if used_cols[j] { continue; }
                let val = m[i][j].abs();
                if val > best.2 {
                    best = (i, j, val);
                }
            }
        }

        if best.2 > 0.0 {
            used_rows[best.0] = true;
            used_cols[best.1] = true;
            result.push(best.2);
        } else {
            break;
        }
    }

    result
}

/// Simple centroid similarity (cosine)
fn centroid_similarity(a: &Point, b: &Point) -> f32 {
    let dot: f32 = a.dims().iter()
        .zip(b.dims().iter())
        .map(|(x, y)| x * y)
        .sum();
    dot.clamp(-1.0, 1.0)
}

/// Combined similarity: weighted combination of centroid and subspace similarity
///
/// score = (1 - weight) * centroid_sim + weight * subspace_sim
pub fn combined_subspace_similarity(
    query: &Point,
    container: &Subspace,
    config: &SubspaceConfig,
) -> f32 {
    let centroid_sim = centroid_similarity(query, &container.centroid);

    if !container.has_subspace() || config.subspace_weight < 1e-6 {
        return centroid_sim;
    }

    // Subspace similarity: how well does query align with principal directions?
    // Measure: sum of squared projections onto principal directions
    let subspace_sim = query_subspace_alignment(query, container);

    // Weighted combination
    let w = config.subspace_weight;
    (1.0 - w) * centroid_sim + w * subspace_sim
}

/// Measure how well a query aligns with a subspace
///
/// Higher score means query is well-captured by the subspace's principal directions
pub fn query_subspace_alignment(query: &Point, subspace: &Subspace) -> f32 {
    if !subspace.has_subspace() {
        return centroid_similarity(query, &subspace.centroid);
    }

    // Center query relative to centroid
    let centered: Vec<f32> = query.dims().iter()
        .zip(subspace.centroid.dims().iter())
        .map(|(q, c)| q - c)
        .collect();

    let centered_norm: f32 = centered.iter().map(|x| x * x).sum::<f32>().sqrt();
    if centered_norm < 1e-10 {
        // Query is at centroid - perfect match
        return 1.0;
    }

    // Compute squared projections onto each principal direction
    let mut total_proj_sq = 0.0f32;
    for (dir, &eigenval) in subspace.principal_directions.iter().zip(subspace.eigenvalues.iter()) {
        let proj: f32 = centered.iter()
            .zip(dir.dims().iter())
            .map(|(c, d)| c * d)
            .sum();

        // Weight by eigenvalue (variance in that direction)
        // Higher eigenvalue = more likely direction for data variation
        let weight = (eigenval / subspace.eigenvalues[0]).sqrt();
        total_proj_sq += proj * proj * weight;
    }

    // Normalize by centered query magnitude
    let alignment = (total_proj_sq / (centered_norm * centered_norm)).min(1.0);

    // Combine with centroid similarity for overall score
    let centroid_sim = centroid_similarity(query, &subspace.centroid);

    // Score: close to centroid AND aligned with principal directions
    (centroid_sim + alignment) / 2.0
}

/// Compute the "spread" or diversity of a subspace
///
/// Higher values indicate more diverse content (larger variance)
/// Lower values indicate tightly clustered content
pub fn subspace_spread(subspace: &Subspace) -> f32 {
    if subspace.eigenvalues.is_empty() {
        return 0.0;
    }

    // Total variance (sum of eigenvalues)
    subspace.eigenvalues.iter().sum()
}

/// Compute the "isotropy" of a subspace
///
/// Higher values (close to 1) indicate uniform spread in all directions
/// Lower values indicate elongated, anisotropic distribution
pub fn subspace_isotropy(subspace: &Subspace) -> f32 {
    if subspace.eigenvalues.len() < 2 {
        return 1.0;  // Single direction is perfectly "isotropic" in its subspace
    }

    // Ratio of smallest to largest eigenvalue
    let max = subspace.eigenvalues[0];
    let min = *subspace.eigenvalues.last().unwrap();

    if max < 1e-10 {
        return 1.0;
    }

    min / max
}

#[cfg(test)]
mod tests {
    use super::*;

    fn make_point(v: Vec<f32>) -> Point {
        Point::new(v).normalize()
    }

    #[test]
    fn test_subspace_creation() {
        let mut subspace = Subspace::new(3);

        // Add some points
        subspace.add_point(&make_point(vec![1.0, 0.0, 0.0]));
        subspace.add_point(&make_point(vec![0.9, 0.1, 0.0]));
        subspace.add_point(&make_point(vec![0.8, 0.2, 0.0]));
        subspace.add_point(&make_point(vec![0.7, 0.3, 0.1]));
        subspace.add_point(&make_point(vec![0.6, 0.4, 0.1]));

        assert_eq!(subspace.point_count, 5);

        // Compute principal directions
        subspace.recompute_subspace(2);

        assert!(subspace.has_subspace());
        assert!(subspace.rank() > 0);
        assert!(!subspace.eigenvalues.is_empty());

        println!("Centroid: {:?}", subspace.centroid.dims());
        println!("Principal directions: {}", subspace.rank());
        println!("Eigenvalues: {:?}", subspace.eigenvalues);
    }

    #[test]
    fn test_subspace_similarity() {
        let mut a = Subspace::new(3);
        let mut b = Subspace::new(3);

        // Subspace A: points along x-axis
        for i in 0..10 {
            let x = 1.0 - i as f32 * 0.05;
            let y = i as f32 * 0.05;
            a.add_point(&make_point(vec![x, y, 0.0]));
        }

        // Subspace B: similar points (should be high similarity)
        for i in 0..10 {
            let x = 0.95 - i as f32 * 0.04;
            let y = i as f32 * 0.04 + 0.05;
            b.add_point(&make_point(vec![x, y, 0.1]));
        }

        a.recompute_subspace(2);
        b.recompute_subspace(2);

        let sim = subspace_similarity(&a, &b);
        println!("Similarity between similar subspaces: {:.3}", sim);
        assert!(sim > 0.5, "Similar subspaces should have high similarity");

        // Subspace C: orthogonal to A (along z-axis)
        let mut c = Subspace::new(3);
        for i in 0..10 {
            let z = 1.0 - i as f32 * 0.05;
            c.add_point(&make_point(vec![0.0, 0.1, z]));
        }
        c.recompute_subspace(2);

        let sim_ac = subspace_similarity(&a, &c);
        println!("Similarity between orthogonal subspaces: {:.3}", sim_ac);
        assert!(sim_ac < sim, "Orthogonal subspaces should have lower similarity");
    }

    #[test]
    fn test_query_alignment() {
        let mut subspace = Subspace::new(3);

        // Points primarily along x-axis with some y variation
        for i in 0..20 {
            let x = 0.8 + (i % 3) as f32 * 0.1;
            let y = (i as f32 * 0.05) % 0.3;
            subspace.add_point(&make_point(vec![x, y, 0.05]));
        }
        subspace.recompute_subspace(2);

        // Query aligned with subspace
        let aligned_query = make_point(vec![0.9, 0.1, 0.0]);
        let aligned_score = query_subspace_alignment(&aligned_query, &subspace);

        // Query orthogonal to subspace
        let orthogonal_query = make_point(vec![0.0, 0.0, 1.0]);
        let orthogonal_score = query_subspace_alignment(&orthogonal_query, &subspace);

        println!("Aligned query score: {:.3}", aligned_score);
        println!("Orthogonal query score: {:.3}", orthogonal_score);

        assert!(aligned_score > orthogonal_score,
            "Aligned query should score higher than orthogonal query");
    }

    #[test]
    fn test_spread_and_isotropy() {
        let mut tight = Subspace::new(3);
        let mut spread_out = Subspace::new(3);

        // Tight cluster
        for _ in 0..20 {
            tight.add_point(&make_point(vec![0.9, 0.1, 0.05]));
        }

        // Spread out cluster
        for i in 0..20 {
            let angle = i as f32 * 0.3;
            spread_out.add_point(&make_point(vec![
                angle.cos(),
                angle.sin(),
                0.1
            ]));
        }

        tight.recompute_subspace(3);
        spread_out.recompute_subspace(3);

        let tight_spread = subspace_spread(&tight);
        let wide_spread = subspace_spread(&spread_out);

        println!("Tight cluster spread: {:.6}", tight_spread);
        println!("Wide cluster spread: {:.6}", wide_spread);

        // Note: with normalized vectors the spread comparison might not be as expected
        // The test validates the computation runs correctly
    }
}