File size: 6,845 Bytes
8ef2d83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
//! # Proximity
//!
//! Trait and implementations for measuring how related two points are.
//!
//! This is one of the five primitives of ARMS:
//! `Proximity: fn(a, b) -> f32` - How related?
//!
//! Proximity functions are pluggable - use whichever fits your use case.
use super::Point;
/// Trait for measuring proximity between points
///
/// Higher values typically mean more similar/related.
/// The exact semantics depend on the implementation.
pub trait Proximity: Send + Sync {
/// Compute proximity between two points
///
/// Both points must have the same dimensionality.
fn proximity(&self, a: &Point, b: &Point) -> f32;
/// Name of this proximity function (for debugging/config)
fn name(&self) -> &'static str;
}
// ============================================================================
// IMPLEMENTATIONS
// ============================================================================
/// Cosine similarity
///
/// Measures the cosine of the angle between two vectors.
/// Returns a value in [-1, 1] where 1 means identical direction.
///
/// Best for: Normalized vectors, semantic similarity.
#[derive(Clone, Copy, Debug, Default)]
pub struct Cosine;
impl Proximity for Cosine {
fn proximity(&self, a: &Point, b: &Point) -> f32 {
assert_eq!(
a.dimensionality(),
b.dimensionality(),
"Points must have same dimensionality"
);
let dot: f32 = a
.dims()
.iter()
.zip(b.dims().iter())
.map(|(x, y)| x * y)
.sum();
let mag_a = a.magnitude();
let mag_b = b.magnitude();
if mag_a == 0.0 || mag_b == 0.0 {
return 0.0;
}
dot / (mag_a * mag_b)
}
fn name(&self) -> &'static str {
"cosine"
}
}
/// Euclidean distance
///
/// The straight-line distance between two points.
/// Returns a value in [0, ∞) where 0 means identical.
///
/// Note: This returns DISTANCE, not similarity.
/// Lower values = more similar.
#[derive(Clone, Copy, Debug, Default)]
pub struct Euclidean;
impl Proximity for Euclidean {
fn proximity(&self, a: &Point, b: &Point) -> f32 {
assert_eq!(
a.dimensionality(),
b.dimensionality(),
"Points must have same dimensionality"
);
let dist_sq: f32 = a
.dims()
.iter()
.zip(b.dims().iter())
.map(|(x, y)| (x - y).powi(2))
.sum();
dist_sq.sqrt()
}
fn name(&self) -> &'static str {
"euclidean"
}
}
/// Squared Euclidean distance
///
/// Same ordering as Euclidean but faster (no sqrt).
/// Use when you only need to compare distances, not absolute values.
#[derive(Clone, Copy, Debug, Default)]
pub struct EuclideanSquared;
impl Proximity for EuclideanSquared {
fn proximity(&self, a: &Point, b: &Point) -> f32 {
assert_eq!(
a.dimensionality(),
b.dimensionality(),
"Points must have same dimensionality"
);
a.dims()
.iter()
.zip(b.dims().iter())
.map(|(x, y)| (x - y).powi(2))
.sum()
}
fn name(&self) -> &'static str {
"euclidean_squared"
}
}
/// Dot product
///
/// The raw dot product without normalization.
/// Returns a value that depends on magnitudes.
///
/// Best for: When magnitude matters, not just direction.
#[derive(Clone, Copy, Debug, Default)]
pub struct DotProduct;
impl Proximity for DotProduct {
fn proximity(&self, a: &Point, b: &Point) -> f32 {
assert_eq!(
a.dimensionality(),
b.dimensionality(),
"Points must have same dimensionality"
);
a.dims()
.iter()
.zip(b.dims().iter())
.map(|(x, y)| x * y)
.sum()
}
fn name(&self) -> &'static str {
"dot_product"
}
}
/// Manhattan (L1) distance
///
/// Sum of absolute differences along each dimension.
/// Returns a value in [0, ∞) where 0 means identical.
#[derive(Clone, Copy, Debug, Default)]
pub struct Manhattan;
impl Proximity for Manhattan {
fn proximity(&self, a: &Point, b: &Point) -> f32 {
assert_eq!(
a.dimensionality(),
b.dimensionality(),
"Points must have same dimensionality"
);
a.dims()
.iter()
.zip(b.dims().iter())
.map(|(x, y)| (x - y).abs())
.sum()
}
fn name(&self) -> &'static str {
"manhattan"
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_cosine_identical() {
let a = Point::new(vec![1.0, 0.0, 0.0]);
let b = Point::new(vec![1.0, 0.0, 0.0]);
let cos = Cosine.proximity(&a, &b);
assert!((cos - 1.0).abs() < 0.0001);
}
#[test]
fn test_cosine_opposite() {
let a = Point::new(vec![1.0, 0.0, 0.0]);
let b = Point::new(vec![-1.0, 0.0, 0.0]);
let cos = Cosine.proximity(&a, &b);
assert!((cos - (-1.0)).abs() < 0.0001);
}
#[test]
fn test_cosine_orthogonal() {
let a = Point::new(vec![1.0, 0.0, 0.0]);
let b = Point::new(vec![0.0, 1.0, 0.0]);
let cos = Cosine.proximity(&a, &b);
assert!(cos.abs() < 0.0001);
}
#[test]
fn test_euclidean() {
let a = Point::new(vec![0.0, 0.0]);
let b = Point::new(vec![3.0, 4.0]);
let dist = Euclidean.proximity(&a, &b);
assert!((dist - 5.0).abs() < 0.0001);
}
#[test]
fn test_euclidean_squared() {
let a = Point::new(vec![0.0, 0.0]);
let b = Point::new(vec![3.0, 4.0]);
let dist_sq = EuclideanSquared.proximity(&a, &b);
assert!((dist_sq - 25.0).abs() < 0.0001);
}
#[test]
fn test_dot_product() {
let a = Point::new(vec![1.0, 2.0, 3.0]);
let b = Point::new(vec![4.0, 5.0, 6.0]);
let dot = DotProduct.proximity(&a, &b);
// 1*4 + 2*5 + 3*6 = 4 + 10 + 18 = 32
assert!((dot - 32.0).abs() < 0.0001);
}
#[test]
fn test_manhattan() {
let a = Point::new(vec![0.0, 0.0]);
let b = Point::new(vec![3.0, 4.0]);
let dist = Manhattan.proximity(&a, &b);
assert!((dist - 7.0).abs() < 0.0001);
}
#[test]
fn test_proximity_names() {
assert_eq!(Cosine.name(), "cosine");
assert_eq!(Euclidean.name(), "euclidean");
assert_eq!(DotProduct.name(), "dot_product");
assert_eq!(Manhattan.name(), "manhattan");
}
#[test]
#[should_panic(expected = "same dimensionality")]
fn test_dimension_mismatch_panics() {
let a = Point::new(vec![1.0, 2.0]);
let b = Point::new(vec![1.0, 2.0, 3.0]);
Cosine.proximity(&a, &b);
}
}
|