diff --git "a/trainer_state.json" "b/trainer_state.json" new file mode 100644--- /dev/null +++ "b/trainer_state.json" @@ -0,0 +1,7044 @@ +{ + "best_global_step": null, + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.18666666666666668, + "eval_steps": 500, + "global_step": 7000, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "entropy": 1.1917937099933624, + "epoch": 2.6666666666666667e-05, + "grad_norm": 2.756018877029419, + "learning_rate": 0.0, + "loss": 1.2545, + "mean_token_accuracy": 0.696878045797348, + "num_tokens": 32768.0, + "step": 1 + }, + { + "entropy": 1.225203620062934, + "epoch": 0.0002666666666666667, + "grad_norm": 1.0855209827423096, + "learning_rate": 1.8000000000000001e-06, + "loss": 1.2994, + "mean_token_accuracy": 0.69396587047312, + "num_tokens": 327680.0, + "step": 10 + }, + { + "entropy": 1.1899177700281143, + "epoch": 0.0005333333333333334, + "grad_norm": 0.6739585399627686, + "learning_rate": 3.8000000000000005e-06, + "loss": 1.2378, + "mean_token_accuracy": 0.7016434505581856, + "num_tokens": 655360.0, + "step": 20 + }, + { + "entropy": 1.1293971434235572, + "epoch": 0.0008, + "grad_norm": 0.592927098274231, + "learning_rate": 5.8e-06, + "loss": 1.1511, + "mean_token_accuracy": 0.7152706444263458, + "num_tokens": 983040.0, + "step": 30 + }, + { + "entropy": 1.1152707174420358, + "epoch": 0.0010666666666666667, + "grad_norm": 0.5012957453727722, + "learning_rate": 7.800000000000002e-06, + "loss": 1.106, + "mean_token_accuracy": 0.7225225985050201, + "num_tokens": 1310720.0, + "step": 40 + }, + { + "entropy": 1.0850900515913964, + "epoch": 0.0013333333333333333, + "grad_norm": 0.4958457052707672, + "learning_rate": 9.800000000000001e-06, + "loss": 1.0733, + "mean_token_accuracy": 0.7267992407083511, + "num_tokens": 1638400.0, + "step": 50 + }, + { + "entropy": 1.0684167608618735, + "epoch": 0.0016, + "grad_norm": 0.46953684091567993, + "learning_rate": 1.18e-05, + "loss": 1.0543, + "mean_token_accuracy": 0.7275537639856339, + "num_tokens": 1966080.0, + "step": 60 + }, + { + "entropy": 1.0187185630202293, + "epoch": 0.0018666666666666666, + "grad_norm": 0.4304210841655731, + "learning_rate": 1.38e-05, + "loss": 1.0117, + "mean_token_accuracy": 0.7367454767227173, + "num_tokens": 2293760.0, + "step": 70 + }, + { + "entropy": 1.0244884178042413, + "epoch": 0.0021333333333333334, + "grad_norm": 0.4684528708457947, + "learning_rate": 1.58e-05, + "loss": 1.0233, + "mean_token_accuracy": 0.7338923513889313, + "num_tokens": 2621440.0, + "step": 80 + }, + { + "entropy": 1.027450728416443, + "epoch": 0.0024, + "grad_norm": 0.473316490650177, + "learning_rate": 1.7800000000000002e-05, + "loss": 1.0255, + "mean_token_accuracy": 0.7331347793340683, + "num_tokens": 2949120.0, + "step": 90 + }, + { + "entropy": 1.033797836303711, + "epoch": 0.0026666666666666666, + "grad_norm": 0.46264511346817017, + "learning_rate": 1.98e-05, + "loss": 1.0247, + "mean_token_accuracy": 0.7324810594320297, + "num_tokens": 3276800.0, + "step": 100 + }, + { + "entropy": 0.9973023891448974, + "epoch": 0.0029333333333333334, + "grad_norm": 0.4641575217247009, + "learning_rate": 1.9995187165775402e-05, + "loss": 0.9937, + "mean_token_accuracy": 0.7390884727239608, + "num_tokens": 3604480.0, + "step": 110 + }, + { + "entropy": 0.9917041152715683, + "epoch": 0.0032, + "grad_norm": 0.549523115158081, + "learning_rate": 1.9989839572192514e-05, + "loss": 0.9887, + "mean_token_accuracy": 0.7388135403394699, + "num_tokens": 3932160.0, + "step": 120 + }, + { + "entropy": 0.9998480260372162, + "epoch": 0.0034666666666666665, + "grad_norm": 0.4537445306777954, + "learning_rate": 1.998449197860963e-05, + "loss": 0.995, + "mean_token_accuracy": 0.7383186712861061, + "num_tokens": 4259840.0, + "step": 130 + }, + { + "entropy": 0.9524103581905365, + "epoch": 0.0037333333333333333, + "grad_norm": 0.48012760281562805, + "learning_rate": 1.9979144385026738e-05, + "loss": 0.9467, + "mean_token_accuracy": 0.7473148837685585, + "num_tokens": 4587520.0, + "step": 140 + }, + { + "entropy": 0.9688920095562935, + "epoch": 0.004, + "grad_norm": 0.47992178797721863, + "learning_rate": 1.9973796791443853e-05, + "loss": 0.9631, + "mean_token_accuracy": 0.7448161020874977, + "num_tokens": 4915200.0, + "step": 150 + }, + { + "entropy": 0.9810811311006546, + "epoch": 0.004266666666666667, + "grad_norm": 0.4852803945541382, + "learning_rate": 1.9968449197860965e-05, + "loss": 0.9758, + "mean_token_accuracy": 0.742143203318119, + "num_tokens": 5242880.0, + "step": 160 + }, + { + "entropy": 0.9711030036211014, + "epoch": 0.004533333333333334, + "grad_norm": 0.5114846229553223, + "learning_rate": 1.9963101604278076e-05, + "loss": 0.9694, + "mean_token_accuracy": 0.7441593334078789, + "num_tokens": 5570560.0, + "step": 170 + }, + { + "entropy": 0.9730613678693771, + "epoch": 0.0048, + "grad_norm": 0.47124916315078735, + "learning_rate": 1.9957754010695188e-05, + "loss": 0.965, + "mean_token_accuracy": 0.743820258975029, + "num_tokens": 5898240.0, + "step": 180 + }, + { + "entropy": 0.9529570192098618, + "epoch": 0.005066666666666666, + "grad_norm": 0.4511706233024597, + "learning_rate": 1.9952406417112303e-05, + "loss": 0.9462, + "mean_token_accuracy": 0.7474676162004471, + "num_tokens": 6225920.0, + "step": 190 + }, + { + "entropy": 0.9540489405393601, + "epoch": 0.005333333333333333, + "grad_norm": 0.5116438865661621, + "learning_rate": 1.9947058823529412e-05, + "loss": 0.9515, + "mean_token_accuracy": 0.745259040594101, + "num_tokens": 6553600.0, + "step": 200 + }, + { + "entropy": 0.9719951331615448, + "epoch": 0.0056, + "grad_norm": 0.4739775061607361, + "learning_rate": 1.9941711229946527e-05, + "loss": 0.9656, + "mean_token_accuracy": 0.7429618790745736, + "num_tokens": 6881280.0, + "step": 210 + }, + { + "entropy": 0.9361593425273895, + "epoch": 0.005866666666666667, + "grad_norm": 0.46898579597473145, + "learning_rate": 1.993636363636364e-05, + "loss": 0.9309, + "mean_token_accuracy": 0.7507209226489067, + "num_tokens": 7208960.0, + "step": 220 + }, + { + "entropy": 0.9282811805605888, + "epoch": 0.0061333333333333335, + "grad_norm": 0.48956814408302307, + "learning_rate": 1.993101604278075e-05, + "loss": 0.9205, + "mean_token_accuracy": 0.7508217230439186, + "num_tokens": 7536640.0, + "step": 230 + }, + { + "entropy": 0.9626896977424622, + "epoch": 0.0064, + "grad_norm": 0.4619200825691223, + "learning_rate": 1.9925668449197863e-05, + "loss": 0.96, + "mean_token_accuracy": 0.7457844629883766, + "num_tokens": 7864320.0, + "step": 240 + }, + { + "entropy": 0.9355827301740647, + "epoch": 0.006666666666666667, + "grad_norm": 0.4730663597583771, + "learning_rate": 1.9920320855614974e-05, + "loss": 0.9293, + "mean_token_accuracy": 0.7511669084429741, + "num_tokens": 8192000.0, + "step": 250 + }, + { + "entropy": 0.9282837182283401, + "epoch": 0.006933333333333333, + "grad_norm": 0.4893971085548401, + "learning_rate": 1.9914973262032086e-05, + "loss": 0.9249, + "mean_token_accuracy": 0.7516342848539352, + "num_tokens": 8519680.0, + "step": 260 + }, + { + "entropy": 0.9069504201412201, + "epoch": 0.0072, + "grad_norm": 0.5181482434272766, + "learning_rate": 1.9909625668449198e-05, + "loss": 0.9026, + "mean_token_accuracy": 0.7560208901762963, + "num_tokens": 8847360.0, + "step": 270 + }, + { + "entropy": 0.9075347542762756, + "epoch": 0.007466666666666667, + "grad_norm": 0.5042241811752319, + "learning_rate": 1.9904278074866313e-05, + "loss": 0.904, + "mean_token_accuracy": 0.7554679840803147, + "num_tokens": 9175040.0, + "step": 280 + }, + { + "entropy": 0.9218019858002663, + "epoch": 0.007733333333333333, + "grad_norm": 0.4679202437400818, + "learning_rate": 1.9898930481283425e-05, + "loss": 0.9159, + "mean_token_accuracy": 0.7540017157793045, + "num_tokens": 9502720.0, + "step": 290 + }, + { + "entropy": 0.9411949530243874, + "epoch": 0.008, + "grad_norm": 0.44983187317848206, + "learning_rate": 1.9893582887700537e-05, + "loss": 0.9368, + "mean_token_accuracy": 0.7479838699102401, + "num_tokens": 9830400.0, + "step": 300 + }, + { + "entropy": 0.9111632362008095, + "epoch": 0.008266666666666667, + "grad_norm": 0.45098212361335754, + "learning_rate": 1.988823529411765e-05, + "loss": 0.9048, + "mean_token_accuracy": 0.7555535227060318, + "num_tokens": 10158080.0, + "step": 310 + }, + { + "entropy": 0.9299016907811165, + "epoch": 0.008533333333333334, + "grad_norm": 0.4565262794494629, + "learning_rate": 1.988288770053476e-05, + "loss": 0.9273, + "mean_token_accuracy": 0.7521291568875312, + "num_tokens": 10485760.0, + "step": 320 + }, + { + "entropy": 0.9363565370440483, + "epoch": 0.0088, + "grad_norm": 0.5131130218505859, + "learning_rate": 1.9877540106951872e-05, + "loss": 0.9336, + "mean_token_accuracy": 0.7517320349812507, + "num_tokens": 10813440.0, + "step": 330 + }, + { + "entropy": 0.9035725295543671, + "epoch": 0.009066666666666667, + "grad_norm": 0.4885678291320801, + "learning_rate": 1.9872192513368987e-05, + "loss": 0.8962, + "mean_token_accuracy": 0.7565249264240265, + "num_tokens": 11141120.0, + "step": 340 + }, + { + "entropy": 0.931587140262127, + "epoch": 0.009333333333333334, + "grad_norm": 0.463820219039917, + "learning_rate": 1.9866844919786096e-05, + "loss": 0.9241, + "mean_token_accuracy": 0.7517564758658409, + "num_tokens": 11468800.0, + "step": 350 + }, + { + "entropy": 0.9012247174978256, + "epoch": 0.0096, + "grad_norm": 0.45758935809135437, + "learning_rate": 1.986149732620321e-05, + "loss": 0.8993, + "mean_token_accuracy": 0.7569189876317978, + "num_tokens": 11796480.0, + "step": 360 + }, + { + "entropy": 0.8967527940869331, + "epoch": 0.009866666666666666, + "grad_norm": 0.4350438714027405, + "learning_rate": 1.9856149732620323e-05, + "loss": 0.8882, + "mean_token_accuracy": 0.7589503869414329, + "num_tokens": 12124160.0, + "step": 370 + }, + { + "entropy": 0.8967338830232621, + "epoch": 0.010133333333333333, + "grad_norm": 0.45170173048973083, + "learning_rate": 1.9850802139037435e-05, + "loss": 0.8963, + "mean_token_accuracy": 0.7554863154888153, + "num_tokens": 12451840.0, + "step": 380 + }, + { + "entropy": 0.9230557337403298, + "epoch": 0.0104, + "grad_norm": 0.4924105405807495, + "learning_rate": 1.9845454545454546e-05, + "loss": 0.9191, + "mean_token_accuracy": 0.754075026512146, + "num_tokens": 12779520.0, + "step": 390 + }, + { + "entropy": 0.906305131316185, + "epoch": 0.010666666666666666, + "grad_norm": 0.45452919602394104, + "learning_rate": 1.984010695187166e-05, + "loss": 0.8964, + "mean_token_accuracy": 0.7582386374473572, + "num_tokens": 13107200.0, + "step": 400 + }, + { + "entropy": 0.8801364779472352, + "epoch": 0.010933333333333333, + "grad_norm": 0.45245060324668884, + "learning_rate": 1.983475935828877e-05, + "loss": 0.8784, + "mean_token_accuracy": 0.7602181121706962, + "num_tokens": 13434880.0, + "step": 410 + }, + { + "entropy": 0.8755475401878356, + "epoch": 0.0112, + "grad_norm": 0.5070144534111023, + "learning_rate": 1.9829411764705885e-05, + "loss": 0.8693, + "mean_token_accuracy": 0.7621395409107208, + "num_tokens": 13762560.0, + "step": 420 + }, + { + "entropy": 0.9023118302226066, + "epoch": 0.011466666666666667, + "grad_norm": 0.4301604628562927, + "learning_rate": 1.9824064171122997e-05, + "loss": 0.8984, + "mean_token_accuracy": 0.7581011667847634, + "num_tokens": 14090240.0, + "step": 430 + }, + { + "entropy": 0.9035790309309959, + "epoch": 0.011733333333333333, + "grad_norm": 0.46501588821411133, + "learning_rate": 1.981871657754011e-05, + "loss": 0.8977, + "mean_token_accuracy": 0.7566990479826927, + "num_tokens": 14417920.0, + "step": 440 + }, + { + "entropy": 0.8804532885551453, + "epoch": 0.012, + "grad_norm": 0.4364991784095764, + "learning_rate": 1.981336898395722e-05, + "loss": 0.8756, + "mean_token_accuracy": 0.7617485299706459, + "num_tokens": 14745600.0, + "step": 450 + }, + { + "entropy": 0.9079241648316383, + "epoch": 0.012266666666666667, + "grad_norm": 0.4812929034233093, + "learning_rate": 1.9808021390374332e-05, + "loss": 0.906, + "mean_token_accuracy": 0.7552236095070839, + "num_tokens": 15073280.0, + "step": 460 + }, + { + "entropy": 0.932107862830162, + "epoch": 0.012533333333333334, + "grad_norm": 0.5057600736618042, + "learning_rate": 1.9802673796791444e-05, + "loss": 0.9223, + "mean_token_accuracy": 0.7512493848800659, + "num_tokens": 15400960.0, + "step": 470 + }, + { + "entropy": 0.9215750128030777, + "epoch": 0.0128, + "grad_norm": 0.5192552804946899, + "learning_rate": 1.979732620320856e-05, + "loss": 0.9236, + "mean_token_accuracy": 0.7527553722262382, + "num_tokens": 15728640.0, + "step": 480 + }, + { + "entropy": 0.8818250864744186, + "epoch": 0.013066666666666667, + "grad_norm": 0.4712938070297241, + "learning_rate": 1.979197860962567e-05, + "loss": 0.8681, + "mean_token_accuracy": 0.7624266907572746, + "num_tokens": 16056320.0, + "step": 490 + }, + { + "entropy": 0.855175918340683, + "epoch": 0.013333333333333334, + "grad_norm": 0.44197145104408264, + "learning_rate": 1.9786631016042783e-05, + "loss": 0.8508, + "mean_token_accuracy": 0.7657746762037277, + "num_tokens": 16384000.0, + "step": 500 + }, + { + "entropy": 0.8776819244027138, + "epoch": 0.0136, + "grad_norm": 0.4693980813026428, + "learning_rate": 1.9781283422459895e-05, + "loss": 0.8721, + "mean_token_accuracy": 0.7612261712551117, + "num_tokens": 16711680.0, + "step": 510 + }, + { + "entropy": 0.8772112146019936, + "epoch": 0.013866666666666666, + "grad_norm": 0.46298500895500183, + "learning_rate": 1.9775935828877007e-05, + "loss": 0.8662, + "mean_token_accuracy": 0.7619470894336701, + "num_tokens": 17039360.0, + "step": 520 + }, + { + "entropy": 0.875455005466938, + "epoch": 0.014133333333333333, + "grad_norm": 0.4709574580192566, + "learning_rate": 1.977058823529412e-05, + "loss": 0.8718, + "mean_token_accuracy": 0.7629765406250953, + "num_tokens": 17367040.0, + "step": 530 + }, + { + "entropy": 0.871045409142971, + "epoch": 0.0144, + "grad_norm": 0.46276578307151794, + "learning_rate": 1.976524064171123e-05, + "loss": 0.8644, + "mean_token_accuracy": 0.7631628751754761, + "num_tokens": 17694720.0, + "step": 540 + }, + { + "entropy": 0.8733671963214874, + "epoch": 0.014666666666666666, + "grad_norm": 0.4854150414466858, + "learning_rate": 1.9759893048128345e-05, + "loss": 0.8671, + "mean_token_accuracy": 0.7625336021184921, + "num_tokens": 18022400.0, + "step": 550 + }, + { + "entropy": 0.8307457804679871, + "epoch": 0.014933333333333333, + "grad_norm": 0.5010337233543396, + "learning_rate": 1.9754545454545454e-05, + "loss": 0.8276, + "mean_token_accuracy": 0.7701735079288483, + "num_tokens": 18350080.0, + "step": 560 + }, + { + "entropy": 0.8965598121285439, + "epoch": 0.0152, + "grad_norm": 0.5053139925003052, + "learning_rate": 1.974919786096257e-05, + "loss": 0.89, + "mean_token_accuracy": 0.759066465497017, + "num_tokens": 18677760.0, + "step": 570 + }, + { + "entropy": 0.8558321312069893, + "epoch": 0.015466666666666667, + "grad_norm": 0.46031227707862854, + "learning_rate": 1.974385026737968e-05, + "loss": 0.8496, + "mean_token_accuracy": 0.766547529399395, + "num_tokens": 19005440.0, + "step": 580 + }, + { + "entropy": 0.8634923353791237, + "epoch": 0.015733333333333332, + "grad_norm": 0.45664703845977783, + "learning_rate": 1.9738502673796793e-05, + "loss": 0.8593, + "mean_token_accuracy": 0.7641953766345978, + "num_tokens": 19333120.0, + "step": 590 + }, + { + "entropy": 0.8536560088396072, + "epoch": 0.016, + "grad_norm": 0.5289744734764099, + "learning_rate": 1.9733155080213905e-05, + "loss": 0.8476, + "mean_token_accuracy": 0.7657227471470833, + "num_tokens": 19660800.0, + "step": 600 + }, + { + "entropy": 0.8970341011881828, + "epoch": 0.016266666666666665, + "grad_norm": 0.4675828218460083, + "learning_rate": 1.972780748663102e-05, + "loss": 0.8861, + "mean_token_accuracy": 0.7606579944491386, + "num_tokens": 19988480.0, + "step": 610 + }, + { + "entropy": 0.8475384518504143, + "epoch": 0.016533333333333334, + "grad_norm": 0.485074907541275, + "learning_rate": 1.9722459893048128e-05, + "loss": 0.8483, + "mean_token_accuracy": 0.7655914008617402, + "num_tokens": 20316160.0, + "step": 620 + }, + { + "entropy": 0.859432689845562, + "epoch": 0.0168, + "grad_norm": 0.47643354535102844, + "learning_rate": 1.9717112299465243e-05, + "loss": 0.851, + "mean_token_accuracy": 0.7655241936445236, + "num_tokens": 20643840.0, + "step": 630 + }, + { + "entropy": 0.8484608560800553, + "epoch": 0.017066666666666667, + "grad_norm": 0.5069352984428406, + "learning_rate": 1.9711764705882355e-05, + "loss": 0.8418, + "mean_token_accuracy": 0.7684536874294281, + "num_tokens": 20971520.0, + "step": 640 + }, + { + "entropy": 0.8371534153819085, + "epoch": 0.017333333333333333, + "grad_norm": 0.47192221879959106, + "learning_rate": 1.9706417112299467e-05, + "loss": 0.8288, + "mean_token_accuracy": 0.7725592643022537, + "num_tokens": 21299200.0, + "step": 650 + }, + { + "entropy": 0.8368221953511238, + "epoch": 0.0176, + "grad_norm": 0.45516103506088257, + "learning_rate": 1.970106951871658e-05, + "loss": 0.831, + "mean_token_accuracy": 0.7701796174049378, + "num_tokens": 21626880.0, + "step": 660 + }, + { + "entropy": 0.8400416925549508, + "epoch": 0.017866666666666666, + "grad_norm": 0.5058351755142212, + "learning_rate": 1.969572192513369e-05, + "loss": 0.8351, + "mean_token_accuracy": 0.7710868760943412, + "num_tokens": 21954560.0, + "step": 670 + }, + { + "entropy": 0.8550396636128426, + "epoch": 0.018133333333333335, + "grad_norm": 0.48285484313964844, + "learning_rate": 1.9690374331550802e-05, + "loss": 0.8486, + "mean_token_accuracy": 0.7667980194091797, + "num_tokens": 22282240.0, + "step": 680 + }, + { + "entropy": 0.8442179337143898, + "epoch": 0.0184, + "grad_norm": 0.5167956948280334, + "learning_rate": 1.9685026737967918e-05, + "loss": 0.842, + "mean_token_accuracy": 0.7679282695055007, + "num_tokens": 22609920.0, + "step": 690 + }, + { + "entropy": 0.8682486891746521, + "epoch": 0.018666666666666668, + "grad_norm": 0.47264111042022705, + "learning_rate": 1.967967914438503e-05, + "loss": 0.8633, + "mean_token_accuracy": 0.7637371674180031, + "num_tokens": 22937600.0, + "step": 700 + }, + { + "entropy": 0.8567087382078171, + "epoch": 0.018933333333333333, + "grad_norm": 0.47900059819221497, + "learning_rate": 1.967433155080214e-05, + "loss": 0.8541, + "mean_token_accuracy": 0.766712486743927, + "num_tokens": 23265280.0, + "step": 710 + }, + { + "entropy": 0.849834431707859, + "epoch": 0.0192, + "grad_norm": 0.4607236385345459, + "learning_rate": 1.9668983957219253e-05, + "loss": 0.8401, + "mean_token_accuracy": 0.7682429119944573, + "num_tokens": 23592960.0, + "step": 720 + }, + { + "entropy": 0.8704495802521706, + "epoch": 0.019466666666666667, + "grad_norm": 0.48516854643821716, + "learning_rate": 1.9663636363636365e-05, + "loss": 0.8604, + "mean_token_accuracy": 0.7662176206707955, + "num_tokens": 23920640.0, + "step": 730 + }, + { + "entropy": 0.8398331791162491, + "epoch": 0.019733333333333332, + "grad_norm": 0.45983725786209106, + "learning_rate": 1.9658288770053477e-05, + "loss": 0.8316, + "mean_token_accuracy": 0.7716214582324028, + "num_tokens": 24248320.0, + "step": 740 + }, + { + "entropy": 0.8403495743870735, + "epoch": 0.02, + "grad_norm": 0.546696662902832, + "learning_rate": 1.9652941176470592e-05, + "loss": 0.8378, + "mean_token_accuracy": 0.7692021027207374, + "num_tokens": 24576000.0, + "step": 750 + }, + { + "entropy": 0.846625666320324, + "epoch": 0.020266666666666665, + "grad_norm": 0.4402243196964264, + "learning_rate": 1.9647593582887704e-05, + "loss": 0.8394, + "mean_token_accuracy": 0.7687958255410194, + "num_tokens": 24903680.0, + "step": 760 + }, + { + "entropy": 0.8273769333958626, + "epoch": 0.020533333333333334, + "grad_norm": 0.501061737537384, + "learning_rate": 1.9642245989304812e-05, + "loss": 0.8254, + "mean_token_accuracy": 0.7722537860274314, + "num_tokens": 25231360.0, + "step": 770 + }, + { + "entropy": 0.8746409237384796, + "epoch": 0.0208, + "grad_norm": 0.4820423126220703, + "learning_rate": 1.9636898395721927e-05, + "loss": 0.8702, + "mean_token_accuracy": 0.763709670305252, + "num_tokens": 25559040.0, + "step": 780 + }, + { + "entropy": 0.8554838418960571, + "epoch": 0.021066666666666668, + "grad_norm": 0.48708412051200867, + "learning_rate": 1.963155080213904e-05, + "loss": 0.8436, + "mean_token_accuracy": 0.7691623851656914, + "num_tokens": 25886720.0, + "step": 790 + }, + { + "entropy": 0.8408373609185219, + "epoch": 0.021333333333333333, + "grad_norm": 0.5047973990440369, + "learning_rate": 1.962620320855615e-05, + "loss": 0.8353, + "mean_token_accuracy": 0.7715023159980774, + "num_tokens": 26214400.0, + "step": 800 + }, + { + "entropy": 0.8513059750199318, + "epoch": 0.0216, + "grad_norm": 0.5162477493286133, + "learning_rate": 1.9620855614973263e-05, + "loss": 0.8452, + "mean_token_accuracy": 0.7680321365594864, + "num_tokens": 26542080.0, + "step": 810 + }, + { + "entropy": 0.8257234156131744, + "epoch": 0.021866666666666666, + "grad_norm": 0.48618701100349426, + "learning_rate": 1.9615508021390378e-05, + "loss": 0.8209, + "mean_token_accuracy": 0.774682305753231, + "num_tokens": 26869760.0, + "step": 820 + }, + { + "entropy": 0.8454226747155189, + "epoch": 0.022133333333333335, + "grad_norm": 0.4451475441455841, + "learning_rate": 1.9610160427807486e-05, + "loss": 0.8364, + "mean_token_accuracy": 0.7716367274522782, + "num_tokens": 27197440.0, + "step": 830 + }, + { + "entropy": 0.8426426142454148, + "epoch": 0.0224, + "grad_norm": 0.5013114213943481, + "learning_rate": 1.96048128342246e-05, + "loss": 0.8357, + "mean_token_accuracy": 0.770793616771698, + "num_tokens": 27525120.0, + "step": 840 + }, + { + "entropy": 0.8404464915394783, + "epoch": 0.02266666666666667, + "grad_norm": 0.45483893156051636, + "learning_rate": 1.9599465240641713e-05, + "loss": 0.8334, + "mean_token_accuracy": 0.7686675176024437, + "num_tokens": 27852800.0, + "step": 850 + }, + { + "entropy": 0.8530464544892311, + "epoch": 0.022933333333333333, + "grad_norm": 0.4812896251678467, + "learning_rate": 1.9594117647058825e-05, + "loss": 0.8464, + "mean_token_accuracy": 0.769425094127655, + "num_tokens": 28180480.0, + "step": 860 + }, + { + "entropy": 0.7890083432197571, + "epoch": 0.0232, + "grad_norm": 0.51589035987854, + "learning_rate": 1.9588770053475937e-05, + "loss": 0.7879, + "mean_token_accuracy": 0.7804404914379119, + "num_tokens": 28508160.0, + "step": 870 + }, + { + "entropy": 0.8365664348006249, + "epoch": 0.023466666666666667, + "grad_norm": 0.46631357073783875, + "learning_rate": 1.958342245989305e-05, + "loss": 0.8256, + "mean_token_accuracy": 0.7738453060388565, + "num_tokens": 28835840.0, + "step": 880 + }, + { + "entropy": 0.8198944807052613, + "epoch": 0.023733333333333332, + "grad_norm": 0.49191394448280334, + "learning_rate": 1.957807486631016e-05, + "loss": 0.8137, + "mean_token_accuracy": 0.7748839199543, + "num_tokens": 29163520.0, + "step": 890 + }, + { + "entropy": 0.8006534934043884, + "epoch": 0.024, + "grad_norm": 0.4927683174610138, + "learning_rate": 1.9572727272727276e-05, + "loss": 0.7934, + "mean_token_accuracy": 0.7795576736330986, + "num_tokens": 29491200.0, + "step": 900 + }, + { + "entropy": 0.8472590684890747, + "epoch": 0.024266666666666666, + "grad_norm": 0.4960421323776245, + "learning_rate": 1.9567379679144387e-05, + "loss": 0.8408, + "mean_token_accuracy": 0.7685850456357002, + "num_tokens": 29818880.0, + "step": 910 + }, + { + "entropy": 0.8337089791893959, + "epoch": 0.024533333333333334, + "grad_norm": 0.45343852043151855, + "learning_rate": 1.95620320855615e-05, + "loss": 0.8265, + "mean_token_accuracy": 0.7731946513056756, + "num_tokens": 30146560.0, + "step": 920 + }, + { + "entropy": 0.8185087725520134, + "epoch": 0.0248, + "grad_norm": 0.527547299861908, + "learning_rate": 1.955668449197861e-05, + "loss": 0.815, + "mean_token_accuracy": 0.7749144658446312, + "num_tokens": 30474240.0, + "step": 930 + }, + { + "entropy": 0.826999232172966, + "epoch": 0.025066666666666668, + "grad_norm": 0.484590083360672, + "learning_rate": 1.9551336898395723e-05, + "loss": 0.8155, + "mean_token_accuracy": 0.7730846762657165, + "num_tokens": 30801920.0, + "step": 940 + }, + { + "entropy": 0.8298612013459206, + "epoch": 0.025333333333333333, + "grad_norm": 0.5021140575408936, + "learning_rate": 1.9545989304812835e-05, + "loss": 0.8271, + "mean_token_accuracy": 0.7713801324367523, + "num_tokens": 31129600.0, + "step": 950 + }, + { + "entropy": 0.8166377231478691, + "epoch": 0.0256, + "grad_norm": 0.45983028411865234, + "learning_rate": 1.954064171122995e-05, + "loss": 0.8117, + "mean_token_accuracy": 0.7748258739709855, + "num_tokens": 31457280.0, + "step": 960 + }, + { + "entropy": 0.8549644887447357, + "epoch": 0.025866666666666666, + "grad_norm": 0.47488975524902344, + "learning_rate": 1.9535294117647062e-05, + "loss": 0.851, + "mean_token_accuracy": 0.767937433719635, + "num_tokens": 31784960.0, + "step": 970 + }, + { + "entropy": 0.7983048990368843, + "epoch": 0.026133333333333335, + "grad_norm": 0.5116825103759766, + "learning_rate": 1.952994652406417e-05, + "loss": 0.789, + "mean_token_accuracy": 0.7807368054986, + "num_tokens": 32112640.0, + "step": 980 + }, + { + "entropy": 0.8038114890456199, + "epoch": 0.0264, + "grad_norm": 0.46046605706214905, + "learning_rate": 1.9524598930481285e-05, + "loss": 0.7984, + "mean_token_accuracy": 0.7783907622098922, + "num_tokens": 32440320.0, + "step": 990 + }, + { + "entropy": 0.8306144312024116, + "epoch": 0.02666666666666667, + "grad_norm": 0.455465167760849, + "learning_rate": 1.9519251336898397e-05, + "loss": 0.819, + "mean_token_accuracy": 0.773463462293148, + "num_tokens": 32768000.0, + "step": 1000 + }, + { + "entropy": 0.8105433046817779, + "epoch": 0.026933333333333333, + "grad_norm": 0.514305055141449, + "learning_rate": 1.951390374331551e-05, + "loss": 0.8075, + "mean_token_accuracy": 0.7765059873461724, + "num_tokens": 33095680.0, + "step": 1010 + }, + { + "entropy": 0.8218068391084671, + "epoch": 0.0272, + "grad_norm": 0.5273925065994263, + "learning_rate": 1.9508556149732624e-05, + "loss": 0.8143, + "mean_token_accuracy": 0.7753207445144653, + "num_tokens": 33423360.0, + "step": 1020 + }, + { + "entropy": 0.8005619689822197, + "epoch": 0.027466666666666667, + "grad_norm": 0.49442076683044434, + "learning_rate": 1.9503208556149736e-05, + "loss": 0.7875, + "mean_token_accuracy": 0.7798081621527672, + "num_tokens": 33751040.0, + "step": 1030 + }, + { + "entropy": 0.8247484147548676, + "epoch": 0.027733333333333332, + "grad_norm": 0.5219594836235046, + "learning_rate": 1.9497860962566844e-05, + "loss": 0.8213, + "mean_token_accuracy": 0.7736986815929413, + "num_tokens": 34078720.0, + "step": 1040 + }, + { + "entropy": 0.7826527014374733, + "epoch": 0.028, + "grad_norm": 0.44685232639312744, + "learning_rate": 1.949251336898396e-05, + "loss": 0.7776, + "mean_token_accuracy": 0.7804343834519386, + "num_tokens": 34406400.0, + "step": 1050 + }, + { + "entropy": 0.7927459478378296, + "epoch": 0.028266666666666666, + "grad_norm": 0.47030535340309143, + "learning_rate": 1.948716577540107e-05, + "loss": 0.7892, + "mean_token_accuracy": 0.7794110476970673, + "num_tokens": 34734080.0, + "step": 1060 + }, + { + "entropy": 0.7950563684105874, + "epoch": 0.028533333333333334, + "grad_norm": 0.46424150466918945, + "learning_rate": 1.9481818181818183e-05, + "loss": 0.7835, + "mean_token_accuracy": 0.7810972630977631, + "num_tokens": 35061760.0, + "step": 1070 + }, + { + "entropy": 0.8059652045369148, + "epoch": 0.0288, + "grad_norm": 0.507229745388031, + "learning_rate": 1.94764705882353e-05, + "loss": 0.7985, + "mean_token_accuracy": 0.7788123145699501, + "num_tokens": 35389440.0, + "step": 1080 + }, + { + "entropy": 0.8047100350260734, + "epoch": 0.029066666666666668, + "grad_norm": 0.4822532534599304, + "learning_rate": 1.9471122994652407e-05, + "loss": 0.7978, + "mean_token_accuracy": 0.7769672527909279, + "num_tokens": 35717120.0, + "step": 1090 + }, + { + "entropy": 0.784260918200016, + "epoch": 0.029333333333333333, + "grad_norm": 0.4959782063961029, + "learning_rate": 1.946577540106952e-05, + "loss": 0.7803, + "mean_token_accuracy": 0.7819984167814255, + "num_tokens": 36044800.0, + "step": 1100 + }, + { + "entropy": 0.8240539342164993, + "epoch": 0.0296, + "grad_norm": 0.48158520460128784, + "learning_rate": 1.9460427807486634e-05, + "loss": 0.8129, + "mean_token_accuracy": 0.7740316450595855, + "num_tokens": 36372480.0, + "step": 1110 + }, + { + "entropy": 0.7918573170900345, + "epoch": 0.029866666666666666, + "grad_norm": 0.5358759760856628, + "learning_rate": 1.9455080213903746e-05, + "loss": 0.787, + "mean_token_accuracy": 0.7804343819618225, + "num_tokens": 36700160.0, + "step": 1120 + }, + { + "entropy": 0.8246589750051498, + "epoch": 0.030133333333333335, + "grad_norm": 0.4864969253540039, + "learning_rate": 1.9449732620320857e-05, + "loss": 0.8202, + "mean_token_accuracy": 0.7726447984576226, + "num_tokens": 37027840.0, + "step": 1130 + }, + { + "entropy": 0.7894530639052391, + "epoch": 0.0304, + "grad_norm": 0.551214337348938, + "learning_rate": 1.944438502673797e-05, + "loss": 0.7828, + "mean_token_accuracy": 0.7802694290876389, + "num_tokens": 37355520.0, + "step": 1140 + }, + { + "entropy": 0.8148070260882377, + "epoch": 0.030666666666666665, + "grad_norm": 0.5003300309181213, + "learning_rate": 1.943903743315508e-05, + "loss": 0.8053, + "mean_token_accuracy": 0.7759316965937615, + "num_tokens": 37683200.0, + "step": 1150 + }, + { + "entropy": 0.7537903472781181, + "epoch": 0.030933333333333334, + "grad_norm": 0.522283673286438, + "learning_rate": 1.9433689839572193e-05, + "loss": 0.7452, + "mean_token_accuracy": 0.7881170570850372, + "num_tokens": 38010880.0, + "step": 1160 + }, + { + "entropy": 0.801523107290268, + "epoch": 0.0312, + "grad_norm": 0.5095292329788208, + "learning_rate": 1.9428342245989308e-05, + "loss": 0.7917, + "mean_token_accuracy": 0.7794079929590225, + "num_tokens": 38338560.0, + "step": 1170 + }, + { + "entropy": 0.7755785793066025, + "epoch": 0.031466666666666664, + "grad_norm": 0.48669058084487915, + "learning_rate": 1.942299465240642e-05, + "loss": 0.7686, + "mean_token_accuracy": 0.7830736801028252, + "num_tokens": 38666240.0, + "step": 1180 + }, + { + "entropy": 0.7972671002149582, + "epoch": 0.031733333333333336, + "grad_norm": 0.5146931409835815, + "learning_rate": 1.941764705882353e-05, + "loss": 0.796, + "mean_token_accuracy": 0.780376347899437, + "num_tokens": 38993920.0, + "step": 1190 + }, + { + "entropy": 0.795520955324173, + "epoch": 0.032, + "grad_norm": 0.4943196475505829, + "learning_rate": 1.9412299465240643e-05, + "loss": 0.7778, + "mean_token_accuracy": 0.7812805503606797, + "num_tokens": 39321600.0, + "step": 1200 + }, + { + "entropy": 0.7829627484083176, + "epoch": 0.032266666666666666, + "grad_norm": 0.4896015524864197, + "learning_rate": 1.9406951871657755e-05, + "loss": 0.7795, + "mean_token_accuracy": 0.7820869997143746, + "num_tokens": 39649280.0, + "step": 1210 + }, + { + "entropy": 0.818043765425682, + "epoch": 0.03253333333333333, + "grad_norm": 0.5356979966163635, + "learning_rate": 1.9401604278074867e-05, + "loss": 0.8154, + "mean_token_accuracy": 0.7758583828806878, + "num_tokens": 39976960.0, + "step": 1220 + }, + { + "entropy": 0.7951482772827149, + "epoch": 0.0328, + "grad_norm": 0.4821169376373291, + "learning_rate": 1.9396256684491982e-05, + "loss": 0.7813, + "mean_token_accuracy": 0.7820075735449791, + "num_tokens": 40304640.0, + "step": 1230 + }, + { + "entropy": 0.7990813001990318, + "epoch": 0.03306666666666667, + "grad_norm": 0.5052225589752197, + "learning_rate": 1.9390909090909094e-05, + "loss": 0.7988, + "mean_token_accuracy": 0.7780700147151947, + "num_tokens": 40632320.0, + "step": 1240 + }, + { + "entropy": 0.7410405725240707, + "epoch": 0.03333333333333333, + "grad_norm": 0.49692273139953613, + "learning_rate": 1.9385561497326202e-05, + "loss": 0.732, + "mean_token_accuracy": 0.7925158813595772, + "num_tokens": 40960000.0, + "step": 1250 + }, + { + "entropy": 0.7968778610229492, + "epoch": 0.0336, + "grad_norm": 0.4673176407814026, + "learning_rate": 1.9380213903743318e-05, + "loss": 0.7911, + "mean_token_accuracy": 0.7777064964175224, + "num_tokens": 41287680.0, + "step": 1260 + }, + { + "entropy": 0.764365927875042, + "epoch": 0.03386666666666667, + "grad_norm": 0.5029505491256714, + "learning_rate": 1.937486631016043e-05, + "loss": 0.7572, + "mean_token_accuracy": 0.7866538390517235, + "num_tokens": 41615360.0, + "step": 1270 + }, + { + "entropy": 0.7907108590006828, + "epoch": 0.034133333333333335, + "grad_norm": 0.5248188972473145, + "learning_rate": 1.936951871657754e-05, + "loss": 0.783, + "mean_token_accuracy": 0.780819283425808, + "num_tokens": 41943040.0, + "step": 1280 + }, + { + "entropy": 0.788802333176136, + "epoch": 0.0344, + "grad_norm": 0.46518850326538086, + "learning_rate": 1.9364171122994656e-05, + "loss": 0.7827, + "mean_token_accuracy": 0.7826368525624275, + "num_tokens": 42270720.0, + "step": 1290 + }, + { + "entropy": 0.7725998848676682, + "epoch": 0.034666666666666665, + "grad_norm": 0.5415055751800537, + "learning_rate": 1.9358823529411765e-05, + "loss": 0.7667, + "mean_token_accuracy": 0.7866630017757416, + "num_tokens": 42598400.0, + "step": 1300 + }, + { + "entropy": 0.8065502732992172, + "epoch": 0.03493333333333333, + "grad_norm": 0.46911802887916565, + "learning_rate": 1.9353475935828877e-05, + "loss": 0.7911, + "mean_token_accuracy": 0.7814271822571754, + "num_tokens": 42926080.0, + "step": 1310 + }, + { + "entropy": 0.7598569974303245, + "epoch": 0.0352, + "grad_norm": 0.5336980223655701, + "learning_rate": 1.9348128342245992e-05, + "loss": 0.7584, + "mean_token_accuracy": 0.7860154002904892, + "num_tokens": 43253760.0, + "step": 1320 + }, + { + "entropy": 0.7780168011784554, + "epoch": 0.03546666666666667, + "grad_norm": 0.5248178243637085, + "learning_rate": 1.9342780748663104e-05, + "loss": 0.7716, + "mean_token_accuracy": 0.7840634182095527, + "num_tokens": 43581440.0, + "step": 1330 + }, + { + "entropy": 0.7802111297845841, + "epoch": 0.03573333333333333, + "grad_norm": 0.46950259804725647, + "learning_rate": 1.9337433155080216e-05, + "loss": 0.7734, + "mean_token_accuracy": 0.7839717730879784, + "num_tokens": 43909120.0, + "step": 1340 + }, + { + "entropy": 0.7892262697219848, + "epoch": 0.036, + "grad_norm": 0.4483737051486969, + "learning_rate": 1.9332085561497327e-05, + "loss": 0.7841, + "mean_token_accuracy": 0.7805535197257996, + "num_tokens": 44236800.0, + "step": 1350 + }, + { + "entropy": 0.7858917117118835, + "epoch": 0.03626666666666667, + "grad_norm": 0.43271368741989136, + "learning_rate": 1.932673796791444e-05, + "loss": 0.778, + "mean_token_accuracy": 0.7815004870295524, + "num_tokens": 44564480.0, + "step": 1360 + }, + { + "entropy": 0.7805564686655998, + "epoch": 0.036533333333333334, + "grad_norm": 0.48232999444007874, + "learning_rate": 1.932139037433155e-05, + "loss": 0.7718, + "mean_token_accuracy": 0.7831622704863548, + "num_tokens": 44892160.0, + "step": 1370 + }, + { + "entropy": 0.7665321186184884, + "epoch": 0.0368, + "grad_norm": 0.4853302836418152, + "learning_rate": 1.9316042780748666e-05, + "loss": 0.7661, + "mean_token_accuracy": 0.7845888301730156, + "num_tokens": 45219840.0, + "step": 1380 + }, + { + "entropy": 0.7815655440092086, + "epoch": 0.037066666666666664, + "grad_norm": 0.5040138363838196, + "learning_rate": 1.9310695187165778e-05, + "loss": 0.7663, + "mean_token_accuracy": 0.7851325765252113, + "num_tokens": 45547520.0, + "step": 1390 + }, + { + "entropy": 0.7671736180782318, + "epoch": 0.037333333333333336, + "grad_norm": 0.46688610315322876, + "learning_rate": 1.930534759358289e-05, + "loss": 0.7592, + "mean_token_accuracy": 0.7883950427174569, + "num_tokens": 45875200.0, + "step": 1400 + }, + { + "entropy": 0.7612995445728302, + "epoch": 0.0376, + "grad_norm": 0.4817868769168854, + "learning_rate": 1.93e-05, + "loss": 0.7611, + "mean_token_accuracy": 0.7856518849730492, + "num_tokens": 46202880.0, + "step": 1410 + }, + { + "entropy": 0.8082423210144043, + "epoch": 0.037866666666666667, + "grad_norm": 0.5080907344818115, + "learning_rate": 1.9294652406417113e-05, + "loss": 0.7958, + "mean_token_accuracy": 0.7777889743447304, + "num_tokens": 46530560.0, + "step": 1420 + }, + { + "entropy": 0.7901916623115539, + "epoch": 0.03813333333333333, + "grad_norm": 0.4505074918270111, + "learning_rate": 1.9289304812834225e-05, + "loss": 0.783, + "mean_token_accuracy": 0.7805962800979614, + "num_tokens": 46858240.0, + "step": 1430 + }, + { + "entropy": 0.7650920733809471, + "epoch": 0.0384, + "grad_norm": 0.520160436630249, + "learning_rate": 1.928395721925134e-05, + "loss": 0.7554, + "mean_token_accuracy": 0.7868982166051864, + "num_tokens": 47185920.0, + "step": 1440 + }, + { + "entropy": 0.7834387555718422, + "epoch": 0.03866666666666667, + "grad_norm": 0.4799220561981201, + "learning_rate": 1.9278609625668452e-05, + "loss": 0.7776, + "mean_token_accuracy": 0.78304313570261, + "num_tokens": 47513600.0, + "step": 1450 + }, + { + "entropy": 0.7920588865876198, + "epoch": 0.038933333333333334, + "grad_norm": 0.5058838725090027, + "learning_rate": 1.9273262032085564e-05, + "loss": 0.7891, + "mean_token_accuracy": 0.7809475794434547, + "num_tokens": 47841280.0, + "step": 1460 + }, + { + "entropy": 0.7809412464499473, + "epoch": 0.0392, + "grad_norm": 0.5144160985946655, + "learning_rate": 1.9267914438502676e-05, + "loss": 0.773, + "mean_token_accuracy": 0.7836693584918976, + "num_tokens": 48168960.0, + "step": 1470 + }, + { + "entropy": 0.7659068420529366, + "epoch": 0.039466666666666664, + "grad_norm": 0.4488181471824646, + "learning_rate": 1.9262566844919788e-05, + "loss": 0.7524, + "mean_token_accuracy": 0.7890365302562714, + "num_tokens": 48496640.0, + "step": 1480 + }, + { + "entropy": 0.744123874604702, + "epoch": 0.039733333333333336, + "grad_norm": 0.48872411251068115, + "learning_rate": 1.92572192513369e-05, + "loss": 0.7411, + "mean_token_accuracy": 0.7905058667063714, + "num_tokens": 48824320.0, + "step": 1490 + }, + { + "entropy": 0.7659653306007386, + "epoch": 0.04, + "grad_norm": 0.48394057154655457, + "learning_rate": 1.9251871657754015e-05, + "loss": 0.7547, + "mean_token_accuracy": 0.7879429414868355, + "num_tokens": 49152000.0, + "step": 1500 + }, + { + "entropy": 0.7519314661622047, + "epoch": 0.040266666666666666, + "grad_norm": 0.5193694829940796, + "learning_rate": 1.9246524064171123e-05, + "loss": 0.7455, + "mean_token_accuracy": 0.7914222911000252, + "num_tokens": 49479680.0, + "step": 1510 + }, + { + "entropy": 0.7523004367947579, + "epoch": 0.04053333333333333, + "grad_norm": 0.4702441990375519, + "learning_rate": 1.9241176470588235e-05, + "loss": 0.7503, + "mean_token_accuracy": 0.787933774292469, + "num_tokens": 49807360.0, + "step": 1520 + }, + { + "entropy": 0.7782173708081246, + "epoch": 0.0408, + "grad_norm": 0.560482382774353, + "learning_rate": 1.923582887700535e-05, + "loss": 0.7664, + "mean_token_accuracy": 0.7841245189309121, + "num_tokens": 50135040.0, + "step": 1530 + }, + { + "entropy": 0.7670839697122573, + "epoch": 0.04106666666666667, + "grad_norm": 0.46597108244895935, + "learning_rate": 1.9230481283422462e-05, + "loss": 0.7537, + "mean_token_accuracy": 0.788737167418003, + "num_tokens": 50462720.0, + "step": 1540 + }, + { + "entropy": 0.7554810360074043, + "epoch": 0.04133333333333333, + "grad_norm": 0.48917797207832336, + "learning_rate": 1.9225133689839574e-05, + "loss": 0.7511, + "mean_token_accuracy": 0.7885966524481773, + "num_tokens": 50790400.0, + "step": 1550 + }, + { + "entropy": 0.7538948372006417, + "epoch": 0.0416, + "grad_norm": 0.48391637206077576, + "learning_rate": 1.9219786096256685e-05, + "loss": 0.7459, + "mean_token_accuracy": 0.7887738287448883, + "num_tokens": 51118080.0, + "step": 1560 + }, + { + "entropy": 0.7791929230093956, + "epoch": 0.04186666666666667, + "grad_norm": 0.4691905379295349, + "learning_rate": 1.9214438502673797e-05, + "loss": 0.7722, + "mean_token_accuracy": 0.7833486109972, + "num_tokens": 51445760.0, + "step": 1570 + }, + { + "entropy": 0.7446255341172219, + "epoch": 0.042133333333333335, + "grad_norm": 0.5347681045532227, + "learning_rate": 1.920909090909091e-05, + "loss": 0.7335, + "mean_token_accuracy": 0.7925830855965614, + "num_tokens": 51773440.0, + "step": 1580 + }, + { + "entropy": 0.7673803761601448, + "epoch": 0.0424, + "grad_norm": 0.5345098376274109, + "learning_rate": 1.9203743315508024e-05, + "loss": 0.7613, + "mean_token_accuracy": 0.7856946498155594, + "num_tokens": 52101120.0, + "step": 1590 + }, + { + "entropy": 0.7777209252119064, + "epoch": 0.042666666666666665, + "grad_norm": 0.4827149212360382, + "learning_rate": 1.9198395721925136e-05, + "loss": 0.7713, + "mean_token_accuracy": 0.7836663022637367, + "num_tokens": 52428800.0, + "step": 1600 + }, + { + "entropy": 0.7633250005543232, + "epoch": 0.04293333333333333, + "grad_norm": 0.5306099057197571, + "learning_rate": 1.9193048128342248e-05, + "loss": 0.7559, + "mean_token_accuracy": 0.7877260506153106, + "num_tokens": 52756480.0, + "step": 1610 + }, + { + "entropy": 0.7480434983968735, + "epoch": 0.0432, + "grad_norm": 0.5288537740707397, + "learning_rate": 1.918770053475936e-05, + "loss": 0.7385, + "mean_token_accuracy": 0.7926105782389641, + "num_tokens": 53084160.0, + "step": 1620 + }, + { + "entropy": 0.7811682939529419, + "epoch": 0.04346666666666667, + "grad_norm": 0.5437115430831909, + "learning_rate": 1.918235294117647e-05, + "loss": 0.7783, + "mean_token_accuracy": 0.7843719482421875, + "num_tokens": 53411840.0, + "step": 1630 + }, + { + "entropy": 0.79571573138237, + "epoch": 0.04373333333333333, + "grad_norm": 0.47293466329574585, + "learning_rate": 1.9177005347593583e-05, + "loss": 0.7843, + "mean_token_accuracy": 0.7802144423127174, + "num_tokens": 53739520.0, + "step": 1640 + }, + { + "entropy": 0.7749171122908592, + "epoch": 0.044, + "grad_norm": 0.5731510519981384, + "learning_rate": 1.91716577540107e-05, + "loss": 0.7704, + "mean_token_accuracy": 0.7833577677607536, + "num_tokens": 54067200.0, + "step": 1650 + }, + { + "entropy": 0.7756189912557602, + "epoch": 0.04426666666666667, + "grad_norm": 0.5350993871688843, + "learning_rate": 1.916631016042781e-05, + "loss": 0.7699, + "mean_token_accuracy": 0.7844880238175392, + "num_tokens": 54394880.0, + "step": 1660 + }, + { + "entropy": 0.7374959006905556, + "epoch": 0.044533333333333334, + "grad_norm": 0.5313361883163452, + "learning_rate": 1.9160962566844922e-05, + "loss": 0.7267, + "mean_token_accuracy": 0.7932917892932891, + "num_tokens": 54722560.0, + "step": 1670 + }, + { + "entropy": 0.749508784711361, + "epoch": 0.0448, + "grad_norm": 0.4558972716331482, + "learning_rate": 1.9155614973262034e-05, + "loss": 0.7427, + "mean_token_accuracy": 0.7892137080430984, + "num_tokens": 55050240.0, + "step": 1680 + }, + { + "entropy": 0.7335466608405113, + "epoch": 0.045066666666666665, + "grad_norm": 0.5259963870048523, + "learning_rate": 1.9150267379679146e-05, + "loss": 0.7288, + "mean_token_accuracy": 0.7918316274881363, + "num_tokens": 55377920.0, + "step": 1690 + }, + { + "entropy": 0.7740557298064232, + "epoch": 0.04533333333333334, + "grad_norm": 0.48570960760116577, + "learning_rate": 1.9144919786096258e-05, + "loss": 0.7634, + "mean_token_accuracy": 0.7872067436575889, + "num_tokens": 55705600.0, + "step": 1700 + }, + { + "entropy": 0.7654780521988869, + "epoch": 0.0456, + "grad_norm": 0.4950166642665863, + "learning_rate": 1.9139572192513373e-05, + "loss": 0.7701, + "mean_token_accuracy": 0.7850623235106469, + "num_tokens": 56033280.0, + "step": 1710 + }, + { + "entropy": 0.77603120803833, + "epoch": 0.04586666666666667, + "grad_norm": 0.4830263555049896, + "learning_rate": 1.913422459893048e-05, + "loss": 0.7609, + "mean_token_accuracy": 0.784258921444416, + "num_tokens": 56360960.0, + "step": 1720 + }, + { + "entropy": 0.7609418869018555, + "epoch": 0.04613333333333333, + "grad_norm": 0.5481200814247131, + "learning_rate": 1.9128877005347596e-05, + "loss": 0.7484, + "mean_token_accuracy": 0.7893572762608528, + "num_tokens": 56688640.0, + "step": 1730 + }, + { + "entropy": 0.7777589857578278, + "epoch": 0.0464, + "grad_norm": 0.5048011541366577, + "learning_rate": 1.9123529411764708e-05, + "loss": 0.7733, + "mean_token_accuracy": 0.7853005871176719, + "num_tokens": 57016320.0, + "step": 1740 + }, + { + "entropy": 0.7774819910526276, + "epoch": 0.04666666666666667, + "grad_norm": 0.45590740442276, + "learning_rate": 1.911818181818182e-05, + "loss": 0.7654, + "mean_token_accuracy": 0.7853494629263877, + "num_tokens": 57344000.0, + "step": 1750 + }, + { + "entropy": 0.7336423471570015, + "epoch": 0.046933333333333334, + "grad_norm": 0.5403317809104919, + "learning_rate": 1.9112834224598932e-05, + "loss": 0.7266, + "mean_token_accuracy": 0.7936461389064788, + "num_tokens": 57671680.0, + "step": 1760 + }, + { + "entropy": 0.7187768623232842, + "epoch": 0.0472, + "grad_norm": 0.5129840970039368, + "learning_rate": 1.9107486631016044e-05, + "loss": 0.7083, + "mean_token_accuracy": 0.7989980459213257, + "num_tokens": 57999360.0, + "step": 1770 + }, + { + "entropy": 0.7413559228181839, + "epoch": 0.047466666666666664, + "grad_norm": 0.49861571192741394, + "learning_rate": 1.9102139037433155e-05, + "loss": 0.7359, + "mean_token_accuracy": 0.7919690847396851, + "num_tokens": 58327040.0, + "step": 1780 + }, + { + "entropy": 0.7554563418030739, + "epoch": 0.047733333333333336, + "grad_norm": 0.5321679711341858, + "learning_rate": 1.9096791443850267e-05, + "loss": 0.7459, + "mean_token_accuracy": 0.7921706959605217, + "num_tokens": 58654720.0, + "step": 1790 + }, + { + "entropy": 0.74212187230587, + "epoch": 0.048, + "grad_norm": 0.45808517932891846, + "learning_rate": 1.9091443850267382e-05, + "loss": 0.738, + "mean_token_accuracy": 0.7917491480708122, + "num_tokens": 58982400.0, + "step": 1800 + }, + { + "entropy": 0.7440304681658745, + "epoch": 0.048266666666666666, + "grad_norm": 0.5892611742019653, + "learning_rate": 1.9086096256684494e-05, + "loss": 0.7382, + "mean_token_accuracy": 0.7911229282617569, + "num_tokens": 59310080.0, + "step": 1810 + }, + { + "entropy": 0.7768477439880371, + "epoch": 0.04853333333333333, + "grad_norm": 0.4835836589336395, + "learning_rate": 1.9080748663101606e-05, + "loss": 0.7631, + "mean_token_accuracy": 0.7863789096474647, + "num_tokens": 59637760.0, + "step": 1820 + }, + { + "entropy": 0.7587182119488716, + "epoch": 0.0488, + "grad_norm": 0.4698182940483093, + "learning_rate": 1.9075401069518718e-05, + "loss": 0.7528, + "mean_token_accuracy": 0.7875672027468681, + "num_tokens": 59965440.0, + "step": 1830 + }, + { + "entropy": 0.7687411174178124, + "epoch": 0.04906666666666667, + "grad_norm": 0.5421642065048218, + "learning_rate": 1.907005347593583e-05, + "loss": 0.7669, + "mean_token_accuracy": 0.7865133240818978, + "num_tokens": 60293120.0, + "step": 1840 + }, + { + "entropy": 0.7701867774128914, + "epoch": 0.04933333333333333, + "grad_norm": 0.5125485062599182, + "learning_rate": 1.906470588235294e-05, + "loss": 0.7596, + "mean_token_accuracy": 0.7859481945633888, + "num_tokens": 60620800.0, + "step": 1850 + }, + { + "entropy": 0.7358735978603363, + "epoch": 0.0496, + "grad_norm": 0.5143376588821411, + "learning_rate": 1.9059358288770057e-05, + "loss": 0.7291, + "mean_token_accuracy": 0.7917277619242669, + "num_tokens": 60948480.0, + "step": 1860 + }, + { + "entropy": 0.7245923519134522, + "epoch": 0.04986666666666666, + "grad_norm": 0.48511043190956116, + "learning_rate": 1.905401069518717e-05, + "loss": 0.7103, + "mean_token_accuracy": 0.7968475133180618, + "num_tokens": 61276160.0, + "step": 1870 + }, + { + "entropy": 0.7460856273770332, + "epoch": 0.050133333333333335, + "grad_norm": 0.4994851052761078, + "learning_rate": 1.904866310160428e-05, + "loss": 0.7382, + "mean_token_accuracy": 0.7932642981410026, + "num_tokens": 61603840.0, + "step": 1880 + }, + { + "entropy": 0.7631218507885933, + "epoch": 0.0504, + "grad_norm": 0.4711359739303589, + "learning_rate": 1.9043315508021392e-05, + "loss": 0.752, + "mean_token_accuracy": 0.7879765421152115, + "num_tokens": 61931520.0, + "step": 1890 + }, + { + "entropy": 0.7486452057957649, + "epoch": 0.050666666666666665, + "grad_norm": 0.5361327528953552, + "learning_rate": 1.9037967914438504e-05, + "loss": 0.7428, + "mean_token_accuracy": 0.7896108284592629, + "num_tokens": 62259200.0, + "step": 1900 + }, + { + "entropy": 0.7843396544456482, + "epoch": 0.05093333333333333, + "grad_norm": 0.5279068350791931, + "learning_rate": 1.9032620320855616e-05, + "loss": 0.7704, + "mean_token_accuracy": 0.784051202237606, + "num_tokens": 62586880.0, + "step": 1910 + }, + { + "entropy": 0.7031185373663902, + "epoch": 0.0512, + "grad_norm": 0.47015589475631714, + "learning_rate": 1.902727272727273e-05, + "loss": 0.708, + "mean_token_accuracy": 0.7975348263978959, + "num_tokens": 62914560.0, + "step": 1920 + }, + { + "entropy": 0.7438496083021164, + "epoch": 0.05146666666666667, + "grad_norm": 0.5139464139938354, + "learning_rate": 1.902192513368984e-05, + "loss": 0.7305, + "mean_token_accuracy": 0.7940493702888489, + "num_tokens": 63242240.0, + "step": 1930 + }, + { + "entropy": 0.7328460544347764, + "epoch": 0.05173333333333333, + "grad_norm": 0.5090652108192444, + "learning_rate": 1.9016577540106954e-05, + "loss": 0.7189, + "mean_token_accuracy": 0.7942265421152115, + "num_tokens": 63569920.0, + "step": 1940 + }, + { + "entropy": 0.7520336791872978, + "epoch": 0.052, + "grad_norm": 0.4853484332561493, + "learning_rate": 1.9011229946524066e-05, + "loss": 0.7428, + "mean_token_accuracy": 0.7905761316418648, + "num_tokens": 63897600.0, + "step": 1950 + }, + { + "entropy": 0.7502805277705192, + "epoch": 0.05226666666666667, + "grad_norm": 0.5005112886428833, + "learning_rate": 1.9005882352941178e-05, + "loss": 0.7448, + "mean_token_accuracy": 0.7892809137701988, + "num_tokens": 64225280.0, + "step": 1960 + }, + { + "entropy": 0.7123803675174714, + "epoch": 0.052533333333333335, + "grad_norm": 0.4861668348312378, + "learning_rate": 1.900053475935829e-05, + "loss": 0.7081, + "mean_token_accuracy": 0.7956347778439522, + "num_tokens": 64552960.0, + "step": 1970 + }, + { + "entropy": 0.7665349021553993, + "epoch": 0.0528, + "grad_norm": 0.5454739928245544, + "learning_rate": 1.89951871657754e-05, + "loss": 0.7588, + "mean_token_accuracy": 0.7865621954202652, + "num_tokens": 64880640.0, + "step": 1980 + }, + { + "entropy": 0.7607908979058265, + "epoch": 0.053066666666666665, + "grad_norm": 0.5345908403396606, + "learning_rate": 1.8989839572192513e-05, + "loss": 0.7501, + "mean_token_accuracy": 0.7871731415390968, + "num_tokens": 65208320.0, + "step": 1990 + }, + { + "entropy": 0.7199565961956977, + "epoch": 0.05333333333333334, + "grad_norm": 0.5356908440589905, + "learning_rate": 1.898449197860963e-05, + "loss": 0.7118, + "mean_token_accuracy": 0.798258800804615, + "num_tokens": 65536000.0, + "step": 2000 + }, + { + "entropy": 0.7386236518621445, + "epoch": 0.0536, + "grad_norm": 0.47253668308258057, + "learning_rate": 1.897914438502674e-05, + "loss": 0.7284, + "mean_token_accuracy": 0.7946816995739937, + "num_tokens": 65863680.0, + "step": 2010 + }, + { + "entropy": 0.7390207782387733, + "epoch": 0.05386666666666667, + "grad_norm": 0.5328691005706787, + "learning_rate": 1.8973796791443852e-05, + "loss": 0.7292, + "mean_token_accuracy": 0.792311216890812, + "num_tokens": 66191360.0, + "step": 2020 + }, + { + "entropy": 0.7622766062617302, + "epoch": 0.05413333333333333, + "grad_norm": 0.4725175201892853, + "learning_rate": 1.8968449197860964e-05, + "loss": 0.7604, + "mean_token_accuracy": 0.7881476074457169, + "num_tokens": 66519040.0, + "step": 2030 + }, + { + "entropy": 0.7201081782579422, + "epoch": 0.0544, + "grad_norm": 0.4898991882801056, + "learning_rate": 1.8963101604278076e-05, + "loss": 0.7115, + "mean_token_accuracy": 0.7967864155769349, + "num_tokens": 66846720.0, + "step": 2040 + }, + { + "entropy": 0.7476230427622795, + "epoch": 0.05466666666666667, + "grad_norm": 0.49194473028182983, + "learning_rate": 1.8957754010695188e-05, + "loss": 0.7307, + "mean_token_accuracy": 0.7937072336673736, + "num_tokens": 67174400.0, + "step": 2050 + }, + { + "entropy": 0.730175219476223, + "epoch": 0.054933333333333334, + "grad_norm": 0.6022394895553589, + "learning_rate": 1.8952406417112303e-05, + "loss": 0.7273, + "mean_token_accuracy": 0.7936766847968102, + "num_tokens": 67502080.0, + "step": 2060 + }, + { + "entropy": 0.739497372508049, + "epoch": 0.0552, + "grad_norm": 0.5170940160751343, + "learning_rate": 1.8947058823529415e-05, + "loss": 0.7279, + "mean_token_accuracy": 0.7933528870344162, + "num_tokens": 67829760.0, + "step": 2070 + }, + { + "entropy": 0.706153379380703, + "epoch": 0.055466666666666664, + "grad_norm": 0.46231991052627563, + "learning_rate": 1.8941711229946527e-05, + "loss": 0.6983, + "mean_token_accuracy": 0.8004734858870506, + "num_tokens": 68157440.0, + "step": 2080 + }, + { + "entropy": 0.7078771367669106, + "epoch": 0.055733333333333336, + "grad_norm": 0.5030118823051453, + "learning_rate": 1.893636363636364e-05, + "loss": 0.6942, + "mean_token_accuracy": 0.801701495051384, + "num_tokens": 68485120.0, + "step": 2090 + }, + { + "entropy": 0.7353975400328636, + "epoch": 0.056, + "grad_norm": 0.5152148604393005, + "learning_rate": 1.893101604278075e-05, + "loss": 0.728, + "mean_token_accuracy": 0.7925922527909279, + "num_tokens": 68812800.0, + "step": 2100 + }, + { + "entropy": 0.7255185887217521, + "epoch": 0.056266666666666666, + "grad_norm": 0.527554988861084, + "learning_rate": 1.8925668449197862e-05, + "loss": 0.7227, + "mean_token_accuracy": 0.7935086742043496, + "num_tokens": 69140480.0, + "step": 2110 + }, + { + "entropy": 0.7665341794490814, + "epoch": 0.05653333333333333, + "grad_norm": 0.5211319327354431, + "learning_rate": 1.8920320855614974e-05, + "loss": 0.7547, + "mean_token_accuracy": 0.7891953825950623, + "num_tokens": 69468160.0, + "step": 2120 + }, + { + "entropy": 0.695734278857708, + "epoch": 0.0568, + "grad_norm": 0.49992096424102783, + "learning_rate": 1.891497326203209e-05, + "loss": 0.6926, + "mean_token_accuracy": 0.802168869972229, + "num_tokens": 69795840.0, + "step": 2130 + }, + { + "entropy": 0.7313119895756245, + "epoch": 0.05706666666666667, + "grad_norm": 0.4708555340766907, + "learning_rate": 1.8909625668449197e-05, + "loss": 0.7146, + "mean_token_accuracy": 0.7958547204732895, + "num_tokens": 70123520.0, + "step": 2140 + }, + { + "entropy": 0.7185655139386654, + "epoch": 0.05733333333333333, + "grad_norm": 0.4482806921005249, + "learning_rate": 1.8904278074866313e-05, + "loss": 0.7129, + "mean_token_accuracy": 0.7958913758397103, + "num_tokens": 70451200.0, + "step": 2150 + }, + { + "entropy": 0.776476477086544, + "epoch": 0.0576, + "grad_norm": 0.518281102180481, + "learning_rate": 1.8898930481283424e-05, + "loss": 0.7684, + "mean_token_accuracy": 0.7842864140868187, + "num_tokens": 70778880.0, + "step": 2160 + }, + { + "entropy": 0.7576399743556976, + "epoch": 0.057866666666666663, + "grad_norm": 0.49978503584861755, + "learning_rate": 1.8893582887700536e-05, + "loss": 0.7513, + "mean_token_accuracy": 0.7877107754349708, + "num_tokens": 71106560.0, + "step": 2170 + }, + { + "entropy": 0.6848648637533188, + "epoch": 0.058133333333333335, + "grad_norm": 0.4555778205394745, + "learning_rate": 1.8888235294117648e-05, + "loss": 0.6764, + "mean_token_accuracy": 0.8048173308372497, + "num_tokens": 71434240.0, + "step": 2180 + }, + { + "entropy": 0.7415667727589608, + "epoch": 0.0584, + "grad_norm": 0.46825316548347473, + "learning_rate": 1.888288770053476e-05, + "loss": 0.7323, + "mean_token_accuracy": 0.79247617572546, + "num_tokens": 71761920.0, + "step": 2190 + }, + { + "entropy": 0.7620745912194252, + "epoch": 0.058666666666666666, + "grad_norm": 0.6024397611618042, + "learning_rate": 1.887754010695187e-05, + "loss": 0.7537, + "mean_token_accuracy": 0.7888288080692292, + "num_tokens": 72089600.0, + "step": 2200 + }, + { + "entropy": 0.7299460664391517, + "epoch": 0.05893333333333333, + "grad_norm": 0.5377632975578308, + "learning_rate": 1.8872192513368987e-05, + "loss": 0.718, + "mean_token_accuracy": 0.7958425000309944, + "num_tokens": 72417280.0, + "step": 2210 + }, + { + "entropy": 0.7022075489163399, + "epoch": 0.0592, + "grad_norm": 0.5637347102165222, + "learning_rate": 1.88668449197861e-05, + "loss": 0.6975, + "mean_token_accuracy": 0.8002566024661064, + "num_tokens": 72744960.0, + "step": 2220 + }, + { + "entropy": 0.7338330700993538, + "epoch": 0.05946666666666667, + "grad_norm": 0.5497167706489563, + "learning_rate": 1.886149732620321e-05, + "loss": 0.722, + "mean_token_accuracy": 0.7961021512746811, + "num_tokens": 73072640.0, + "step": 2230 + }, + { + "entropy": 0.7120828270912171, + "epoch": 0.05973333333333333, + "grad_norm": 0.49455058574676514, + "learning_rate": 1.8856149732620322e-05, + "loss": 0.7006, + "mean_token_accuracy": 0.7990713596343995, + "num_tokens": 73400320.0, + "step": 2240 + }, + { + "entropy": 0.6862977862358093, + "epoch": 0.06, + "grad_norm": 0.5340035557746887, + "learning_rate": 1.8850802139037434e-05, + "loss": 0.6758, + "mean_token_accuracy": 0.8064821600914002, + "num_tokens": 73728000.0, + "step": 2250 + }, + { + "entropy": 0.7129529133439064, + "epoch": 0.06026666666666667, + "grad_norm": 0.5503765344619751, + "learning_rate": 1.8845454545454546e-05, + "loss": 0.7071, + "mean_token_accuracy": 0.8007697924971581, + "num_tokens": 74055680.0, + "step": 2260 + }, + { + "entropy": 0.7133767187595368, + "epoch": 0.060533333333333335, + "grad_norm": 0.5122734904289246, + "learning_rate": 1.884010695187166e-05, + "loss": 0.7041, + "mean_token_accuracy": 0.8009622424840928, + "num_tokens": 74383360.0, + "step": 2270 + }, + { + "entropy": 0.7129033073782921, + "epoch": 0.0608, + "grad_norm": 0.49274197220802307, + "learning_rate": 1.8834759358288773e-05, + "loss": 0.6994, + "mean_token_accuracy": 0.7994990259408951, + "num_tokens": 74711040.0, + "step": 2280 + }, + { + "entropy": 0.7428222849965096, + "epoch": 0.061066666666666665, + "grad_norm": 0.5870295166969299, + "learning_rate": 1.8829411764705885e-05, + "loss": 0.7365, + "mean_token_accuracy": 0.7908082813024521, + "num_tokens": 75038720.0, + "step": 2290 + }, + { + "entropy": 0.7150219172239304, + "epoch": 0.06133333333333333, + "grad_norm": 0.5203629732131958, + "learning_rate": 1.8824064171122996e-05, + "loss": 0.7024, + "mean_token_accuracy": 0.7989797174930573, + "num_tokens": 75366400.0, + "step": 2300 + }, + { + "entropy": 0.715831783413887, + "epoch": 0.0616, + "grad_norm": 0.5192694067955017, + "learning_rate": 1.8818716577540108e-05, + "loss": 0.7133, + "mean_token_accuracy": 0.7941257387399674, + "num_tokens": 75694080.0, + "step": 2310 + }, + { + "entropy": 0.6949592083692551, + "epoch": 0.06186666666666667, + "grad_norm": 0.4811273217201233, + "learning_rate": 1.881336898395722e-05, + "loss": 0.681, + "mean_token_accuracy": 0.8047592893242836, + "num_tokens": 76021760.0, + "step": 2320 + }, + { + "entropy": 0.730679227411747, + "epoch": 0.06213333333333333, + "grad_norm": 0.5096244215965271, + "learning_rate": 1.8808021390374335e-05, + "loss": 0.7253, + "mean_token_accuracy": 0.7963679134845734, + "num_tokens": 76349440.0, + "step": 2330 + }, + { + "entropy": 0.733339001238346, + "epoch": 0.0624, + "grad_norm": 0.6114660501480103, + "learning_rate": 1.8802673796791447e-05, + "loss": 0.7234, + "mean_token_accuracy": 0.7940829679369926, + "num_tokens": 76677120.0, + "step": 2340 + }, + { + "entropy": 0.7035711303353309, + "epoch": 0.06266666666666666, + "grad_norm": 0.4455678164958954, + "learning_rate": 1.8797326203208555e-05, + "loss": 0.6935, + "mean_token_accuracy": 0.802947823703289, + "num_tokens": 77004800.0, + "step": 2350 + }, + { + "entropy": 0.6731013461947442, + "epoch": 0.06293333333333333, + "grad_norm": 0.4920752942562103, + "learning_rate": 1.879197860962567e-05, + "loss": 0.6631, + "mean_token_accuracy": 0.8078354135155678, + "num_tokens": 77332480.0, + "step": 2360 + }, + { + "entropy": 0.7298787772655487, + "epoch": 0.0632, + "grad_norm": 0.49286967515945435, + "learning_rate": 1.8786631016042782e-05, + "loss": 0.721, + "mean_token_accuracy": 0.7947244614362716, + "num_tokens": 77660160.0, + "step": 2370 + }, + { + "entropy": 0.7234544113278389, + "epoch": 0.06346666666666667, + "grad_norm": 0.5942859649658203, + "learning_rate": 1.8781283422459894e-05, + "loss": 0.709, + "mean_token_accuracy": 0.8001832857728004, + "num_tokens": 77987840.0, + "step": 2380 + }, + { + "entropy": 0.7012406192719937, + "epoch": 0.06373333333333334, + "grad_norm": 0.686430811882019, + "learning_rate": 1.8775935828877006e-05, + "loss": 0.6978, + "mean_token_accuracy": 0.7987078458070755, + "num_tokens": 78315520.0, + "step": 2390 + }, + { + "entropy": 0.7058230191469193, + "epoch": 0.064, + "grad_norm": 0.5323297381401062, + "learning_rate": 1.8770588235294118e-05, + "loss": 0.6899, + "mean_token_accuracy": 0.803005863726139, + "num_tokens": 78643200.0, + "step": 2400 + }, + { + "entropy": 0.7069758854806423, + "epoch": 0.06426666666666667, + "grad_norm": 0.49161744117736816, + "learning_rate": 1.876524064171123e-05, + "loss": 0.6967, + "mean_token_accuracy": 0.801011124253273, + "num_tokens": 78970880.0, + "step": 2410 + }, + { + "entropy": 0.7340013913810253, + "epoch": 0.06453333333333333, + "grad_norm": 0.5566353797912598, + "learning_rate": 1.8759893048128345e-05, + "loss": 0.727, + "mean_token_accuracy": 0.7926472336053848, + "num_tokens": 79298560.0, + "step": 2420 + }, + { + "entropy": 0.698576745390892, + "epoch": 0.0648, + "grad_norm": 0.5559256076812744, + "learning_rate": 1.8754545454545457e-05, + "loss": 0.6875, + "mean_token_accuracy": 0.8034762978553772, + "num_tokens": 79626240.0, + "step": 2430 + }, + { + "entropy": 0.6885745882987976, + "epoch": 0.06506666666666666, + "grad_norm": 0.5433689951896667, + "learning_rate": 1.874919786096257e-05, + "loss": 0.6756, + "mean_token_accuracy": 0.8080125853419304, + "num_tokens": 79953920.0, + "step": 2440 + }, + { + "entropy": 0.6899311773478984, + "epoch": 0.06533333333333333, + "grad_norm": 0.5663343071937561, + "learning_rate": 1.874385026737968e-05, + "loss": 0.6851, + "mean_token_accuracy": 0.8039803296327591, + "num_tokens": 80281600.0, + "step": 2450 + }, + { + "entropy": 0.7011104613542557, + "epoch": 0.0656, + "grad_norm": 0.455303817987442, + "learning_rate": 1.8738502673796792e-05, + "loss": 0.6851, + "mean_token_accuracy": 0.8048509284853935, + "num_tokens": 80609280.0, + "step": 2460 + }, + { + "entropy": 0.721408611536026, + "epoch": 0.06586666666666667, + "grad_norm": 0.5038881301879883, + "learning_rate": 1.8733155080213904e-05, + "loss": 0.7208, + "mean_token_accuracy": 0.7957477971911431, + "num_tokens": 80936960.0, + "step": 2470 + }, + { + "entropy": 0.7371288865804673, + "epoch": 0.06613333333333334, + "grad_norm": 0.600644588470459, + "learning_rate": 1.872780748663102e-05, + "loss": 0.7281, + "mean_token_accuracy": 0.7941990524530411, + "num_tokens": 81264640.0, + "step": 2480 + }, + { + "entropy": 0.6919610172510147, + "epoch": 0.0664, + "grad_norm": 0.5862867832183838, + "learning_rate": 1.872245989304813e-05, + "loss": 0.6861, + "mean_token_accuracy": 0.8039131224155426, + "num_tokens": 81592320.0, + "step": 2490 + }, + { + "entropy": 0.7386172406375409, + "epoch": 0.06666666666666667, + "grad_norm": 0.5530334711074829, + "learning_rate": 1.8717112299465243e-05, + "loss": 0.7247, + "mean_token_accuracy": 0.7973668143153191, + "num_tokens": 81920000.0, + "step": 2500 + }, + { + "entropy": 0.7395651340484619, + "epoch": 0.06693333333333333, + "grad_norm": 0.5654215812683105, + "learning_rate": 1.8711764705882355e-05, + "loss": 0.7325, + "mean_token_accuracy": 0.791675828397274, + "num_tokens": 82247680.0, + "step": 2510 + }, + { + "entropy": 0.7238991126418114, + "epoch": 0.0672, + "grad_norm": 0.5680257678031921, + "learning_rate": 1.8706417112299466e-05, + "loss": 0.7152, + "mean_token_accuracy": 0.7962212890386582, + "num_tokens": 82575360.0, + "step": 2520 + }, + { + "entropy": 0.7331514492630958, + "epoch": 0.06746666666666666, + "grad_norm": 0.4596850275993347, + "learning_rate": 1.8701069518716578e-05, + "loss": 0.7219, + "mean_token_accuracy": 0.7966031298041344, + "num_tokens": 82903040.0, + "step": 2530 + }, + { + "entropy": 0.7191907726228237, + "epoch": 0.06773333333333334, + "grad_norm": 0.5474050641059875, + "learning_rate": 1.8695721925133693e-05, + "loss": 0.709, + "mean_token_accuracy": 0.7983260005712509, + "num_tokens": 83230720.0, + "step": 2540 + }, + { + "entropy": 0.730270405113697, + "epoch": 0.068, + "grad_norm": 0.488977313041687, + "learning_rate": 1.8690374331550805e-05, + "loss": 0.7195, + "mean_token_accuracy": 0.7935361698269844, + "num_tokens": 83558400.0, + "step": 2550 + }, + { + "entropy": 0.6698543079197407, + "epoch": 0.06826666666666667, + "grad_norm": 0.4836066663265228, + "learning_rate": 1.8685026737967914e-05, + "loss": 0.6614, + "mean_token_accuracy": 0.8092833563685418, + "num_tokens": 83886080.0, + "step": 2560 + }, + { + "entropy": 0.6855506785213947, + "epoch": 0.06853333333333333, + "grad_norm": 0.5904099345207214, + "learning_rate": 1.867967914438503e-05, + "loss": 0.6773, + "mean_token_accuracy": 0.8049456238746643, + "num_tokens": 84213760.0, + "step": 2570 + }, + { + "entropy": 0.6905220828950405, + "epoch": 0.0688, + "grad_norm": 0.6067728996276855, + "learning_rate": 1.867433155080214e-05, + "loss": 0.6816, + "mean_token_accuracy": 0.8042919099330902, + "num_tokens": 84541440.0, + "step": 2580 + }, + { + "entropy": 0.7021021544933319, + "epoch": 0.06906666666666667, + "grad_norm": 0.49781155586242676, + "learning_rate": 1.8668983957219252e-05, + "loss": 0.6935, + "mean_token_accuracy": 0.8016923278570175, + "num_tokens": 84869120.0, + "step": 2590 + }, + { + "entropy": 0.7121111631393433, + "epoch": 0.06933333333333333, + "grad_norm": 0.6203329563140869, + "learning_rate": 1.8663636363636368e-05, + "loss": 0.7095, + "mean_token_accuracy": 0.7976600632071496, + "num_tokens": 85196800.0, + "step": 2600 + }, + { + "entropy": 0.731182923913002, + "epoch": 0.0696, + "grad_norm": 0.5203900337219238, + "learning_rate": 1.8658288770053476e-05, + "loss": 0.7113, + "mean_token_accuracy": 0.7976172998547554, + "num_tokens": 85524480.0, + "step": 2610 + }, + { + "entropy": 0.6984265767037868, + "epoch": 0.06986666666666666, + "grad_norm": 0.49950000643730164, + "learning_rate": 1.8652941176470588e-05, + "loss": 0.6927, + "mean_token_accuracy": 0.8012524425983429, + "num_tokens": 85852160.0, + "step": 2620 + }, + { + "entropy": 0.7005846202373505, + "epoch": 0.07013333333333334, + "grad_norm": 0.543187141418457, + "learning_rate": 1.8647593582887703e-05, + "loss": 0.6888, + "mean_token_accuracy": 0.8040811344981194, + "num_tokens": 86179840.0, + "step": 2630 + }, + { + "entropy": 0.6949969455599785, + "epoch": 0.0704, + "grad_norm": 0.5879446268081665, + "learning_rate": 1.8642245989304815e-05, + "loss": 0.6869, + "mean_token_accuracy": 0.8033602148294449, + "num_tokens": 86507520.0, + "step": 2640 + }, + { + "entropy": 0.7094046354293824, + "epoch": 0.07066666666666667, + "grad_norm": 0.4720987379550934, + "learning_rate": 1.8636898395721927e-05, + "loss": 0.698, + "mean_token_accuracy": 0.7995234608650208, + "num_tokens": 86835200.0, + "step": 2650 + }, + { + "entropy": 0.6734897688031196, + "epoch": 0.07093333333333333, + "grad_norm": 0.4727756679058075, + "learning_rate": 1.863155080213904e-05, + "loss": 0.6631, + "mean_token_accuracy": 0.8089717745780944, + "num_tokens": 87162880.0, + "step": 2660 + }, + { + "entropy": 0.7182955905795098, + "epoch": 0.0712, + "grad_norm": 0.5930288434028625, + "learning_rate": 1.862620320855615e-05, + "loss": 0.7142, + "mean_token_accuracy": 0.7971926927566528, + "num_tokens": 87490560.0, + "step": 2670 + }, + { + "entropy": 0.7393495932221412, + "epoch": 0.07146666666666666, + "grad_norm": 0.45827335119247437, + "learning_rate": 1.8620855614973262e-05, + "loss": 0.7251, + "mean_token_accuracy": 0.7936522513628006, + "num_tokens": 87818240.0, + "step": 2680 + }, + { + "entropy": 0.7197345927357673, + "epoch": 0.07173333333333333, + "grad_norm": 0.49268782138824463, + "learning_rate": 1.8615508021390377e-05, + "loss": 0.7124, + "mean_token_accuracy": 0.7954484403133393, + "num_tokens": 88145920.0, + "step": 2690 + }, + { + "entropy": 0.6882727935910224, + "epoch": 0.072, + "grad_norm": 0.49876537919044495, + "learning_rate": 1.861016042780749e-05, + "loss": 0.6839, + "mean_token_accuracy": 0.8026851177215576, + "num_tokens": 88473600.0, + "step": 2700 + }, + { + "entropy": 0.7437757819890976, + "epoch": 0.07226666666666667, + "grad_norm": 0.4466654062271118, + "learning_rate": 1.86048128342246e-05, + "loss": 0.7364, + "mean_token_accuracy": 0.7899499014019966, + "num_tokens": 88801280.0, + "step": 2710 + }, + { + "entropy": 0.7106141909956932, + "epoch": 0.07253333333333334, + "grad_norm": 0.6582798957824707, + "learning_rate": 1.8599465240641713e-05, + "loss": 0.7013, + "mean_token_accuracy": 0.8006231695413589, + "num_tokens": 89128960.0, + "step": 2720 + }, + { + "entropy": 0.6909909635782242, + "epoch": 0.0728, + "grad_norm": 0.5060355067253113, + "learning_rate": 1.8594117647058824e-05, + "loss": 0.6805, + "mean_token_accuracy": 0.8035312771797181, + "num_tokens": 89456640.0, + "step": 2730 + }, + { + "entropy": 0.6932483226060867, + "epoch": 0.07306666666666667, + "grad_norm": 0.5097729563713074, + "learning_rate": 1.8588770053475936e-05, + "loss": 0.6818, + "mean_token_accuracy": 0.8053549632430077, + "num_tokens": 89784320.0, + "step": 2740 + }, + { + "entropy": 0.6751238405704498, + "epoch": 0.07333333333333333, + "grad_norm": 0.5460449457168579, + "learning_rate": 1.858342245989305e-05, + "loss": 0.6668, + "mean_token_accuracy": 0.8071939155459404, + "num_tokens": 90112000.0, + "step": 2750 + }, + { + "entropy": 0.7026051998138427, + "epoch": 0.0736, + "grad_norm": 0.5310487747192383, + "learning_rate": 1.8578074866310163e-05, + "loss": 0.6955, + "mean_token_accuracy": 0.8018206223845482, + "num_tokens": 90439680.0, + "step": 2760 + }, + { + "entropy": 0.690500158071518, + "epoch": 0.07386666666666666, + "grad_norm": 0.553963303565979, + "learning_rate": 1.8572727272727272e-05, + "loss": 0.6807, + "mean_token_accuracy": 0.8035557180643081, + "num_tokens": 90767360.0, + "step": 2770 + }, + { + "entropy": 0.673224987089634, + "epoch": 0.07413333333333333, + "grad_norm": 0.5649405121803284, + "learning_rate": 1.8567379679144387e-05, + "loss": 0.6552, + "mean_token_accuracy": 0.8085166156291962, + "num_tokens": 91095040.0, + "step": 2780 + }, + { + "entropy": 0.6903910547494888, + "epoch": 0.0744, + "grad_norm": 0.42968282103538513, + "learning_rate": 1.85620320855615e-05, + "loss": 0.6833, + "mean_token_accuracy": 0.8032624661922455, + "num_tokens": 91422720.0, + "step": 2790 + }, + { + "entropy": 0.7024453252553939, + "epoch": 0.07466666666666667, + "grad_norm": 0.508698046207428, + "learning_rate": 1.855668449197861e-05, + "loss": 0.6929, + "mean_token_accuracy": 0.8014418363571167, + "num_tokens": 91750400.0, + "step": 2800 + }, + { + "entropy": 0.6843134768307209, + "epoch": 0.07493333333333334, + "grad_norm": 0.6219918131828308, + "learning_rate": 1.8551336898395726e-05, + "loss": 0.6768, + "mean_token_accuracy": 0.8044324308633805, + "num_tokens": 92078080.0, + "step": 2810 + }, + { + "entropy": 0.6933091588318347, + "epoch": 0.0752, + "grad_norm": 0.5639626383781433, + "learning_rate": 1.8545989304812834e-05, + "loss": 0.6849, + "mean_token_accuracy": 0.8041972160339356, + "num_tokens": 92405760.0, + "step": 2820 + }, + { + "entropy": 0.6970530793070793, + "epoch": 0.07546666666666667, + "grad_norm": 0.5608235001564026, + "learning_rate": 1.8540641711229946e-05, + "loss": 0.6832, + "mean_token_accuracy": 0.8021169364452362, + "num_tokens": 92733440.0, + "step": 2830 + }, + { + "entropy": 0.7037189900875092, + "epoch": 0.07573333333333333, + "grad_norm": 0.4553059935569763, + "learning_rate": 1.853529411764706e-05, + "loss": 0.6974, + "mean_token_accuracy": 0.7995081886649131, + "num_tokens": 93061120.0, + "step": 2840 + }, + { + "entropy": 0.7386654257774353, + "epoch": 0.076, + "grad_norm": 0.5346807837486267, + "learning_rate": 1.8529946524064173e-05, + "loss": 0.7261, + "mean_token_accuracy": 0.7940982401371002, + "num_tokens": 93388800.0, + "step": 2850 + }, + { + "entropy": 0.6811931923031807, + "epoch": 0.07626666666666666, + "grad_norm": 0.44799095392227173, + "learning_rate": 1.8524598930481285e-05, + "loss": 0.6768, + "mean_token_accuracy": 0.8042552575469017, + "num_tokens": 93716480.0, + "step": 2860 + }, + { + "entropy": 0.6743794098496437, + "epoch": 0.07653333333333333, + "grad_norm": 0.47558820247650146, + "learning_rate": 1.8519251336898397e-05, + "loss": 0.6658, + "mean_token_accuracy": 0.8095766112208367, + "num_tokens": 94044160.0, + "step": 2870 + }, + { + "entropy": 0.6963659703731537, + "epoch": 0.0768, + "grad_norm": 0.44408637285232544, + "learning_rate": 1.851390374331551e-05, + "loss": 0.6847, + "mean_token_accuracy": 0.8036198705434799, + "num_tokens": 94371840.0, + "step": 2880 + }, + { + "entropy": 0.668525793403387, + "epoch": 0.07706666666666667, + "grad_norm": 0.6240969300270081, + "learning_rate": 1.850855614973262e-05, + "loss": 0.6595, + "mean_token_accuracy": 0.808345553278923, + "num_tokens": 94699520.0, + "step": 2890 + }, + { + "entropy": 0.6763082042336463, + "epoch": 0.07733333333333334, + "grad_norm": 0.5965229868888855, + "learning_rate": 1.8503208556149735e-05, + "loss": 0.6642, + "mean_token_accuracy": 0.8080003693699837, + "num_tokens": 95027200.0, + "step": 2900 + }, + { + "entropy": 0.7069110468029975, + "epoch": 0.0776, + "grad_norm": 0.502577543258667, + "learning_rate": 1.8497860962566847e-05, + "loss": 0.6967, + "mean_token_accuracy": 0.8004185035824776, + "num_tokens": 95354880.0, + "step": 2910 + }, + { + "entropy": 0.6777268260717392, + "epoch": 0.07786666666666667, + "grad_norm": 0.5277969837188721, + "learning_rate": 1.849251336898396e-05, + "loss": 0.6703, + "mean_token_accuracy": 0.8061033710837364, + "num_tokens": 95682560.0, + "step": 2920 + }, + { + "entropy": 0.7034938246011734, + "epoch": 0.07813333333333333, + "grad_norm": 0.48426011204719543, + "learning_rate": 1.848716577540107e-05, + "loss": 0.6962, + "mean_token_accuracy": 0.7995967760682106, + "num_tokens": 96010240.0, + "step": 2930 + }, + { + "entropy": 0.70678820759058, + "epoch": 0.0784, + "grad_norm": 0.608834981918335, + "learning_rate": 1.8481818181818183e-05, + "loss": 0.6957, + "mean_token_accuracy": 0.8017839655280113, + "num_tokens": 96337920.0, + "step": 2940 + }, + { + "entropy": 0.6910052418708801, + "epoch": 0.07866666666666666, + "grad_norm": 0.6024418473243713, + "learning_rate": 1.8476470588235294e-05, + "loss": 0.6841, + "mean_token_accuracy": 0.8038795247673989, + "num_tokens": 96665600.0, + "step": 2950 + }, + { + "entropy": 0.6798450261354446, + "epoch": 0.07893333333333333, + "grad_norm": 0.548592209815979, + "learning_rate": 1.847112299465241e-05, + "loss": 0.6659, + "mean_token_accuracy": 0.8090145409107208, + "num_tokens": 96993280.0, + "step": 2960 + }, + { + "entropy": 0.679200055450201, + "epoch": 0.0792, + "grad_norm": 0.47433775663375854, + "learning_rate": 1.846577540106952e-05, + "loss": 0.6718, + "mean_token_accuracy": 0.8076796188950539, + "num_tokens": 97320960.0, + "step": 2970 + }, + { + "entropy": 0.6941119194030761, + "epoch": 0.07946666666666667, + "grad_norm": 0.6369531154632568, + "learning_rate": 1.8460427807486633e-05, + "loss": 0.6861, + "mean_token_accuracy": 0.8014357283711433, + "num_tokens": 97648640.0, + "step": 2980 + }, + { + "entropy": 0.7004023909568786, + "epoch": 0.07973333333333334, + "grad_norm": 0.5593435764312744, + "learning_rate": 1.8455080213903745e-05, + "loss": 0.6882, + "mean_token_accuracy": 0.8030547395348548, + "num_tokens": 97976320.0, + "step": 2990 + }, + { + "entropy": 0.7129723727703094, + "epoch": 0.08, + "grad_norm": 0.5572832226753235, + "learning_rate": 1.8449732620320857e-05, + "loss": 0.7114, + "mean_token_accuracy": 0.7975562065839767, + "num_tokens": 98304000.0, + "step": 3000 + }, + { + "entropy": 0.7065567284822464, + "epoch": 0.08026666666666667, + "grad_norm": 0.5433133840560913, + "learning_rate": 1.844438502673797e-05, + "loss": 0.6889, + "mean_token_accuracy": 0.8037970453500748, + "num_tokens": 98631680.0, + "step": 3010 + }, + { + "entropy": 0.710640449821949, + "epoch": 0.08053333333333333, + "grad_norm": 0.6438500881195068, + "learning_rate": 1.8439037433155084e-05, + "loss": 0.7056, + "mean_token_accuracy": 0.7980846777558327, + "num_tokens": 98959360.0, + "step": 3020 + }, + { + "entropy": 0.7123002260923386, + "epoch": 0.0808, + "grad_norm": 0.5158177018165588, + "learning_rate": 1.8433689839572192e-05, + "loss": 0.7038, + "mean_token_accuracy": 0.7997495114803315, + "num_tokens": 99287040.0, + "step": 3030 + }, + { + "entropy": 0.6933645069599151, + "epoch": 0.08106666666666666, + "grad_norm": 0.6604756712913513, + "learning_rate": 1.8428342245989307e-05, + "loss": 0.6727, + "mean_token_accuracy": 0.8053671807050705, + "num_tokens": 99614720.0, + "step": 3040 + }, + { + "entropy": 0.6930786930024624, + "epoch": 0.08133333333333333, + "grad_norm": 0.5294865369796753, + "learning_rate": 1.842299465240642e-05, + "loss": 0.6847, + "mean_token_accuracy": 0.8041758313775063, + "num_tokens": 99942400.0, + "step": 3050 + }, + { + "entropy": 0.6785897724330425, + "epoch": 0.0816, + "grad_norm": 0.5470296740531921, + "learning_rate": 1.841764705882353e-05, + "loss": 0.6728, + "mean_token_accuracy": 0.8063447013497352, + "num_tokens": 100270080.0, + "step": 3060 + }, + { + "entropy": 0.6972546666860581, + "epoch": 0.08186666666666667, + "grad_norm": 0.5774398446083069, + "learning_rate": 1.8412299465240643e-05, + "loss": 0.6842, + "mean_token_accuracy": 0.8032013714313507, + "num_tokens": 100597760.0, + "step": 3070 + }, + { + "entropy": 0.6924749717116356, + "epoch": 0.08213333333333334, + "grad_norm": 0.49980732798576355, + "learning_rate": 1.8406951871657755e-05, + "loss": 0.6832, + "mean_token_accuracy": 0.801777857542038, + "num_tokens": 100925440.0, + "step": 3080 + }, + { + "entropy": 0.6787292137742043, + "epoch": 0.0824, + "grad_norm": 0.5680364370346069, + "learning_rate": 1.8401604278074866e-05, + "loss": 0.674, + "mean_token_accuracy": 0.8057490229606629, + "num_tokens": 101253120.0, + "step": 3090 + }, + { + "entropy": 0.6913809821009635, + "epoch": 0.08266666666666667, + "grad_norm": 0.5436722040176392, + "learning_rate": 1.8396256684491978e-05, + "loss": 0.6769, + "mean_token_accuracy": 0.804750120639801, + "num_tokens": 101580800.0, + "step": 3100 + }, + { + "entropy": 0.6795099377632141, + "epoch": 0.08293333333333333, + "grad_norm": 0.4478617310523987, + "learning_rate": 1.8390909090909093e-05, + "loss": 0.6726, + "mean_token_accuracy": 0.8080370232462883, + "num_tokens": 101908480.0, + "step": 3110 + }, + { + "entropy": 0.6731130488216877, + "epoch": 0.0832, + "grad_norm": 0.562049925327301, + "learning_rate": 1.8385561497326205e-05, + "loss": 0.66, + "mean_token_accuracy": 0.8096041113138199, + "num_tokens": 102236160.0, + "step": 3120 + }, + { + "entropy": 0.6568302936851979, + "epoch": 0.08346666666666666, + "grad_norm": 0.49974524974823, + "learning_rate": 1.8380213903743317e-05, + "loss": 0.6453, + "mean_token_accuracy": 0.8136149808764458, + "num_tokens": 102563840.0, + "step": 3130 + }, + { + "entropy": 0.7086566746234894, + "epoch": 0.08373333333333334, + "grad_norm": 0.5515449643135071, + "learning_rate": 1.837486631016043e-05, + "loss": 0.6902, + "mean_token_accuracy": 0.8030486315488815, + "num_tokens": 102891520.0, + "step": 3140 + }, + { + "entropy": 0.6682414583861828, + "epoch": 0.084, + "grad_norm": 0.5746288895606995, + "learning_rate": 1.836951871657754e-05, + "loss": 0.6634, + "mean_token_accuracy": 0.8090542510151864, + "num_tokens": 103219200.0, + "step": 3150 + }, + { + "entropy": 0.709159791469574, + "epoch": 0.08426666666666667, + "grad_norm": 0.5816189646720886, + "learning_rate": 1.8364171122994653e-05, + "loss": 0.6953, + "mean_token_accuracy": 0.8001588493585586, + "num_tokens": 103546880.0, + "step": 3160 + }, + { + "entropy": 0.6834252879023552, + "epoch": 0.08453333333333334, + "grad_norm": 0.5478416681289673, + "learning_rate": 1.8358823529411768e-05, + "loss": 0.6745, + "mean_token_accuracy": 0.8062347248196602, + "num_tokens": 103874560.0, + "step": 3170 + }, + { + "entropy": 0.6626397490501403, + "epoch": 0.0848, + "grad_norm": 0.46254318952560425, + "learning_rate": 1.835347593582888e-05, + "loss": 0.6535, + "mean_token_accuracy": 0.8101050838828087, + "num_tokens": 104202240.0, + "step": 3180 + }, + { + "entropy": 0.6958767995238304, + "epoch": 0.08506666666666667, + "grad_norm": 0.5705205202102661, + "learning_rate": 1.834812834224599e-05, + "loss": 0.6807, + "mean_token_accuracy": 0.8055046394467353, + "num_tokens": 104529920.0, + "step": 3190 + }, + { + "entropy": 0.6469135418534279, + "epoch": 0.08533333333333333, + "grad_norm": 0.41772717237472534, + "learning_rate": 1.8342780748663103e-05, + "loss": 0.6429, + "mean_token_accuracy": 0.8131292730569839, + "num_tokens": 104857600.0, + "step": 3200 + }, + { + "entropy": 0.6653836384415627, + "epoch": 0.0856, + "grad_norm": 0.5370784401893616, + "learning_rate": 1.8337433155080215e-05, + "loss": 0.6527, + "mean_token_accuracy": 0.8107251957058906, + "num_tokens": 105185280.0, + "step": 3210 + }, + { + "entropy": 0.6882105425000191, + "epoch": 0.08586666666666666, + "grad_norm": 0.5651310086250305, + "learning_rate": 1.8332085561497327e-05, + "loss": 0.6827, + "mean_token_accuracy": 0.8047653943300247, + "num_tokens": 105512960.0, + "step": 3220 + }, + { + "entropy": 0.685054711252451, + "epoch": 0.08613333333333334, + "grad_norm": 0.5525728464126587, + "learning_rate": 1.8326737967914442e-05, + "loss": 0.6707, + "mean_token_accuracy": 0.8072519540786743, + "num_tokens": 105840640.0, + "step": 3230 + }, + { + "entropy": 0.6843914739787579, + "epoch": 0.0864, + "grad_norm": 0.5613085031509399, + "learning_rate": 1.832139037433155e-05, + "loss": 0.6764, + "mean_token_accuracy": 0.8058712184429169, + "num_tokens": 106168320.0, + "step": 3240 + }, + { + "entropy": 0.6781938016414643, + "epoch": 0.08666666666666667, + "grad_norm": 0.5632696151733398, + "learning_rate": 1.8316042780748666e-05, + "loss": 0.6704, + "mean_token_accuracy": 0.8056573808193207, + "num_tokens": 106496000.0, + "step": 3250 + }, + { + "entropy": 0.6432853825390339, + "epoch": 0.08693333333333333, + "grad_norm": 0.49366846680641174, + "learning_rate": 1.8310695187165777e-05, + "loss": 0.6296, + "mean_token_accuracy": 0.8155913963913918, + "num_tokens": 106823680.0, + "step": 3260 + }, + { + "entropy": 0.6580203235149383, + "epoch": 0.0872, + "grad_norm": 0.48049911856651306, + "learning_rate": 1.830534759358289e-05, + "loss": 0.6487, + "mean_token_accuracy": 0.8130865097045898, + "num_tokens": 107151360.0, + "step": 3270 + }, + { + "entropy": 0.6701589055359364, + "epoch": 0.08746666666666666, + "grad_norm": 0.5092346668243408, + "learning_rate": 1.83e-05, + "loss": 0.6629, + "mean_token_accuracy": 0.8087671101093292, + "num_tokens": 107479040.0, + "step": 3280 + }, + { + "entropy": 0.6702375099062919, + "epoch": 0.08773333333333333, + "grad_norm": 0.46218451857566833, + "learning_rate": 1.8294652406417113e-05, + "loss": 0.6648, + "mean_token_accuracy": 0.8095246806740761, + "num_tokens": 107806720.0, + "step": 3290 + }, + { + "entropy": 0.6846297360956669, + "epoch": 0.088, + "grad_norm": 0.5321958065032959, + "learning_rate": 1.8289304812834225e-05, + "loss": 0.673, + "mean_token_accuracy": 0.8060881033539772, + "num_tokens": 108134400.0, + "step": 3300 + }, + { + "entropy": 0.6802199646830559, + "epoch": 0.08826666666666666, + "grad_norm": 0.5790373682975769, + "learning_rate": 1.828395721925134e-05, + "loss": 0.6694, + "mean_token_accuracy": 0.8068029090762139, + "num_tokens": 108462080.0, + "step": 3310 + }, + { + "entropy": 0.6756490565836429, + "epoch": 0.08853333333333334, + "grad_norm": 0.4985637664794922, + "learning_rate": 1.827860962566845e-05, + "loss": 0.6626, + "mean_token_accuracy": 0.8084799617528915, + "num_tokens": 108789760.0, + "step": 3320 + }, + { + "entropy": 0.6908547803759575, + "epoch": 0.0888, + "grad_norm": 0.5945738554000854, + "learning_rate": 1.8273262032085563e-05, + "loss": 0.6881, + "mean_token_accuracy": 0.8015976309776306, + "num_tokens": 109117440.0, + "step": 3330 + }, + { + "entropy": 0.6680992089211941, + "epoch": 0.08906666666666667, + "grad_norm": 0.5361096858978271, + "learning_rate": 1.8267914438502675e-05, + "loss": 0.6576, + "mean_token_accuracy": 0.8096193805336952, + "num_tokens": 109445120.0, + "step": 3340 + }, + { + "entropy": 0.6517356902360916, + "epoch": 0.08933333333333333, + "grad_norm": 0.5997782945632935, + "learning_rate": 1.8262566844919787e-05, + "loss": 0.6393, + "mean_token_accuracy": 0.8154294982552528, + "num_tokens": 109772800.0, + "step": 3350 + }, + { + "entropy": 0.6735978633165359, + "epoch": 0.0896, + "grad_norm": 0.4732246398925781, + "learning_rate": 1.82572192513369e-05, + "loss": 0.6679, + "mean_token_accuracy": 0.8071022748947143, + "num_tokens": 110100480.0, + "step": 3360 + }, + { + "entropy": 0.673013449460268, + "epoch": 0.08986666666666666, + "grad_norm": 0.5807483792304993, + "learning_rate": 1.825187165775401e-05, + "loss": 0.6524, + "mean_token_accuracy": 0.8115774661302566, + "num_tokens": 110428160.0, + "step": 3370 + }, + { + "entropy": 0.6996243745088577, + "epoch": 0.09013333333333333, + "grad_norm": 0.5526395440101624, + "learning_rate": 1.8246524064171126e-05, + "loss": 0.6954, + "mean_token_accuracy": 0.8016220644116402, + "num_tokens": 110755840.0, + "step": 3380 + }, + { + "entropy": 0.6826088994741439, + "epoch": 0.0904, + "grad_norm": 0.5243359208106995, + "learning_rate": 1.8241176470588238e-05, + "loss": 0.6734, + "mean_token_accuracy": 0.8074627310037613, + "num_tokens": 111083520.0, + "step": 3390 + }, + { + "entropy": 0.6364914231002331, + "epoch": 0.09066666666666667, + "grad_norm": 0.549103856086731, + "learning_rate": 1.823582887700535e-05, + "loss": 0.6313, + "mean_token_accuracy": 0.8167949721217156, + "num_tokens": 111411200.0, + "step": 3400 + }, + { + "entropy": 0.7150142952799797, + "epoch": 0.09093333333333334, + "grad_norm": 0.5956588387489319, + "learning_rate": 1.823048128342246e-05, + "loss": 0.6999, + "mean_token_accuracy": 0.8005926236510277, + "num_tokens": 111738880.0, + "step": 3410 + }, + { + "entropy": 0.6763354152441025, + "epoch": 0.0912, + "grad_norm": 0.5426291823387146, + "learning_rate": 1.8225133689839573e-05, + "loss": 0.6687, + "mean_token_accuracy": 0.8070381224155426, + "num_tokens": 112066560.0, + "step": 3420 + }, + { + "entropy": 0.7101250626146793, + "epoch": 0.09146666666666667, + "grad_norm": 0.8604161143302917, + "learning_rate": 1.8219786096256685e-05, + "loss": 0.7011, + "mean_token_accuracy": 0.8009255886077881, + "num_tokens": 112394240.0, + "step": 3430 + }, + { + "entropy": 0.6529824391007424, + "epoch": 0.09173333333333333, + "grad_norm": 0.45931896567344666, + "learning_rate": 1.82144385026738e-05, + "loss": 0.6454, + "mean_token_accuracy": 0.810450266301632, + "num_tokens": 112721920.0, + "step": 3440 + }, + { + "entropy": 0.6730405807495117, + "epoch": 0.092, + "grad_norm": 0.5787823796272278, + "learning_rate": 1.820909090909091e-05, + "loss": 0.6627, + "mean_token_accuracy": 0.808226415514946, + "num_tokens": 113049600.0, + "step": 3450 + }, + { + "entropy": 0.6584693357348442, + "epoch": 0.09226666666666666, + "grad_norm": 0.5029930472373962, + "learning_rate": 1.8203743315508024e-05, + "loss": 0.6439, + "mean_token_accuracy": 0.8129337728023529, + "num_tokens": 113377280.0, + "step": 3460 + }, + { + "entropy": 0.6774670705199242, + "epoch": 0.09253333333333333, + "grad_norm": 0.45803895592689514, + "learning_rate": 1.8198395721925135e-05, + "loss": 0.6716, + "mean_token_accuracy": 0.8076612904667855, + "num_tokens": 113704960.0, + "step": 3470 + }, + { + "entropy": 0.6801780223846435, + "epoch": 0.0928, + "grad_norm": 0.46918779611587524, + "learning_rate": 1.8193048128342247e-05, + "loss": 0.6704, + "mean_token_accuracy": 0.8068792790174484, + "num_tokens": 114032640.0, + "step": 3480 + }, + { + "entropy": 0.6732617512345314, + "epoch": 0.09306666666666667, + "grad_norm": 0.5564458966255188, + "learning_rate": 1.818770053475936e-05, + "loss": 0.6632, + "mean_token_accuracy": 0.8086021527647972, + "num_tokens": 114360320.0, + "step": 3490 + }, + { + "entropy": 0.6835436381399631, + "epoch": 0.09333333333333334, + "grad_norm": 0.6502693891525269, + "learning_rate": 1.818235294117647e-05, + "loss": 0.6709, + "mean_token_accuracy": 0.8071542054414749, + "num_tokens": 114688000.0, + "step": 3500 + }, + { + "entropy": 0.6898898124694824, + "epoch": 0.0936, + "grad_norm": 0.5657341480255127, + "learning_rate": 1.8177005347593583e-05, + "loss": 0.6825, + "mean_token_accuracy": 0.8055382490158081, + "num_tokens": 115015680.0, + "step": 3510 + }, + { + "entropy": 0.6327576048672199, + "epoch": 0.09386666666666667, + "grad_norm": 0.5169603228569031, + "learning_rate": 1.8171657754010698e-05, + "loss": 0.6246, + "mean_token_accuracy": 0.8177663758397102, + "num_tokens": 115343360.0, + "step": 3520 + }, + { + "entropy": 0.6864586338400841, + "epoch": 0.09413333333333333, + "grad_norm": 0.5316112637519836, + "learning_rate": 1.816631016042781e-05, + "loss": 0.6717, + "mean_token_accuracy": 0.8051533445715904, + "num_tokens": 115671040.0, + "step": 3530 + }, + { + "entropy": 0.6481480613350868, + "epoch": 0.0944, + "grad_norm": 0.4560836851596832, + "learning_rate": 1.816096256684492e-05, + "loss": 0.639, + "mean_token_accuracy": 0.8150598749518394, + "num_tokens": 115998720.0, + "step": 3540 + }, + { + "entropy": 0.6558339282870292, + "epoch": 0.09466666666666666, + "grad_norm": 0.6353741884231567, + "learning_rate": 1.8155614973262033e-05, + "loss": 0.6459, + "mean_token_accuracy": 0.8130468010902405, + "num_tokens": 116326400.0, + "step": 3550 + }, + { + "entropy": 0.6471247412264347, + "epoch": 0.09493333333333333, + "grad_norm": 0.6068600416183472, + "learning_rate": 1.8150267379679145e-05, + "loss": 0.6318, + "mean_token_accuracy": 0.8173356547951698, + "num_tokens": 116654080.0, + "step": 3560 + }, + { + "entropy": 0.6869985245168209, + "epoch": 0.0952, + "grad_norm": 0.6087508797645569, + "learning_rate": 1.8144919786096257e-05, + "loss": 0.6814, + "mean_token_accuracy": 0.804798997938633, + "num_tokens": 116981760.0, + "step": 3570 + }, + { + "entropy": 0.6443760603666305, + "epoch": 0.09546666666666667, + "grad_norm": 0.5366358757019043, + "learning_rate": 1.8139572192513372e-05, + "loss": 0.6351, + "mean_token_accuracy": 0.8143267348408699, + "num_tokens": 117309440.0, + "step": 3580 + }, + { + "entropy": 0.6869163364171982, + "epoch": 0.09573333333333334, + "grad_norm": 0.5238228440284729, + "learning_rate": 1.8134224598930484e-05, + "loss": 0.674, + "mean_token_accuracy": 0.8057917848229408, + "num_tokens": 117637120.0, + "step": 3590 + }, + { + "entropy": 0.6869014196097851, + "epoch": 0.096, + "grad_norm": 0.5857342481613159, + "learning_rate": 1.8128877005347596e-05, + "loss": 0.6723, + "mean_token_accuracy": 0.8094147086143494, + "num_tokens": 117964800.0, + "step": 3600 + }, + { + "entropy": 0.6552226409316063, + "epoch": 0.09626666666666667, + "grad_norm": 0.6696491837501526, + "learning_rate": 1.8123529411764708e-05, + "loss": 0.6496, + "mean_token_accuracy": 0.810438048839569, + "num_tokens": 118292480.0, + "step": 3610 + }, + { + "entropy": 0.6580488629639148, + "epoch": 0.09653333333333333, + "grad_norm": 0.6682412028312683, + "learning_rate": 1.811818181818182e-05, + "loss": 0.6377, + "mean_token_accuracy": 0.815374507009983, + "num_tokens": 118620160.0, + "step": 3620 + }, + { + "entropy": 0.6649587631225586, + "epoch": 0.0968, + "grad_norm": 0.481740266084671, + "learning_rate": 1.811283422459893e-05, + "loss": 0.6611, + "mean_token_accuracy": 0.809032866358757, + "num_tokens": 118947840.0, + "step": 3630 + }, + { + "entropy": 0.6486426994204522, + "epoch": 0.09706666666666666, + "grad_norm": 0.4654616117477417, + "learning_rate": 1.8107486631016043e-05, + "loss": 0.6287, + "mean_token_accuracy": 0.8167491465806961, + "num_tokens": 119275520.0, + "step": 3640 + }, + { + "entropy": 0.6471065364778041, + "epoch": 0.09733333333333333, + "grad_norm": 0.5740672945976257, + "learning_rate": 1.8102139037433158e-05, + "loss": 0.6398, + "mean_token_accuracy": 0.8137157917022705, + "num_tokens": 119603200.0, + "step": 3650 + }, + { + "entropy": 0.6453163996338844, + "epoch": 0.0976, + "grad_norm": 0.5717991590499878, + "learning_rate": 1.8096791443850267e-05, + "loss": 0.6337, + "mean_token_accuracy": 0.814467254281044, + "num_tokens": 119930880.0, + "step": 3660 + }, + { + "entropy": 0.6891070395708084, + "epoch": 0.09786666666666667, + "grad_norm": 0.4824608564376831, + "learning_rate": 1.8091443850267382e-05, + "loss": 0.6853, + "mean_token_accuracy": 0.804340785741806, + "num_tokens": 120258560.0, + "step": 3670 + }, + { + "entropy": 0.6633891932666302, + "epoch": 0.09813333333333334, + "grad_norm": 0.6122506856918335, + "learning_rate": 1.8086096256684494e-05, + "loss": 0.6521, + "mean_token_accuracy": 0.8096041068434715, + "num_tokens": 120586240.0, + "step": 3680 + }, + { + "entropy": 0.6793444007635117, + "epoch": 0.0984, + "grad_norm": 0.5250032544136047, + "learning_rate": 1.8080748663101605e-05, + "loss": 0.6631, + "mean_token_accuracy": 0.809081745147705, + "num_tokens": 120913920.0, + "step": 3690 + }, + { + "entropy": 0.657922463864088, + "epoch": 0.09866666666666667, + "grad_norm": 0.5360099673271179, + "learning_rate": 1.8075401069518717e-05, + "loss": 0.6558, + "mean_token_accuracy": 0.8111375838518142, + "num_tokens": 121241600.0, + "step": 3700 + }, + { + "entropy": 0.6484499901533127, + "epoch": 0.09893333333333333, + "grad_norm": 0.5630919933319092, + "learning_rate": 1.807005347593583e-05, + "loss": 0.6339, + "mean_token_accuracy": 0.8160160079598426, + "num_tokens": 121569280.0, + "step": 3710 + }, + { + "entropy": 0.6766409076750278, + "epoch": 0.0992, + "grad_norm": 0.4403109550476074, + "learning_rate": 1.806470588235294e-05, + "loss": 0.6667, + "mean_token_accuracy": 0.806356917321682, + "num_tokens": 121896960.0, + "step": 3720 + }, + { + "entropy": 0.6551111288368702, + "epoch": 0.09946666666666666, + "grad_norm": 0.5420662760734558, + "learning_rate": 1.8059358288770056e-05, + "loss": 0.6484, + "mean_token_accuracy": 0.8131964832544327, + "num_tokens": 122224640.0, + "step": 3730 + }, + { + "entropy": 0.6386684224009513, + "epoch": 0.09973333333333333, + "grad_norm": 0.4553351402282715, + "learning_rate": 1.8054010695187168e-05, + "loss": 0.6304, + "mean_token_accuracy": 0.8156769275665283, + "num_tokens": 122552320.0, + "step": 3740 + }, + { + "entropy": 0.6490894019603729, + "epoch": 0.1, + "grad_norm": 0.5522193908691406, + "learning_rate": 1.804866310160428e-05, + "loss": 0.6355, + "mean_token_accuracy": 0.8151606768369675, + "num_tokens": 122880000.0, + "step": 3750 + }, + { + "entropy": 0.6576007321476937, + "epoch": 0.10026666666666667, + "grad_norm": 0.5378384590148926, + "learning_rate": 1.804331550802139e-05, + "loss": 0.6487, + "mean_token_accuracy": 0.8118676722049714, + "num_tokens": 123207680.0, + "step": 3760 + }, + { + "entropy": 0.6551145255565644, + "epoch": 0.10053333333333334, + "grad_norm": 0.5451924204826355, + "learning_rate": 1.8037967914438503e-05, + "loss": 0.6471, + "mean_token_accuracy": 0.8133736565709114, + "num_tokens": 123535360.0, + "step": 3770 + }, + { + "entropy": 0.663975004851818, + "epoch": 0.1008, + "grad_norm": 0.5291251540184021, + "learning_rate": 1.8032620320855615e-05, + "loss": 0.6516, + "mean_token_accuracy": 0.8121242687106133, + "num_tokens": 123863040.0, + "step": 3780 + }, + { + "entropy": 0.6401459172368049, + "epoch": 0.10106666666666667, + "grad_norm": 0.4927455484867096, + "learning_rate": 1.802727272727273e-05, + "loss": 0.6322, + "mean_token_accuracy": 0.8152798160910606, + "num_tokens": 124190720.0, + "step": 3790 + }, + { + "entropy": 0.6521815165877343, + "epoch": 0.10133333333333333, + "grad_norm": 0.5538015961647034, + "learning_rate": 1.8021925133689842e-05, + "loss": 0.638, + "mean_token_accuracy": 0.8130498558282853, + "num_tokens": 124518400.0, + "step": 3800 + }, + { + "entropy": 0.6528400540351867, + "epoch": 0.1016, + "grad_norm": 0.5210300087928772, + "learning_rate": 1.8016577540106954e-05, + "loss": 0.6449, + "mean_token_accuracy": 0.8122067421674728, + "num_tokens": 124846080.0, + "step": 3810 + }, + { + "entropy": 0.6538536071777343, + "epoch": 0.10186666666666666, + "grad_norm": 0.49153628945350647, + "learning_rate": 1.8011229946524066e-05, + "loss": 0.642, + "mean_token_accuracy": 0.8124358490109443, + "num_tokens": 125173760.0, + "step": 3820 + }, + { + "entropy": 0.6925169438123703, + "epoch": 0.10213333333333334, + "grad_norm": 0.4965587854385376, + "learning_rate": 1.8005882352941177e-05, + "loss": 0.6796, + "mean_token_accuracy": 0.8029356077313423, + "num_tokens": 125501440.0, + "step": 3830 + }, + { + "entropy": 0.6405668064951897, + "epoch": 0.1024, + "grad_norm": 0.4650726020336151, + "learning_rate": 1.800053475935829e-05, + "loss": 0.6367, + "mean_token_accuracy": 0.8139846041798592, + "num_tokens": 125829120.0, + "step": 3840 + }, + { + "entropy": 0.6471795573830604, + "epoch": 0.10266666666666667, + "grad_norm": 0.5829203128814697, + "learning_rate": 1.7995187165775404e-05, + "loss": 0.6382, + "mean_token_accuracy": 0.8144947439432144, + "num_tokens": 126156800.0, + "step": 3850 + }, + { + "entropy": 0.6493782468140126, + "epoch": 0.10293333333333334, + "grad_norm": 0.4290027916431427, + "learning_rate": 1.7989839572192516e-05, + "loss": 0.6464, + "mean_token_accuracy": 0.8140120953321457, + "num_tokens": 126484480.0, + "step": 3860 + }, + { + "entropy": 0.6586277067661286, + "epoch": 0.1032, + "grad_norm": 0.5769961476325989, + "learning_rate": 1.7984491978609625e-05, + "loss": 0.6463, + "mean_token_accuracy": 0.8136119276285172, + "num_tokens": 126812160.0, + "step": 3870 + }, + { + "entropy": 0.665315467864275, + "epoch": 0.10346666666666667, + "grad_norm": 0.5212368965148926, + "learning_rate": 1.797914438502674e-05, + "loss": 0.6582, + "mean_token_accuracy": 0.8086540818214416, + "num_tokens": 127139840.0, + "step": 3880 + }, + { + "entropy": 0.6647671014070511, + "epoch": 0.10373333333333333, + "grad_norm": 0.5242336988449097, + "learning_rate": 1.7973796791443852e-05, + "loss": 0.6473, + "mean_token_accuracy": 0.8119868040084839, + "num_tokens": 127467520.0, + "step": 3890 + }, + { + "entropy": 0.6698678009212017, + "epoch": 0.104, + "grad_norm": 0.47622811794281006, + "learning_rate": 1.7968449197860964e-05, + "loss": 0.6691, + "mean_token_accuracy": 0.8059536918997765, + "num_tokens": 127795200.0, + "step": 3900 + }, + { + "entropy": 0.6539292819797993, + "epoch": 0.10426666666666666, + "grad_norm": 0.5479148626327515, + "learning_rate": 1.796310160427808e-05, + "loss": 0.6418, + "mean_token_accuracy": 0.815692201256752, + "num_tokens": 128122880.0, + "step": 3910 + }, + { + "entropy": 0.6711996026337147, + "epoch": 0.10453333333333334, + "grad_norm": 0.8144274353981018, + "learning_rate": 1.7957754010695187e-05, + "loss": 0.6598, + "mean_token_accuracy": 0.8106488212943077, + "num_tokens": 128450560.0, + "step": 3920 + }, + { + "entropy": 0.6411418944597245, + "epoch": 0.1048, + "grad_norm": 0.5335118174552917, + "learning_rate": 1.79524064171123e-05, + "loss": 0.6366, + "mean_token_accuracy": 0.8152278810739517, + "num_tokens": 128778240.0, + "step": 3930 + }, + { + "entropy": 0.6617153793573379, + "epoch": 0.10506666666666667, + "grad_norm": 0.5851503610610962, + "learning_rate": 1.7947058823529414e-05, + "loss": 0.6466, + "mean_token_accuracy": 0.8120478957891464, + "num_tokens": 129105920.0, + "step": 3940 + }, + { + "entropy": 0.6449001625180244, + "epoch": 0.10533333333333333, + "grad_norm": 0.5159755945205688, + "learning_rate": 1.7941711229946526e-05, + "loss": 0.6356, + "mean_token_accuracy": 0.8163520261645317, + "num_tokens": 129433600.0, + "step": 3950 + }, + { + "entropy": 0.6193127304315567, + "epoch": 0.1056, + "grad_norm": 0.48211485147476196, + "learning_rate": 1.7936363636363638e-05, + "loss": 0.6087, + "mean_token_accuracy": 0.820433160662651, + "num_tokens": 129761280.0, + "step": 3960 + }, + { + "entropy": 0.6611559122800827, + "epoch": 0.10586666666666666, + "grad_norm": 0.5552424788475037, + "learning_rate": 1.793101604278075e-05, + "loss": 0.651, + "mean_token_accuracy": 0.8119440376758575, + "num_tokens": 130088960.0, + "step": 3970 + }, + { + "entropy": 0.6432381875813007, + "epoch": 0.10613333333333333, + "grad_norm": 0.6014645099639893, + "learning_rate": 1.792566844919786e-05, + "loss": 0.6369, + "mean_token_accuracy": 0.8135630518198014, + "num_tokens": 130416640.0, + "step": 3980 + }, + { + "entropy": 0.6687833905220032, + "epoch": 0.1064, + "grad_norm": 0.5963072180747986, + "learning_rate": 1.7920320855614973e-05, + "loss": 0.658, + "mean_token_accuracy": 0.809026762843132, + "num_tokens": 130744320.0, + "step": 3990 + }, + { + "entropy": 0.6530608497560024, + "epoch": 0.10666666666666667, + "grad_norm": 0.7460877299308777, + "learning_rate": 1.791497326203209e-05, + "loss": 0.6441, + "mean_token_accuracy": 0.8133278340101242, + "num_tokens": 131072000.0, + "step": 4000 + }, + { + "entropy": 0.6596694678068161, + "epoch": 0.10693333333333334, + "grad_norm": 0.5461241602897644, + "learning_rate": 1.79096256684492e-05, + "loss": 0.6431, + "mean_token_accuracy": 0.8132056474685669, + "num_tokens": 131399680.0, + "step": 4010 + }, + { + "entropy": 0.628665404766798, + "epoch": 0.1072, + "grad_norm": 0.47004592418670654, + "learning_rate": 1.7904278074866312e-05, + "loss": 0.6237, + "mean_token_accuracy": 0.8165689170360565, + "num_tokens": 131727360.0, + "step": 4020 + }, + { + "entropy": 0.6237076640129089, + "epoch": 0.10746666666666667, + "grad_norm": 0.48614516854286194, + "learning_rate": 1.7898930481283424e-05, + "loss": 0.6118, + "mean_token_accuracy": 0.820772236585617, + "num_tokens": 132055040.0, + "step": 4030 + }, + { + "entropy": 0.6402423575520515, + "epoch": 0.10773333333333333, + "grad_norm": 0.6164606809616089, + "learning_rate": 1.7893582887700536e-05, + "loss": 0.6331, + "mean_token_accuracy": 0.8167491465806961, + "num_tokens": 132382720.0, + "step": 4040 + }, + { + "entropy": 0.6768997862935067, + "epoch": 0.108, + "grad_norm": 0.48716631531715393, + "learning_rate": 1.7888235294117647e-05, + "loss": 0.6601, + "mean_token_accuracy": 0.8081714317202568, + "num_tokens": 132710400.0, + "step": 4050 + }, + { + "entropy": 0.671170400083065, + "epoch": 0.10826666666666666, + "grad_norm": 0.6060397028923035, + "learning_rate": 1.7882887700534763e-05, + "loss": 0.6596, + "mean_token_accuracy": 0.8107618570327759, + "num_tokens": 133038080.0, + "step": 4060 + }, + { + "entropy": 0.655850450694561, + "epoch": 0.10853333333333333, + "grad_norm": 0.49084195494651794, + "learning_rate": 1.7877540106951874e-05, + "loss": 0.6499, + "mean_token_accuracy": 0.8101529002189636, + "num_tokens": 133365753.0, + "step": 4070 + }, + { + "entropy": 0.6280888825654983, + "epoch": 0.1088, + "grad_norm": 0.5312396883964539, + "learning_rate": 1.7872192513368983e-05, + "loss": 0.6146, + "mean_token_accuracy": 0.8184811815619468, + "num_tokens": 133693433.0, + "step": 4080 + }, + { + "entropy": 0.6363288000226021, + "epoch": 0.10906666666666667, + "grad_norm": 0.4588342607021332, + "learning_rate": 1.7866844919786098e-05, + "loss": 0.6273, + "mean_token_accuracy": 0.8149529561400414, + "num_tokens": 134021113.0, + "step": 4090 + }, + { + "entropy": 0.6473316177725792, + "epoch": 0.10933333333333334, + "grad_norm": 0.4732758104801178, + "learning_rate": 1.786149732620321e-05, + "loss": 0.6344, + "mean_token_accuracy": 0.8144153237342835, + "num_tokens": 134348793.0, + "step": 4100 + }, + { + "entropy": 0.6554132297635078, + "epoch": 0.1096, + "grad_norm": 0.5703415870666504, + "learning_rate": 1.785614973262032e-05, + "loss": 0.6442, + "mean_token_accuracy": 0.8124266847968101, + "num_tokens": 134676473.0, + "step": 4110 + }, + { + "entropy": 0.6432550206780434, + "epoch": 0.10986666666666667, + "grad_norm": 0.5566362142562866, + "learning_rate": 1.7850802139037437e-05, + "loss": 0.6323, + "mean_token_accuracy": 0.8162054002285004, + "num_tokens": 135004153.0, + "step": 4120 + }, + { + "entropy": 0.5974282130599022, + "epoch": 0.11013333333333333, + "grad_norm": 0.49694034457206726, + "learning_rate": 1.7845454545454545e-05, + "loss": 0.5857, + "mean_token_accuracy": 0.8274865552783013, + "num_tokens": 135331833.0, + "step": 4130 + }, + { + "entropy": 0.663143989443779, + "epoch": 0.1104, + "grad_norm": 0.5567175149917603, + "learning_rate": 1.7840106951871657e-05, + "loss": 0.6579, + "mean_token_accuracy": 0.8079209432005883, + "num_tokens": 135659513.0, + "step": 4140 + }, + { + "entropy": 0.6794201821088791, + "epoch": 0.11066666666666666, + "grad_norm": 0.5032562017440796, + "learning_rate": 1.7834759358288772e-05, + "loss": 0.6641, + "mean_token_accuracy": 0.8082783475518227, + "num_tokens": 135987193.0, + "step": 4150 + }, + { + "entropy": 0.6614437021315098, + "epoch": 0.11093333333333333, + "grad_norm": 0.48676520586013794, + "learning_rate": 1.7829411764705884e-05, + "loss": 0.6506, + "mean_token_accuracy": 0.8112414509057999, + "num_tokens": 136314873.0, + "step": 4160 + }, + { + "entropy": 0.6085740782320499, + "epoch": 0.1112, + "grad_norm": 0.492904931306839, + "learning_rate": 1.7824064171122996e-05, + "loss": 0.6027, + "mean_token_accuracy": 0.8242302000522613, + "num_tokens": 136642553.0, + "step": 4170 + }, + { + "entropy": 0.6282576322555542, + "epoch": 0.11146666666666667, + "grad_norm": 0.5383780598640442, + "learning_rate": 1.781871657754011e-05, + "loss": 0.6213, + "mean_token_accuracy": 0.818753057718277, + "num_tokens": 136970233.0, + "step": 4180 + }, + { + "entropy": 0.6601422399282455, + "epoch": 0.11173333333333334, + "grad_norm": 0.5213291645050049, + "learning_rate": 1.781336898395722e-05, + "loss": 0.6482, + "mean_token_accuracy": 0.811003178358078, + "num_tokens": 137297913.0, + "step": 4190 + }, + { + "entropy": 0.6488221094012261, + "epoch": 0.112, + "grad_norm": 0.6385365128517151, + "learning_rate": 1.780802139037433e-05, + "loss": 0.6424, + "mean_token_accuracy": 0.814769671857357, + "num_tokens": 137625593.0, + "step": 4200 + }, + { + "entropy": 0.6658627107739449, + "epoch": 0.11226666666666667, + "grad_norm": 0.5553659200668335, + "learning_rate": 1.7802673796791446e-05, + "loss": 0.648, + "mean_token_accuracy": 0.8132178664207459, + "num_tokens": 137953273.0, + "step": 4210 + }, + { + "entropy": 0.6293218336999417, + "epoch": 0.11253333333333333, + "grad_norm": 0.5905689597129822, + "learning_rate": 1.7797326203208558e-05, + "loss": 0.6203, + "mean_token_accuracy": 0.8189852133393287, + "num_tokens": 138280953.0, + "step": 4220 + }, + { + "entropy": 0.6407099135220051, + "epoch": 0.1128, + "grad_norm": 0.5655410885810852, + "learning_rate": 1.779197860962567e-05, + "loss": 0.627, + "mean_token_accuracy": 0.8185942053794861, + "num_tokens": 138608633.0, + "step": 4230 + }, + { + "entropy": 0.6537538126111031, + "epoch": 0.11306666666666666, + "grad_norm": 0.6247172951698303, + "learning_rate": 1.7786631016042782e-05, + "loss": 0.6459, + "mean_token_accuracy": 0.8115133136510849, + "num_tokens": 138936313.0, + "step": 4240 + }, + { + "entropy": 0.6479903370141983, + "epoch": 0.11333333333333333, + "grad_norm": 0.4959455728530884, + "learning_rate": 1.7781283422459894e-05, + "loss": 0.639, + "mean_token_accuracy": 0.8130987301468849, + "num_tokens": 139263993.0, + "step": 4250 + }, + { + "entropy": 0.6511910118162632, + "epoch": 0.1136, + "grad_norm": 0.5427896976470947, + "learning_rate": 1.7775935828877006e-05, + "loss": 0.6377, + "mean_token_accuracy": 0.8160068452358246, + "num_tokens": 139591673.0, + "step": 4260 + }, + { + "entropy": 0.6399455040693283, + "epoch": 0.11386666666666667, + "grad_norm": 0.4341362714767456, + "learning_rate": 1.777058823529412e-05, + "loss": 0.6332, + "mean_token_accuracy": 0.8133431106805802, + "num_tokens": 139919353.0, + "step": 4270 + }, + { + "entropy": 0.6267228953540325, + "epoch": 0.11413333333333334, + "grad_norm": 0.5249146819114685, + "learning_rate": 1.7765240641711233e-05, + "loss": 0.6139, + "mean_token_accuracy": 0.8193914964795113, + "num_tokens": 140247033.0, + "step": 4280 + }, + { + "entropy": 0.6310237318277359, + "epoch": 0.1144, + "grad_norm": 0.483688622713089, + "learning_rate": 1.7759893048128344e-05, + "loss": 0.6216, + "mean_token_accuracy": 0.8173845320940017, + "num_tokens": 140574713.0, + "step": 4290 + }, + { + "entropy": 0.643636979162693, + "epoch": 0.11466666666666667, + "grad_norm": 0.5163200497627258, + "learning_rate": 1.7754545454545456e-05, + "loss": 0.636, + "mean_token_accuracy": 0.8143939390778542, + "num_tokens": 140902393.0, + "step": 4300 + }, + { + "entropy": 0.6258506819605827, + "epoch": 0.11493333333333333, + "grad_norm": 0.48647376894950867, + "learning_rate": 1.7749197860962568e-05, + "loss": 0.6146, + "mean_token_accuracy": 0.8206744849681854, + "num_tokens": 141230073.0, + "step": 4310 + }, + { + "entropy": 0.6670894615352154, + "epoch": 0.1152, + "grad_norm": 0.5673144459724426, + "learning_rate": 1.774385026737968e-05, + "loss": 0.6567, + "mean_token_accuracy": 0.809934014081955, + "num_tokens": 141557753.0, + "step": 4320 + }, + { + "entropy": 0.627391516417265, + "epoch": 0.11546666666666666, + "grad_norm": 0.46794262528419495, + "learning_rate": 1.7738502673796795e-05, + "loss": 0.6172, + "mean_token_accuracy": 0.8202987447381019, + "num_tokens": 141885433.0, + "step": 4330 + }, + { + "entropy": 0.6500027820467948, + "epoch": 0.11573333333333333, + "grad_norm": 0.49784207344055176, + "learning_rate": 1.7733155080213907e-05, + "loss": 0.6409, + "mean_token_accuracy": 0.8147238492965698, + "num_tokens": 142213113.0, + "step": 4340 + }, + { + "entropy": 0.6567294046282768, + "epoch": 0.116, + "grad_norm": 0.526779055595398, + "learning_rate": 1.7727807486631015e-05, + "loss": 0.6489, + "mean_token_accuracy": 0.813343109190464, + "num_tokens": 142540793.0, + "step": 4350 + }, + { + "entropy": 0.6548135101795196, + "epoch": 0.11626666666666667, + "grad_norm": 0.5357381105422974, + "learning_rate": 1.772245989304813e-05, + "loss": 0.6521, + "mean_token_accuracy": 0.8117088228464127, + "num_tokens": 142868473.0, + "step": 4360 + }, + { + "entropy": 0.6462584212422371, + "epoch": 0.11653333333333334, + "grad_norm": 0.5073611736297607, + "learning_rate": 1.7717112299465242e-05, + "loss": 0.6407, + "mean_token_accuracy": 0.8138257563114166, + "num_tokens": 143196153.0, + "step": 4370 + }, + { + "entropy": 0.6625854156911373, + "epoch": 0.1168, + "grad_norm": 0.499559611082077, + "learning_rate": 1.7711764705882354e-05, + "loss": 0.6461, + "mean_token_accuracy": 0.812066225707531, + "num_tokens": 143523833.0, + "step": 4380 + }, + { + "entropy": 0.5989975735545159, + "epoch": 0.11706666666666667, + "grad_norm": 0.45968884229660034, + "learning_rate": 1.770641711229947e-05, + "loss": 0.5916, + "mean_token_accuracy": 0.8241752177476883, + "num_tokens": 143851513.0, + "step": 4390 + }, + { + "entropy": 0.6358760423958302, + "epoch": 0.11733333333333333, + "grad_norm": 0.5765702724456787, + "learning_rate": 1.7701069518716578e-05, + "loss": 0.6209, + "mean_token_accuracy": 0.8180382415652275, + "num_tokens": 144179193.0, + "step": 4400 + }, + { + "entropy": 0.640472250431776, + "epoch": 0.1176, + "grad_norm": 0.5118552446365356, + "learning_rate": 1.769572192513369e-05, + "loss": 0.6351, + "mean_token_accuracy": 0.8165017113089561, + "num_tokens": 144506873.0, + "step": 4410 + }, + { + "entropy": 0.6135229803621769, + "epoch": 0.11786666666666666, + "grad_norm": 0.5522367358207703, + "learning_rate": 1.7690374331550805e-05, + "loss": 0.599, + "mean_token_accuracy": 0.8233565494418145, + "num_tokens": 144834553.0, + "step": 4420 + }, + { + "entropy": 0.621340736746788, + "epoch": 0.11813333333333334, + "grad_norm": 0.5372185111045837, + "learning_rate": 1.7685026737967916e-05, + "loss": 0.614, + "mean_token_accuracy": 0.8201948925852776, + "num_tokens": 145162233.0, + "step": 4430 + }, + { + "entropy": 0.6485022202134132, + "epoch": 0.1184, + "grad_norm": 0.5407975316047668, + "learning_rate": 1.7679679144385028e-05, + "loss": 0.6383, + "mean_token_accuracy": 0.8138899087905884, + "num_tokens": 145489913.0, + "step": 4440 + }, + { + "entropy": 0.6315679028630257, + "epoch": 0.11866666666666667, + "grad_norm": 0.6210809946060181, + "learning_rate": 1.767433155080214e-05, + "loss": 0.625, + "mean_token_accuracy": 0.8164986595511436, + "num_tokens": 145817593.0, + "step": 4450 + }, + { + "entropy": 0.6173768222332001, + "epoch": 0.11893333333333334, + "grad_norm": 0.5039273500442505, + "learning_rate": 1.7668983957219252e-05, + "loss": 0.6027, + "mean_token_accuracy": 0.8232099175453186, + "num_tokens": 146145273.0, + "step": 4460 + }, + { + "entropy": 0.6252644754946232, + "epoch": 0.1192, + "grad_norm": 0.4843173623085022, + "learning_rate": 1.7663636363636364e-05, + "loss": 0.609, + "mean_token_accuracy": 0.8224162280559539, + "num_tokens": 146472938.0, + "step": 4470 + }, + { + "entropy": 0.635653717070818, + "epoch": 0.11946666666666667, + "grad_norm": 0.4938509166240692, + "learning_rate": 1.765828877005348e-05, + "loss": 0.6314, + "mean_token_accuracy": 0.8175220012664794, + "num_tokens": 146800618.0, + "step": 4480 + }, + { + "entropy": 0.6297695375978947, + "epoch": 0.11973333333333333, + "grad_norm": 0.56241774559021, + "learning_rate": 1.765294117647059e-05, + "loss": 0.6144, + "mean_token_accuracy": 0.822266012430191, + "num_tokens": 147128298.0, + "step": 4490 + }, + { + "entropy": 0.6400511264801025, + "epoch": 0.12, + "grad_norm": 0.5157172679901123, + "learning_rate": 1.7647593582887702e-05, + "loss": 0.6337, + "mean_token_accuracy": 0.8142900750041008, + "num_tokens": 147455978.0, + "step": 4500 + }, + { + "entropy": 0.624137969315052, + "epoch": 0.12026666666666666, + "grad_norm": 0.7271736860275269, + "learning_rate": 1.7642245989304814e-05, + "loss": 0.6096, + "mean_token_accuracy": 0.8229013904929161, + "num_tokens": 147783658.0, + "step": 4510 + }, + { + "entropy": 0.6445712596178055, + "epoch": 0.12053333333333334, + "grad_norm": 0.5607998967170715, + "learning_rate": 1.7636898395721926e-05, + "loss": 0.6412, + "mean_token_accuracy": 0.8144122689962388, + "num_tokens": 148111338.0, + "step": 4520 + }, + { + "entropy": 0.631790180504322, + "epoch": 0.1208, + "grad_norm": 0.5451073050498962, + "learning_rate": 1.7631550802139038e-05, + "loss": 0.6142, + "mean_token_accuracy": 0.8202407076954842, + "num_tokens": 148439018.0, + "step": 4530 + }, + { + "entropy": 0.6397012956440449, + "epoch": 0.12106666666666667, + "grad_norm": 0.47844812273979187, + "learning_rate": 1.7626203208556153e-05, + "loss": 0.6322, + "mean_token_accuracy": 0.8165719702839851, + "num_tokens": 148766698.0, + "step": 4540 + }, + { + "entropy": 0.6353954397141933, + "epoch": 0.12133333333333333, + "grad_norm": 0.5860951542854309, + "learning_rate": 1.7620855614973265e-05, + "loss": 0.6225, + "mean_token_accuracy": 0.8201490685343742, + "num_tokens": 149094378.0, + "step": 4550 + }, + { + "entropy": 0.6271689295768738, + "epoch": 0.1216, + "grad_norm": 0.45326417684555054, + "learning_rate": 1.7615508021390377e-05, + "loss": 0.6189, + "mean_token_accuracy": 0.8166147366166114, + "num_tokens": 149422058.0, + "step": 4560 + }, + { + "entropy": 0.6260932311415672, + "epoch": 0.12186666666666666, + "grad_norm": 0.6371480226516724, + "learning_rate": 1.761016042780749e-05, + "loss": 0.6134, + "mean_token_accuracy": 0.8211388066411018, + "num_tokens": 149749738.0, + "step": 4570 + }, + { + "entropy": 0.6056594341993332, + "epoch": 0.12213333333333333, + "grad_norm": 0.48230496048927307, + "learning_rate": 1.76048128342246e-05, + "loss": 0.594, + "mean_token_accuracy": 0.8256689861416817, + "num_tokens": 150077418.0, + "step": 4580 + }, + { + "entropy": 0.6401201985776425, + "epoch": 0.1224, + "grad_norm": 0.6073299050331116, + "learning_rate": 1.7599465240641712e-05, + "loss": 0.6263, + "mean_token_accuracy": 0.816895766556263, + "num_tokens": 150405098.0, + "step": 4590 + }, + { + "entropy": 0.6221492014825344, + "epoch": 0.12266666666666666, + "grad_norm": 0.5682583451271057, + "learning_rate": 1.7594117647058827e-05, + "loss": 0.6155, + "mean_token_accuracy": 0.8207264199852944, + "num_tokens": 150732778.0, + "step": 4600 + }, + { + "entropy": 0.6160124816000462, + "epoch": 0.12293333333333334, + "grad_norm": 0.5284896492958069, + "learning_rate": 1.7588770053475936e-05, + "loss": 0.6061, + "mean_token_accuracy": 0.8231152191758155, + "num_tokens": 151060458.0, + "step": 4610 + }, + { + "entropy": 0.6351871989667416, + "epoch": 0.1232, + "grad_norm": 0.48556894063949585, + "learning_rate": 1.7583422459893047e-05, + "loss": 0.624, + "mean_token_accuracy": 0.8175983607769013, + "num_tokens": 151388138.0, + "step": 4620 + }, + { + "entropy": 0.6134949989616871, + "epoch": 0.12346666666666667, + "grad_norm": 0.6327890753746033, + "learning_rate": 1.7578074866310163e-05, + "loss": 0.6051, + "mean_token_accuracy": 0.820197942852974, + "num_tokens": 151715818.0, + "step": 4630 + }, + { + "entropy": 0.6176735311746597, + "epoch": 0.12373333333333333, + "grad_norm": 0.5667627453804016, + "learning_rate": 1.7572727272727275e-05, + "loss": 0.603, + "mean_token_accuracy": 0.8223118305206298, + "num_tokens": 152043498.0, + "step": 4640 + }, + { + "entropy": 0.6148377418518066, + "epoch": 0.124, + "grad_norm": 0.554008424282074, + "learning_rate": 1.7567379679144386e-05, + "loss": 0.6077, + "mean_token_accuracy": 0.8207141950726509, + "num_tokens": 152371178.0, + "step": 4650 + }, + { + "entropy": 0.5976212918758392, + "epoch": 0.12426666666666666, + "grad_norm": 0.5570823550224304, + "learning_rate": 1.7562032085561498e-05, + "loss": 0.5909, + "mean_token_accuracy": 0.8272207915782929, + "num_tokens": 152698858.0, + "step": 4660 + }, + { + "entropy": 0.6408797353506088, + "epoch": 0.12453333333333333, + "grad_norm": 0.5833103656768799, + "learning_rate": 1.755668449197861e-05, + "loss": 0.6317, + "mean_token_accuracy": 0.8147543981671334, + "num_tokens": 153026538.0, + "step": 4670 + }, + { + "entropy": 0.6273569658398628, + "epoch": 0.1248, + "grad_norm": 0.490336537361145, + "learning_rate": 1.7551336898395722e-05, + "loss": 0.6138, + "mean_token_accuracy": 0.8204973101615906, + "num_tokens": 153354218.0, + "step": 4680 + }, + { + "entropy": 0.6496482968330384, + "epoch": 0.12506666666666666, + "grad_norm": 0.7385754585266113, + "learning_rate": 1.7545989304812837e-05, + "loss": 0.6443, + "mean_token_accuracy": 0.8140395879745483, + "num_tokens": 153681898.0, + "step": 4690 + }, + { + "entropy": 0.6157389342784881, + "epoch": 0.12533333333333332, + "grad_norm": 0.57555091381073, + "learning_rate": 1.754064171122995e-05, + "loss": 0.601, + "mean_token_accuracy": 0.8214931607246398, + "num_tokens": 154009578.0, + "step": 4700 + }, + { + "entropy": 0.6385625988245011, + "epoch": 0.1256, + "grad_norm": 0.4716522693634033, + "learning_rate": 1.753529411764706e-05, + "loss": 0.6288, + "mean_token_accuracy": 0.8169904679059983, + "num_tokens": 154337258.0, + "step": 4710 + }, + { + "entropy": 0.6342476040124894, + "epoch": 0.12586666666666665, + "grad_norm": 0.5770987868309021, + "learning_rate": 1.7529946524064172e-05, + "loss": 0.6272, + "mean_token_accuracy": 0.8163306444883347, + "num_tokens": 154664938.0, + "step": 4720 + }, + { + "entropy": 0.6355664700269699, + "epoch": 0.12613333333333332, + "grad_norm": 0.4963732063770294, + "learning_rate": 1.7524598930481284e-05, + "loss": 0.6232, + "mean_token_accuracy": 0.8177999764680862, + "num_tokens": 154992618.0, + "step": 4730 + }, + { + "entropy": 0.6333813920617104, + "epoch": 0.1264, + "grad_norm": 0.5953047275543213, + "learning_rate": 1.7519251336898396e-05, + "loss": 0.6261, + "mean_token_accuracy": 0.8153317391872406, + "num_tokens": 155320298.0, + "step": 4740 + }, + { + "entropy": 0.6505439803004265, + "epoch": 0.12666666666666668, + "grad_norm": 0.4259377419948578, + "learning_rate": 1.751390374331551e-05, + "loss": 0.6409, + "mean_token_accuracy": 0.8139571115374565, + "num_tokens": 155647978.0, + "step": 4750 + }, + { + "entropy": 0.6410402148962021, + "epoch": 0.12693333333333334, + "grad_norm": 0.5407733917236328, + "learning_rate": 1.7508556149732623e-05, + "loss": 0.6286, + "mean_token_accuracy": 0.8189760476350785, + "num_tokens": 155975658.0, + "step": 4760 + }, + { + "entropy": 0.6278519466519356, + "epoch": 0.1272, + "grad_norm": 0.49069494009017944, + "learning_rate": 1.7503208556149735e-05, + "loss": 0.6223, + "mean_token_accuracy": 0.81726233959198, + "num_tokens": 156303338.0, + "step": 4770 + }, + { + "entropy": 0.6350674785673618, + "epoch": 0.12746666666666667, + "grad_norm": 0.5119713544845581, + "learning_rate": 1.7497860962566847e-05, + "loss": 0.6237, + "mean_token_accuracy": 0.8173631474375724, + "num_tokens": 156631018.0, + "step": 4780 + }, + { + "entropy": 0.6261625736951828, + "epoch": 0.12773333333333334, + "grad_norm": 0.6043604612350464, + "learning_rate": 1.749251336898396e-05, + "loss": 0.6148, + "mean_token_accuracy": 0.819996340572834, + "num_tokens": 156958698.0, + "step": 4790 + }, + { + "entropy": 0.6459453977644444, + "epoch": 0.128, + "grad_norm": 0.5381135940551758, + "learning_rate": 1.748716577540107e-05, + "loss": 0.6322, + "mean_token_accuracy": 0.8156738758087159, + "num_tokens": 157286378.0, + "step": 4800 + }, + { + "entropy": 0.6095151767134667, + "epoch": 0.12826666666666667, + "grad_norm": 0.5296955108642578, + "learning_rate": 1.7481818181818185e-05, + "loss": 0.6051, + "mean_token_accuracy": 0.8204759240150452, + "num_tokens": 157614058.0, + "step": 4810 + }, + { + "entropy": 0.6488602444529533, + "epoch": 0.12853333333333333, + "grad_norm": 0.5272141695022583, + "learning_rate": 1.7476470588235294e-05, + "loss": 0.6362, + "mean_token_accuracy": 0.8158266142010688, + "num_tokens": 157941738.0, + "step": 4820 + }, + { + "entropy": 0.6514977879822255, + "epoch": 0.1288, + "grad_norm": 0.6142001748085022, + "learning_rate": 1.747112299465241e-05, + "loss": 0.6417, + "mean_token_accuracy": 0.8125916421413422, + "num_tokens": 158269418.0, + "step": 4830 + }, + { + "entropy": 0.6048041738569736, + "epoch": 0.12906666666666666, + "grad_norm": 0.5288782715797424, + "learning_rate": 1.746577540106952e-05, + "loss": 0.5903, + "mean_token_accuracy": 0.8266465038061142, + "num_tokens": 158597098.0, + "step": 4840 + }, + { + "entropy": 0.599172817915678, + "epoch": 0.12933333333333333, + "grad_norm": 0.5724526643753052, + "learning_rate": 1.7460427807486633e-05, + "loss": 0.5942, + "mean_token_accuracy": 0.824966399371624, + "num_tokens": 158924778.0, + "step": 4850 + }, + { + "entropy": 0.6329713217914105, + "epoch": 0.1296, + "grad_norm": 0.533990740776062, + "learning_rate": 1.7455080213903744e-05, + "loss": 0.6144, + "mean_token_accuracy": 0.8196603089571, + "num_tokens": 159252458.0, + "step": 4860 + }, + { + "entropy": 0.6240798488259316, + "epoch": 0.12986666666666666, + "grad_norm": 0.4982832372188568, + "learning_rate": 1.7449732620320856e-05, + "loss": 0.6191, + "mean_token_accuracy": 0.8164528369903564, + "num_tokens": 159580138.0, + "step": 4870 + }, + { + "entropy": 0.6327751204371452, + "epoch": 0.13013333333333332, + "grad_norm": 0.574155867099762, + "learning_rate": 1.7444385026737968e-05, + "loss": 0.6161, + "mean_token_accuracy": 0.8202193319797516, + "num_tokens": 159907818.0, + "step": 4880 + }, + { + "entropy": 0.6164940394461155, + "epoch": 0.1304, + "grad_norm": 0.5245264172554016, + "learning_rate": 1.7439037433155083e-05, + "loss": 0.6082, + "mean_token_accuracy": 0.8210074499249458, + "num_tokens": 160235498.0, + "step": 4890 + }, + { + "entropy": 0.603496815264225, + "epoch": 0.13066666666666665, + "grad_norm": 0.4578472971916199, + "learning_rate": 1.7433689839572195e-05, + "loss": 0.5964, + "mean_token_accuracy": 0.8256231665611267, + "num_tokens": 160563178.0, + "step": 4900 + }, + { + "entropy": 0.6212443381547927, + "epoch": 0.13093333333333335, + "grad_norm": 0.5583697557449341, + "learning_rate": 1.7428342245989307e-05, + "loss": 0.6048, + "mean_token_accuracy": 0.8217803001403808, + "num_tokens": 160890858.0, + "step": 4910 + }, + { + "entropy": 0.6337346948683262, + "epoch": 0.1312, + "grad_norm": 0.5270321369171143, + "learning_rate": 1.742299465240642e-05, + "loss": 0.6259, + "mean_token_accuracy": 0.8176716729998589, + "num_tokens": 161218538.0, + "step": 4920 + }, + { + "entropy": 0.6687727048993111, + "epoch": 0.13146666666666668, + "grad_norm": 0.5283020734786987, + "learning_rate": 1.741764705882353e-05, + "loss": 0.6605, + "mean_token_accuracy": 0.8100226044654846, + "num_tokens": 161546218.0, + "step": 4930 + }, + { + "entropy": 0.6009791202843189, + "epoch": 0.13173333333333334, + "grad_norm": 0.5109070539474487, + "learning_rate": 1.7412299465240642e-05, + "loss": 0.5955, + "mean_token_accuracy": 0.8242882415652275, + "num_tokens": 161873898.0, + "step": 4940 + }, + { + "entropy": 0.6141447208821773, + "epoch": 0.132, + "grad_norm": 0.6980870366096497, + "learning_rate": 1.7406951871657754e-05, + "loss": 0.6027, + "mean_token_accuracy": 0.8223698660731316, + "num_tokens": 162201578.0, + "step": 4950 + }, + { + "entropy": 0.6143863417208195, + "epoch": 0.13226666666666667, + "grad_norm": 0.5059211254119873, + "learning_rate": 1.740160427807487e-05, + "loss": 0.598, + "mean_token_accuracy": 0.823991933465004, + "num_tokens": 162529258.0, + "step": 4960 + }, + { + "entropy": 0.6049226514995099, + "epoch": 0.13253333333333334, + "grad_norm": 0.5974682569503784, + "learning_rate": 1.739625668449198e-05, + "loss": 0.6003, + "mean_token_accuracy": 0.8240163698792458, + "num_tokens": 162856938.0, + "step": 4970 + }, + { + "entropy": 0.6193537250161171, + "epoch": 0.1328, + "grad_norm": 0.45828455686569214, + "learning_rate": 1.7390909090909093e-05, + "loss": 0.6063, + "mean_token_accuracy": 0.8218566745519638, + "num_tokens": 163184618.0, + "step": 4980 + }, + { + "entropy": 0.6194451808929443, + "epoch": 0.13306666666666667, + "grad_norm": 0.458832323551178, + "learning_rate": 1.7385561497326205e-05, + "loss": 0.6093, + "mean_token_accuracy": 0.8211968436837196, + "num_tokens": 163512298.0, + "step": 4990 + }, + { + "entropy": 0.6164743147790432, + "epoch": 0.13333333333333333, + "grad_norm": 0.5728282332420349, + "learning_rate": 1.7380213903743316e-05, + "loss": 0.6089, + "mean_token_accuracy": 0.8214412242174148, + "num_tokens": 163839978.0, + "step": 5000 + }, + { + "entropy": 0.6621682949364185, + "epoch": 0.1336, + "grad_norm": 0.5097026228904724, + "learning_rate": 1.737486631016043e-05, + "loss": 0.6494, + "mean_token_accuracy": 0.8132300823926926, + "num_tokens": 164167658.0, + "step": 5010 + }, + { + "entropy": 0.6411984667181969, + "epoch": 0.13386666666666666, + "grad_norm": 0.6675585508346558, + "learning_rate": 1.7369518716577544e-05, + "loss": 0.6302, + "mean_token_accuracy": 0.8165383696556091, + "num_tokens": 164495338.0, + "step": 5020 + }, + { + "entropy": 0.6356221534311771, + "epoch": 0.13413333333333333, + "grad_norm": 0.5140653848648071, + "learning_rate": 1.7364171122994652e-05, + "loss": 0.6289, + "mean_token_accuracy": 0.8160221159458161, + "num_tokens": 164823018.0, + "step": 5030 + }, + { + "entropy": 0.6374156191945076, + "epoch": 0.1344, + "grad_norm": 0.5850067138671875, + "learning_rate": 1.7358823529411767e-05, + "loss": 0.6252, + "mean_token_accuracy": 0.8176350191235542, + "num_tokens": 165150698.0, + "step": 5040 + }, + { + "entropy": 0.6058228969573974, + "epoch": 0.13466666666666666, + "grad_norm": 0.675095796585083, + "learning_rate": 1.735347593582888e-05, + "loss": 0.5965, + "mean_token_accuracy": 0.8241843849420547, + "num_tokens": 165478378.0, + "step": 5050 + }, + { + "entropy": 0.6202493324875832, + "epoch": 0.13493333333333332, + "grad_norm": 0.5985092520713806, + "learning_rate": 1.734812834224599e-05, + "loss": 0.6058, + "mean_token_accuracy": 0.8212945997714997, + "num_tokens": 165806058.0, + "step": 5060 + }, + { + "entropy": 0.6014047771692276, + "epoch": 0.1352, + "grad_norm": 0.5780919790267944, + "learning_rate": 1.7342780748663103e-05, + "loss": 0.5905, + "mean_token_accuracy": 0.825891986489296, + "num_tokens": 166133738.0, + "step": 5070 + }, + { + "entropy": 0.5863475486636162, + "epoch": 0.13546666666666668, + "grad_norm": 0.6052114963531494, + "learning_rate": 1.7337433155080214e-05, + "loss": 0.5769, + "mean_token_accuracy": 0.8284671291708946, + "num_tokens": 166461418.0, + "step": 5080 + }, + { + "entropy": 0.6248861335217952, + "epoch": 0.13573333333333334, + "grad_norm": 0.48946908116340637, + "learning_rate": 1.7332085561497326e-05, + "loss": 0.6143, + "mean_token_accuracy": 0.8221651986241341, + "num_tokens": 166789098.0, + "step": 5090 + }, + { + "entropy": 0.6324261531233788, + "epoch": 0.136, + "grad_norm": 0.6792661547660828, + "learning_rate": 1.732673796791444e-05, + "loss": 0.6237, + "mean_token_accuracy": 0.817295940220356, + "num_tokens": 167116778.0, + "step": 5100 + }, + { + "entropy": 0.6304112918674946, + "epoch": 0.13626666666666667, + "grad_norm": 0.5585044026374817, + "learning_rate": 1.7321390374331553e-05, + "loss": 0.6165, + "mean_token_accuracy": 0.82105633020401, + "num_tokens": 167444458.0, + "step": 5110 + }, + { + "entropy": 0.6555210158228875, + "epoch": 0.13653333333333334, + "grad_norm": 0.5223856568336487, + "learning_rate": 1.7316042780748665e-05, + "loss": 0.6443, + "mean_token_accuracy": 0.8133614391088486, + "num_tokens": 167772138.0, + "step": 5120 + }, + { + "entropy": 0.6287809893488884, + "epoch": 0.1368, + "grad_norm": 0.5142949223518372, + "learning_rate": 1.7310695187165777e-05, + "loss": 0.6201, + "mean_token_accuracy": 0.8164772674441337, + "num_tokens": 168099818.0, + "step": 5130 + }, + { + "entropy": 0.6223357163369656, + "epoch": 0.13706666666666667, + "grad_norm": 0.4758523404598236, + "learning_rate": 1.730534759358289e-05, + "loss": 0.6133, + "mean_token_accuracy": 0.8215023264288902, + "num_tokens": 168427498.0, + "step": 5140 + }, + { + "entropy": 0.6123070672154427, + "epoch": 0.13733333333333334, + "grad_norm": 0.5273539423942566, + "learning_rate": 1.73e-05, + "loss": 0.6011, + "mean_token_accuracy": 0.8222324073314666, + "num_tokens": 168755178.0, + "step": 5150 + }, + { + "entropy": 0.6138663627207279, + "epoch": 0.1376, + "grad_norm": 0.6459339261054993, + "learning_rate": 1.7294652406417116e-05, + "loss": 0.5999, + "mean_token_accuracy": 0.8235214978456498, + "num_tokens": 169082858.0, + "step": 5160 + }, + { + "entropy": 0.6212375231087208, + "epoch": 0.13786666666666667, + "grad_norm": 0.7556997537612915, + "learning_rate": 1.7289304812834227e-05, + "loss": 0.6081, + "mean_token_accuracy": 0.8220979988574981, + "num_tokens": 169410538.0, + "step": 5170 + }, + { + "entropy": 0.5888078711926937, + "epoch": 0.13813333333333333, + "grad_norm": 0.4729660749435425, + "learning_rate": 1.728395721925134e-05, + "loss": 0.579, + "mean_token_accuracy": 0.8274529546499252, + "num_tokens": 169738218.0, + "step": 5180 + }, + { + "entropy": 0.6192933194339275, + "epoch": 0.1384, + "grad_norm": 0.6300689578056335, + "learning_rate": 1.727860962566845e-05, + "loss": 0.6123, + "mean_token_accuracy": 0.8203018084168434, + "num_tokens": 170065898.0, + "step": 5190 + }, + { + "entropy": 0.6196565598249435, + "epoch": 0.13866666666666666, + "grad_norm": 0.6588465571403503, + "learning_rate": 1.7273262032085563e-05, + "loss": 0.6061, + "mean_token_accuracy": 0.822409576177597, + "num_tokens": 170393578.0, + "step": 5200 + }, + { + "entropy": 0.6234577037394047, + "epoch": 0.13893333333333333, + "grad_norm": 0.5834973454475403, + "learning_rate": 1.7267914438502675e-05, + "loss": 0.6093, + "mean_token_accuracy": 0.8198069378733635, + "num_tokens": 170721258.0, + "step": 5210 + }, + { + "entropy": 0.6077614583075046, + "epoch": 0.1392, + "grad_norm": 0.4954999089241028, + "learning_rate": 1.7262566844919786e-05, + "loss": 0.6001, + "mean_token_accuracy": 0.8226722851395607, + "num_tokens": 171048938.0, + "step": 5220 + }, + { + "entropy": 0.613494723290205, + "epoch": 0.13946666666666666, + "grad_norm": 0.557677149772644, + "learning_rate": 1.72572192513369e-05, + "loss": 0.5975, + "mean_token_accuracy": 0.8248533740639686, + "num_tokens": 171376618.0, + "step": 5230 + }, + { + "entropy": 0.607421388477087, + "epoch": 0.13973333333333332, + "grad_norm": 0.5784938931465149, + "learning_rate": 1.725187165775401e-05, + "loss": 0.5972, + "mean_token_accuracy": 0.8232129752635956, + "num_tokens": 171704298.0, + "step": 5240 + }, + { + "entropy": 0.6144205823540687, + "epoch": 0.14, + "grad_norm": 0.5463047027587891, + "learning_rate": 1.7246524064171125e-05, + "loss": 0.603, + "mean_token_accuracy": 0.8228097483515739, + "num_tokens": 172031978.0, + "step": 5250 + }, + { + "entropy": 0.5937097623944283, + "epoch": 0.14026666666666668, + "grad_norm": 0.4457780420780182, + "learning_rate": 1.7241176470588237e-05, + "loss": 0.5863, + "mean_token_accuracy": 0.8276026368141174, + "num_tokens": 172359658.0, + "step": 5260 + }, + { + "entropy": 0.6227729670703411, + "epoch": 0.14053333333333334, + "grad_norm": 0.5007463097572327, + "learning_rate": 1.723582887700535e-05, + "loss": 0.611, + "mean_token_accuracy": 0.8213984563946723, + "num_tokens": 172687338.0, + "step": 5270 + }, + { + "entropy": 0.6367640405893326, + "epoch": 0.1408, + "grad_norm": 0.6137294173240662, + "learning_rate": 1.723048128342246e-05, + "loss": 0.6264, + "mean_token_accuracy": 0.8166116803884507, + "num_tokens": 173015018.0, + "step": 5280 + }, + { + "entropy": 0.5944077350199223, + "epoch": 0.14106666666666667, + "grad_norm": 0.4923824071884155, + "learning_rate": 1.7225133689839572e-05, + "loss": 0.5814, + "mean_token_accuracy": 0.8262463301420212, + "num_tokens": 173342698.0, + "step": 5290 + }, + { + "entropy": 0.6210280202329159, + "epoch": 0.14133333333333334, + "grad_norm": 0.5874246954917908, + "learning_rate": 1.7219786096256684e-05, + "loss": 0.6197, + "mean_token_accuracy": 0.8178060814738274, + "num_tokens": 173670378.0, + "step": 5300 + }, + { + "entropy": 0.6161349073052407, + "epoch": 0.1416, + "grad_norm": 0.542860746383667, + "learning_rate": 1.72144385026738e-05, + "loss": 0.594, + "mean_token_accuracy": 0.824835042655468, + "num_tokens": 173998058.0, + "step": 5310 + }, + { + "entropy": 0.60669986307621, + "epoch": 0.14186666666666667, + "grad_norm": 0.5829471945762634, + "learning_rate": 1.720909090909091e-05, + "loss": 0.604, + "mean_token_accuracy": 0.8207141935825348, + "num_tokens": 174325738.0, + "step": 5320 + }, + { + "entropy": 0.5983838602900505, + "epoch": 0.14213333333333333, + "grad_norm": 0.4586426913738251, + "learning_rate": 1.7203743315508023e-05, + "loss": 0.5854, + "mean_token_accuracy": 0.8274132445454597, + "num_tokens": 174653418.0, + "step": 5330 + }, + { + "entropy": 0.612214021384716, + "epoch": 0.1424, + "grad_norm": 0.6354243159294128, + "learning_rate": 1.7198395721925135e-05, + "loss": 0.6003, + "mean_token_accuracy": 0.825381837785244, + "num_tokens": 174981098.0, + "step": 5340 + }, + { + "entropy": 0.5991831764578819, + "epoch": 0.14266666666666666, + "grad_norm": 0.5400723814964294, + "learning_rate": 1.7193048128342247e-05, + "loss": 0.5899, + "mean_token_accuracy": 0.8272430807352066, + "num_tokens": 175308697.0, + "step": 5350 + }, + { + "entropy": 0.6009857349097729, + "epoch": 0.14293333333333333, + "grad_norm": 0.46825549006462097, + "learning_rate": 1.718770053475936e-05, + "loss": 0.5897, + "mean_token_accuracy": 0.8261974558234215, + "num_tokens": 175636377.0, + "step": 5360 + }, + { + "entropy": 0.6579540863633155, + "epoch": 0.1432, + "grad_norm": 0.5498165488243103, + "learning_rate": 1.7182352941176474e-05, + "loss": 0.6388, + "mean_token_accuracy": 0.8137463361024857, + "num_tokens": 175964057.0, + "step": 5370 + }, + { + "entropy": 0.6127194188535213, + "epoch": 0.14346666666666666, + "grad_norm": 0.66085284948349, + "learning_rate": 1.7177005347593585e-05, + "loss": 0.6048, + "mean_token_accuracy": 0.8231640979647636, + "num_tokens": 176291737.0, + "step": 5380 + }, + { + "entropy": 0.6140283323824406, + "epoch": 0.14373333333333332, + "grad_norm": 0.5286858677864075, + "learning_rate": 1.7171657754010697e-05, + "loss": 0.6008, + "mean_token_accuracy": 0.8218475058674812, + "num_tokens": 176619417.0, + "step": 5390 + }, + { + "entropy": 0.6195843808352948, + "epoch": 0.144, + "grad_norm": 0.4871726334095001, + "learning_rate": 1.716631016042781e-05, + "loss": 0.6077, + "mean_token_accuracy": 0.8201918363571167, + "num_tokens": 176947097.0, + "step": 5400 + }, + { + "entropy": 0.6193856991827488, + "epoch": 0.14426666666666665, + "grad_norm": 0.6905038356781006, + "learning_rate": 1.716096256684492e-05, + "loss": 0.6137, + "mean_token_accuracy": 0.8208119466900825, + "num_tokens": 177274777.0, + "step": 5410 + }, + { + "entropy": 0.6134863115847111, + "epoch": 0.14453333333333335, + "grad_norm": 0.4986840486526489, + "learning_rate": 1.7155614973262033e-05, + "loss": 0.5944, + "mean_token_accuracy": 0.8243615612387657, + "num_tokens": 177602457.0, + "step": 5420 + }, + { + "entropy": 0.5782571002840996, + "epoch": 0.1448, + "grad_norm": 0.5752607583999634, + "learning_rate": 1.7150267379679148e-05, + "loss": 0.5705, + "mean_token_accuracy": 0.8306207194924354, + "num_tokens": 177930137.0, + "step": 5430 + }, + { + "entropy": 0.5844120234251022, + "epoch": 0.14506666666666668, + "grad_norm": 0.5871946811676025, + "learning_rate": 1.714491978609626e-05, + "loss": 0.5712, + "mean_token_accuracy": 0.8312072321772576, + "num_tokens": 178257817.0, + "step": 5440 + }, + { + "entropy": 0.6243437945842742, + "epoch": 0.14533333333333334, + "grad_norm": 0.5043569803237915, + "learning_rate": 1.7139572192513368e-05, + "loss": 0.616, + "mean_token_accuracy": 0.8187591671943665, + "num_tokens": 178585497.0, + "step": 5450 + }, + { + "entropy": 0.6056512035429478, + "epoch": 0.1456, + "grad_norm": 0.7347299456596375, + "learning_rate": 1.7134224598930483e-05, + "loss": 0.5927, + "mean_token_accuracy": 0.8241996571421624, + "num_tokens": 178913177.0, + "step": 5460 + }, + { + "entropy": 0.6096108578145504, + "epoch": 0.14586666666666667, + "grad_norm": 0.5748003721237183, + "learning_rate": 1.7128877005347595e-05, + "loss": 0.594, + "mean_token_accuracy": 0.8256689876317977, + "num_tokens": 179240857.0, + "step": 5470 + }, + { + "entropy": 0.622131047397852, + "epoch": 0.14613333333333334, + "grad_norm": 0.630882203578949, + "learning_rate": 1.7123529411764707e-05, + "loss": 0.6168, + "mean_token_accuracy": 0.8198802530765533, + "num_tokens": 179568537.0, + "step": 5480 + }, + { + "entropy": 0.6202254898846149, + "epoch": 0.1464, + "grad_norm": 0.6485390663146973, + "learning_rate": 1.711818181818182e-05, + "loss": 0.615, + "mean_token_accuracy": 0.8199718996882439, + "num_tokens": 179896217.0, + "step": 5490 + }, + { + "entropy": 0.6123473346233368, + "epoch": 0.14666666666666667, + "grad_norm": 0.5846719145774841, + "learning_rate": 1.711283422459893e-05, + "loss": 0.5948, + "mean_token_accuracy": 0.8253879517316818, + "num_tokens": 180223897.0, + "step": 5500 + }, + { + "entropy": 0.5946030661463737, + "epoch": 0.14693333333333333, + "grad_norm": 0.6383978128433228, + "learning_rate": 1.7107486631016042e-05, + "loss": 0.5918, + "mean_token_accuracy": 0.8256231665611267, + "num_tokens": 180551577.0, + "step": 5510 + }, + { + "entropy": 0.5912628397345543, + "epoch": 0.1472, + "grad_norm": 0.6081676483154297, + "learning_rate": 1.7102139037433158e-05, + "loss": 0.5806, + "mean_token_accuracy": 0.8290689155459404, + "num_tokens": 180879257.0, + "step": 5520 + }, + { + "entropy": 0.6031342394649982, + "epoch": 0.14746666666666666, + "grad_norm": 0.5201841592788696, + "learning_rate": 1.709679144385027e-05, + "loss": 0.589, + "mean_token_accuracy": 0.8267473116517067, + "num_tokens": 181206937.0, + "step": 5530 + }, + { + "entropy": 0.6211850836873054, + "epoch": 0.14773333333333333, + "grad_norm": 0.5524062514305115, + "learning_rate": 1.709144385026738e-05, + "loss": 0.6129, + "mean_token_accuracy": 0.8208669364452362, + "num_tokens": 181534617.0, + "step": 5540 + }, + { + "entropy": 0.587277277559042, + "epoch": 0.148, + "grad_norm": 0.5584370493888855, + "learning_rate": 1.7086096256684493e-05, + "loss": 0.5724, + "mean_token_accuracy": 0.8290414184331893, + "num_tokens": 181862297.0, + "step": 5550 + }, + { + "entropy": 0.5796420909464359, + "epoch": 0.14826666666666666, + "grad_norm": 0.5459908843040466, + "learning_rate": 1.7080748663101605e-05, + "loss": 0.5689, + "mean_token_accuracy": 0.8323955282568931, + "num_tokens": 182189977.0, + "step": 5560 + }, + { + "entropy": 0.5950359866023064, + "epoch": 0.14853333333333332, + "grad_norm": 0.7116152048110962, + "learning_rate": 1.7075401069518717e-05, + "loss": 0.5847, + "mean_token_accuracy": 0.8268389493227005, + "num_tokens": 182517657.0, + "step": 5570 + }, + { + "entropy": 0.6044580794870853, + "epoch": 0.1488, + "grad_norm": 0.5448054075241089, + "learning_rate": 1.7070053475935832e-05, + "loss": 0.5895, + "mean_token_accuracy": 0.8255620688199997, + "num_tokens": 182845337.0, + "step": 5580 + }, + { + "entropy": 0.5867747254669666, + "epoch": 0.14906666666666665, + "grad_norm": 0.5431827902793884, + "learning_rate": 1.7064705882352944e-05, + "loss": 0.5819, + "mean_token_accuracy": 0.8266770482063294, + "num_tokens": 183173017.0, + "step": 5590 + }, + { + "entropy": 0.6118120543658734, + "epoch": 0.14933333333333335, + "grad_norm": 0.5354688763618469, + "learning_rate": 1.7059358288770055e-05, + "loss": 0.5966, + "mean_token_accuracy": 0.8242485344409942, + "num_tokens": 183500697.0, + "step": 5600 + }, + { + "entropy": 0.588444821536541, + "epoch": 0.1496, + "grad_norm": 0.5365312099456787, + "learning_rate": 1.7054010695187167e-05, + "loss": 0.5796, + "mean_token_accuracy": 0.8284762904047966, + "num_tokens": 183828377.0, + "step": 5610 + }, + { + "entropy": 0.6157905429601669, + "epoch": 0.14986666666666668, + "grad_norm": 0.5922267436981201, + "learning_rate": 1.704866310160428e-05, + "loss": 0.5987, + "mean_token_accuracy": 0.8235215038061142, + "num_tokens": 184156057.0, + "step": 5620 + }, + { + "entropy": 0.6106136351823807, + "epoch": 0.15013333333333334, + "grad_norm": 0.4556030035018921, + "learning_rate": 1.704331550802139e-05, + "loss": 0.6013, + "mean_token_accuracy": 0.8222324013710022, + "num_tokens": 184483737.0, + "step": 5630 + }, + { + "entropy": 0.5784977562725544, + "epoch": 0.1504, + "grad_norm": 0.4618242084980011, + "learning_rate": 1.7037967914438506e-05, + "loss": 0.5708, + "mean_token_accuracy": 0.8316379517316819, + "num_tokens": 184811417.0, + "step": 5640 + }, + { + "entropy": 0.6016978219151496, + "epoch": 0.15066666666666667, + "grad_norm": 0.5729866027832031, + "learning_rate": 1.7032620320855618e-05, + "loss": 0.5959, + "mean_token_accuracy": 0.8241416156291962, + "num_tokens": 185139097.0, + "step": 5650 + }, + { + "entropy": 0.6180305503308773, + "epoch": 0.15093333333333334, + "grad_norm": 0.4492015540599823, + "learning_rate": 1.7027272727272726e-05, + "loss": 0.6123, + "mean_token_accuracy": 0.8206867098808288, + "num_tokens": 185466777.0, + "step": 5660 + }, + { + "entropy": 0.6110047794878483, + "epoch": 0.1512, + "grad_norm": 0.6685405373573303, + "learning_rate": 1.702192513368984e-05, + "loss": 0.5981, + "mean_token_accuracy": 0.8238758549094201, + "num_tokens": 185794457.0, + "step": 5670 + }, + { + "entropy": 0.6041754990816116, + "epoch": 0.15146666666666667, + "grad_norm": 0.4714350998401642, + "learning_rate": 1.7016577540106953e-05, + "loss": 0.5923, + "mean_token_accuracy": 0.822953325510025, + "num_tokens": 186122137.0, + "step": 5680 + }, + { + "entropy": 0.6022451117634773, + "epoch": 0.15173333333333333, + "grad_norm": 0.4793015420436859, + "learning_rate": 1.7011229946524065e-05, + "loss": 0.5933, + "mean_token_accuracy": 0.8254673719406128, + "num_tokens": 186449817.0, + "step": 5690 + }, + { + "entropy": 0.5991009667515754, + "epoch": 0.152, + "grad_norm": 0.5819358825683594, + "learning_rate": 1.700588235294118e-05, + "loss": 0.5878, + "mean_token_accuracy": 0.8254643216729164, + "num_tokens": 186777497.0, + "step": 5700 + }, + { + "entropy": 0.6146255634725094, + "epoch": 0.15226666666666666, + "grad_norm": 0.5260542035102844, + "learning_rate": 1.700053475935829e-05, + "loss": 0.6016, + "mean_token_accuracy": 0.8216153457760811, + "num_tokens": 187105177.0, + "step": 5710 + }, + { + "entropy": 0.5842849433422088, + "epoch": 0.15253333333333333, + "grad_norm": 0.47430717945098877, + "learning_rate": 1.69951871657754e-05, + "loss": 0.5729, + "mean_token_accuracy": 0.8301991671323776, + "num_tokens": 187432857.0, + "step": 5720 + }, + { + "entropy": 0.5866012826561928, + "epoch": 0.1528, + "grad_norm": 0.47670090198516846, + "learning_rate": 1.6989839572192516e-05, + "loss": 0.5807, + "mean_token_accuracy": 0.8269122675061226, + "num_tokens": 187760537.0, + "step": 5730 + }, + { + "entropy": 0.6161247670650483, + "epoch": 0.15306666666666666, + "grad_norm": 0.5166377425193787, + "learning_rate": 1.6984491978609627e-05, + "loss": 0.6058, + "mean_token_accuracy": 0.8223240450024605, + "num_tokens": 188088217.0, + "step": 5740 + }, + { + "entropy": 0.6182661049067975, + "epoch": 0.15333333333333332, + "grad_norm": 0.5446411967277527, + "learning_rate": 1.697914438502674e-05, + "loss": 0.6089, + "mean_token_accuracy": 0.821279326081276, + "num_tokens": 188415897.0, + "step": 5750 + }, + { + "entropy": 0.5995870277285575, + "epoch": 0.1536, + "grad_norm": 0.6212722063064575, + "learning_rate": 1.697379679144385e-05, + "loss": 0.5864, + "mean_token_accuracy": 0.825137460231781, + "num_tokens": 188743577.0, + "step": 5760 + }, + { + "entropy": 0.60131761059165, + "epoch": 0.15386666666666668, + "grad_norm": 0.5571957230567932, + "learning_rate": 1.6968449197860963e-05, + "loss": 0.5914, + "mean_token_accuracy": 0.8264418333768845, + "num_tokens": 189071257.0, + "step": 5770 + }, + { + "entropy": 0.5689705647528172, + "epoch": 0.15413333333333334, + "grad_norm": 0.5237152576446533, + "learning_rate": 1.6963101604278075e-05, + "loss": 0.5627, + "mean_token_accuracy": 0.8333852604031563, + "num_tokens": 189398937.0, + "step": 5780 + }, + { + "entropy": 0.5922715999186039, + "epoch": 0.1544, + "grad_norm": 0.5055749416351318, + "learning_rate": 1.695775401069519e-05, + "loss": 0.581, + "mean_token_accuracy": 0.8264204517006875, + "num_tokens": 189726617.0, + "step": 5790 + }, + { + "entropy": 0.5955583088099956, + "epoch": 0.15466666666666667, + "grad_norm": 0.5033058524131775, + "learning_rate": 1.6952406417112302e-05, + "loss": 0.5791, + "mean_token_accuracy": 0.8278653472661972, + "num_tokens": 190054297.0, + "step": 5800 + }, + { + "entropy": 0.5790828920900821, + "epoch": 0.15493333333333334, + "grad_norm": 0.5274530649185181, + "learning_rate": 1.6947058823529414e-05, + "loss": 0.5712, + "mean_token_accuracy": 0.8309048131108284, + "num_tokens": 190381977.0, + "step": 5810 + }, + { + "entropy": 0.5889088690280915, + "epoch": 0.1552, + "grad_norm": 0.6046780347824097, + "learning_rate": 1.6941711229946525e-05, + "loss": 0.5774, + "mean_token_accuracy": 0.8278653442859649, + "num_tokens": 190709657.0, + "step": 5820 + }, + { + "entropy": 0.6081131473183632, + "epoch": 0.15546666666666667, + "grad_norm": 0.5690280795097351, + "learning_rate": 1.6936363636363637e-05, + "loss": 0.5977, + "mean_token_accuracy": 0.8226264640688896, + "num_tokens": 191037337.0, + "step": 5830 + }, + { + "entropy": 0.587796650081873, + "epoch": 0.15573333333333333, + "grad_norm": 0.5349929928779602, + "learning_rate": 1.693101604278075e-05, + "loss": 0.5784, + "mean_token_accuracy": 0.8295485109090805, + "num_tokens": 191365017.0, + "step": 5840 + }, + { + "entropy": 0.5915711678564548, + "epoch": 0.156, + "grad_norm": 0.4947117567062378, + "learning_rate": 1.6925668449197864e-05, + "loss": 0.5821, + "mean_token_accuracy": 0.8268175661563874, + "num_tokens": 191692697.0, + "step": 5850 + }, + { + "entropy": 0.6039751805365086, + "epoch": 0.15626666666666666, + "grad_norm": 0.5140764713287354, + "learning_rate": 1.6920320855614976e-05, + "loss": 0.5892, + "mean_token_accuracy": 0.8269794672727585, + "num_tokens": 192020377.0, + "step": 5860 + }, + { + "entropy": 0.6018185123801232, + "epoch": 0.15653333333333333, + "grad_norm": 0.5119272470474243, + "learning_rate": 1.6914973262032088e-05, + "loss": 0.5919, + "mean_token_accuracy": 0.8238697439432144, + "num_tokens": 192348057.0, + "step": 5870 + }, + { + "entropy": 0.5990505233407021, + "epoch": 0.1568, + "grad_norm": 0.5075955390930176, + "learning_rate": 1.69096256684492e-05, + "loss": 0.5929, + "mean_token_accuracy": 0.8244134932756424, + "num_tokens": 192675737.0, + "step": 5880 + }, + { + "entropy": 0.5888317279517651, + "epoch": 0.15706666666666666, + "grad_norm": 0.5657641291618347, + "learning_rate": 1.690427807486631e-05, + "loss": 0.5795, + "mean_token_accuracy": 0.8287054032087326, + "num_tokens": 193003417.0, + "step": 5890 + }, + { + "entropy": 0.6212611272931099, + "epoch": 0.15733333333333333, + "grad_norm": 0.5563691854476929, + "learning_rate": 1.6898930481283423e-05, + "loss": 0.6099, + "mean_token_accuracy": 0.8195136845111847, + "num_tokens": 193331097.0, + "step": 5900 + }, + { + "entropy": 0.6000641994178295, + "epoch": 0.1576, + "grad_norm": 0.5165938138961792, + "learning_rate": 1.689358288770054e-05, + "loss": 0.5856, + "mean_token_accuracy": 0.8289161771535873, + "num_tokens": 193658777.0, + "step": 5910 + }, + { + "entropy": 0.5825034789741039, + "epoch": 0.15786666666666666, + "grad_norm": 0.6044878959655762, + "learning_rate": 1.6888235294117647e-05, + "loss": 0.5738, + "mean_token_accuracy": 0.8299639493227005, + "num_tokens": 193986457.0, + "step": 5920 + }, + { + "entropy": 0.5889501094818115, + "epoch": 0.15813333333333332, + "grad_norm": 0.5247175097465515, + "learning_rate": 1.688288770053476e-05, + "loss": 0.5741, + "mean_token_accuracy": 0.8290872409939766, + "num_tokens": 194314137.0, + "step": 5930 + }, + { + "entropy": 0.6192642949521542, + "epoch": 0.1584, + "grad_norm": 0.6957064270973206, + "learning_rate": 1.6877540106951874e-05, + "loss": 0.6086, + "mean_token_accuracy": 0.8228280797600747, + "num_tokens": 194641817.0, + "step": 5940 + }, + { + "entropy": 0.6061706312000752, + "epoch": 0.15866666666666668, + "grad_norm": 0.49194401502609253, + "learning_rate": 1.6872192513368986e-05, + "loss": 0.5948, + "mean_token_accuracy": 0.8240530312061309, + "num_tokens": 194969497.0, + "step": 5950 + }, + { + "entropy": 0.5888864673674107, + "epoch": 0.15893333333333334, + "grad_norm": 0.5204460620880127, + "learning_rate": 1.6866844919786097e-05, + "loss": 0.5815, + "mean_token_accuracy": 0.8260477721691132, + "num_tokens": 195297177.0, + "step": 5960 + }, + { + "entropy": 0.5943687185645103, + "epoch": 0.1592, + "grad_norm": 0.47262024879455566, + "learning_rate": 1.686149732620321e-05, + "loss": 0.5889, + "mean_token_accuracy": 0.8256995290517807, + "num_tokens": 195624857.0, + "step": 5970 + }, + { + "entropy": 0.6128756478428841, + "epoch": 0.15946666666666667, + "grad_norm": 0.6539174318313599, + "learning_rate": 1.685614973262032e-05, + "loss": 0.5983, + "mean_token_accuracy": 0.8248655945062637, + "num_tokens": 195952537.0, + "step": 5980 + }, + { + "entropy": 0.5854204565286636, + "epoch": 0.15973333333333334, + "grad_norm": 0.5238087773323059, + "learning_rate": 1.6850802139037433e-05, + "loss": 0.5732, + "mean_token_accuracy": 0.8302266627550126, + "num_tokens": 196280217.0, + "step": 5990 + }, + { + "entropy": 0.5909271024167537, + "epoch": 0.16, + "grad_norm": 0.5339305996894836, + "learning_rate": 1.6845454545454548e-05, + "loss": 0.5786, + "mean_token_accuracy": 0.8292766332626342, + "num_tokens": 196607897.0, + "step": 6000 + }, + { + "entropy": 0.5587038807570934, + "epoch": 0.16026666666666667, + "grad_norm": 0.6590559482574463, + "learning_rate": 1.684010695187166e-05, + "loss": 0.5477, + "mean_token_accuracy": 0.8365469172596931, + "num_tokens": 196935577.0, + "step": 6010 + }, + { + "entropy": 0.590944005548954, + "epoch": 0.16053333333333333, + "grad_norm": 0.6243144273757935, + "learning_rate": 1.683475935828877e-05, + "loss": 0.578, + "mean_token_accuracy": 0.8304802045226097, + "num_tokens": 197263257.0, + "step": 6020 + }, + { + "entropy": 0.5954900644719601, + "epoch": 0.1608, + "grad_norm": 0.5066710114479065, + "learning_rate": 1.6829411764705883e-05, + "loss": 0.5884, + "mean_token_accuracy": 0.8247159078717232, + "num_tokens": 197590937.0, + "step": 6030 + }, + { + "entropy": 0.5989583984017373, + "epoch": 0.16106666666666666, + "grad_norm": 0.609043300151825, + "learning_rate": 1.6824064171122995e-05, + "loss": 0.5893, + "mean_token_accuracy": 0.8264357253909111, + "num_tokens": 197918617.0, + "step": 6040 + }, + { + "entropy": 0.6119338430464267, + "epoch": 0.16133333333333333, + "grad_norm": 0.6996363997459412, + "learning_rate": 1.6818716577540107e-05, + "loss": 0.5994, + "mean_token_accuracy": 0.8232832416892052, + "num_tokens": 198246297.0, + "step": 6050 + }, + { + "entropy": 0.5968971669673919, + "epoch": 0.1616, + "grad_norm": 0.5081717371940613, + "learning_rate": 1.6813368983957222e-05, + "loss": 0.5843, + "mean_token_accuracy": 0.8268084034323693, + "num_tokens": 198573977.0, + "step": 6060 + }, + { + "entropy": 0.5901890307664871, + "epoch": 0.16186666666666666, + "grad_norm": 0.5805912613868713, + "learning_rate": 1.6808021390374334e-05, + "loss": 0.5812, + "mean_token_accuracy": 0.8283541023731231, + "num_tokens": 198901657.0, + "step": 6070 + }, + { + "entropy": 0.5717126734554767, + "epoch": 0.16213333333333332, + "grad_norm": 0.45765310525894165, + "learning_rate": 1.6802673796791446e-05, + "loss": 0.5632, + "mean_token_accuracy": 0.8317723602056504, + "num_tokens": 199229337.0, + "step": 6080 + }, + { + "entropy": 0.5864593662321568, + "epoch": 0.1624, + "grad_norm": 0.55170077085495, + "learning_rate": 1.6797326203208558e-05, + "loss": 0.572, + "mean_token_accuracy": 0.8300281047821045, + "num_tokens": 199557017.0, + "step": 6090 + }, + { + "entropy": 0.5870142191648483, + "epoch": 0.16266666666666665, + "grad_norm": 0.5163315534591675, + "learning_rate": 1.679197860962567e-05, + "loss": 0.5779, + "mean_token_accuracy": 0.8300861448049546, + "num_tokens": 199884697.0, + "step": 6100 + }, + { + "entropy": 0.5794356741011143, + "epoch": 0.16293333333333335, + "grad_norm": 0.5115768313407898, + "learning_rate": 1.678663101604278e-05, + "loss": 0.5704, + "mean_token_accuracy": 0.8301533490419388, + "num_tokens": 200212377.0, + "step": 6110 + }, + { + "entropy": 0.5924508973956109, + "epoch": 0.1632, + "grad_norm": 0.4875156879425049, + "learning_rate": 1.6781283422459896e-05, + "loss": 0.5772, + "mean_token_accuracy": 0.8296279311180115, + "num_tokens": 200540057.0, + "step": 6120 + }, + { + "entropy": 0.5937600165605545, + "epoch": 0.16346666666666668, + "grad_norm": 0.502435028553009, + "learning_rate": 1.6775935828877005e-05, + "loss": 0.5843, + "mean_token_accuracy": 0.8271933004260064, + "num_tokens": 200867737.0, + "step": 6130 + }, + { + "entropy": 0.5833610489964485, + "epoch": 0.16373333333333334, + "grad_norm": 0.5039084553718567, + "learning_rate": 1.677058823529412e-05, + "loss": 0.5757, + "mean_token_accuracy": 0.8292399793863297, + "num_tokens": 201195417.0, + "step": 6140 + }, + { + "entropy": 0.5614327006042004, + "epoch": 0.164, + "grad_norm": 0.7296598553657532, + "learning_rate": 1.6765240641711232e-05, + "loss": 0.5494, + "mean_token_accuracy": 0.8348637595772743, + "num_tokens": 201523097.0, + "step": 6150 + }, + { + "entropy": 0.5644073359668255, + "epoch": 0.16426666666666667, + "grad_norm": 0.49619829654693604, + "learning_rate": 1.6759893048128344e-05, + "loss": 0.5521, + "mean_token_accuracy": 0.8348362669348717, + "num_tokens": 201850777.0, + "step": 6160 + }, + { + "entropy": 0.5702700860798359, + "epoch": 0.16453333333333334, + "grad_norm": 0.505085825920105, + "learning_rate": 1.6754545454545456e-05, + "loss": 0.5609, + "mean_token_accuracy": 0.8314424470067024, + "num_tokens": 202178457.0, + "step": 6170 + }, + { + "entropy": 0.5994322098791599, + "epoch": 0.1648, + "grad_norm": 0.5514662861824036, + "learning_rate": 1.6749197860962567e-05, + "loss": 0.5906, + "mean_token_accuracy": 0.8261974558234215, + "num_tokens": 202506137.0, + "step": 6180 + }, + { + "entropy": 0.6086098030209541, + "epoch": 0.16506666666666667, + "grad_norm": 0.48559609055519104, + "learning_rate": 1.674385026737968e-05, + "loss": 0.5966, + "mean_token_accuracy": 0.8223301500082016, + "num_tokens": 202833817.0, + "step": 6190 + }, + { + "entropy": 0.602690052986145, + "epoch": 0.16533333333333333, + "grad_norm": 0.5799172520637512, + "learning_rate": 1.673850267379679e-05, + "loss": 0.5925, + "mean_token_accuracy": 0.826533479988575, + "num_tokens": 203161497.0, + "step": 6200 + }, + { + "entropy": 0.611245246976614, + "epoch": 0.1656, + "grad_norm": 0.4895267188549042, + "learning_rate": 1.6733155080213906e-05, + "loss": 0.6012, + "mean_token_accuracy": 0.8238514184951782, + "num_tokens": 203489177.0, + "step": 6210 + }, + { + "entropy": 0.6056264981627464, + "epoch": 0.16586666666666666, + "grad_norm": 0.6508986949920654, + "learning_rate": 1.6727807486631018e-05, + "loss": 0.5971, + "mean_token_accuracy": 0.8228128015995025, + "num_tokens": 203816857.0, + "step": 6220 + }, + { + "entropy": 0.6069623030722141, + "epoch": 0.16613333333333333, + "grad_norm": 0.6548013091087341, + "learning_rate": 1.672245989304813e-05, + "loss": 0.5986, + "mean_token_accuracy": 0.8233718171715736, + "num_tokens": 204144537.0, + "step": 6230 + }, + { + "entropy": 0.5951053515076637, + "epoch": 0.1664, + "grad_norm": 0.4595625698566437, + "learning_rate": 1.671711229946524e-05, + "loss": 0.5801, + "mean_token_accuracy": 0.8285373896360397, + "num_tokens": 204472217.0, + "step": 6240 + }, + { + "entropy": 0.5886056572198868, + "epoch": 0.16666666666666666, + "grad_norm": 0.6029869914054871, + "learning_rate": 1.6711764705882353e-05, + "loss": 0.5854, + "mean_token_accuracy": 0.8261119231581688, + "num_tokens": 204799897.0, + "step": 6250 + }, + { + "entropy": 0.5991396136581898, + "epoch": 0.16693333333333332, + "grad_norm": 0.5357114672660828, + "learning_rate": 1.6706417112299465e-05, + "loss": 0.5838, + "mean_token_accuracy": 0.8271230399608612, + "num_tokens": 205127577.0, + "step": 6260 + }, + { + "entropy": 0.558577710390091, + "epoch": 0.1672, + "grad_norm": 0.4572122395038605, + "learning_rate": 1.670106951871658e-05, + "loss": 0.545, + "mean_token_accuracy": 0.8377565965056419, + "num_tokens": 205455257.0, + "step": 6270 + }, + { + "entropy": 0.5833405576646328, + "epoch": 0.16746666666666668, + "grad_norm": 0.5629472732543945, + "learning_rate": 1.6695721925133692e-05, + "loss": 0.5736, + "mean_token_accuracy": 0.829566840827465, + "num_tokens": 205782937.0, + "step": 6280 + }, + { + "entropy": 0.5613599091768264, + "epoch": 0.16773333333333335, + "grad_norm": 0.5343989729881287, + "learning_rate": 1.6690374331550804e-05, + "loss": 0.5518, + "mean_token_accuracy": 0.8349889993667603, + "num_tokens": 206110617.0, + "step": 6290 + }, + { + "entropy": 0.6083256095647812, + "epoch": 0.168, + "grad_norm": 0.5614194869995117, + "learning_rate": 1.6685026737967916e-05, + "loss": 0.6008, + "mean_token_accuracy": 0.8247342377901077, + "num_tokens": 206438297.0, + "step": 6300 + }, + { + "entropy": 0.602846211194992, + "epoch": 0.16826666666666668, + "grad_norm": 0.5676190853118896, + "learning_rate": 1.6679679144385028e-05, + "loss": 0.5859, + "mean_token_accuracy": 0.8254459947347641, + "num_tokens": 206765977.0, + "step": 6310 + }, + { + "entropy": 0.5713487163186073, + "epoch": 0.16853333333333334, + "grad_norm": 0.49047601222991943, + "learning_rate": 1.667433155080214e-05, + "loss": 0.5637, + "mean_token_accuracy": 0.8327193275094033, + "num_tokens": 207093657.0, + "step": 6320 + }, + { + "entropy": 0.5795545518398285, + "epoch": 0.1688, + "grad_norm": 0.5205618143081665, + "learning_rate": 1.6668983957219255e-05, + "loss": 0.5714, + "mean_token_accuracy": 0.8301594540476799, + "num_tokens": 207421337.0, + "step": 6330 + }, + { + "entropy": 0.5691454589366913, + "epoch": 0.16906666666666667, + "grad_norm": 0.5019081234931946, + "learning_rate": 1.6663636363636363e-05, + "loss": 0.5582, + "mean_token_accuracy": 0.8338709652423859, + "num_tokens": 207749017.0, + "step": 6340 + }, + { + "entropy": 0.5838815867900848, + "epoch": 0.16933333333333334, + "grad_norm": 0.5926812887191772, + "learning_rate": 1.6658288770053478e-05, + "loss": 0.5801, + "mean_token_accuracy": 0.8284396380186081, + "num_tokens": 208076697.0, + "step": 6350 + }, + { + "entropy": 0.5903220325708389, + "epoch": 0.1696, + "grad_norm": 0.5419896245002747, + "learning_rate": 1.665294117647059e-05, + "loss": 0.577, + "mean_token_accuracy": 0.8310789406299591, + "num_tokens": 208404377.0, + "step": 6360 + }, + { + "entropy": 0.5900990754365921, + "epoch": 0.16986666666666667, + "grad_norm": 0.5069217085838318, + "learning_rate": 1.6647593582887702e-05, + "loss": 0.5786, + "mean_token_accuracy": 0.8292613610625267, + "num_tokens": 208732057.0, + "step": 6370 + }, + { + "entropy": 0.5870651677250862, + "epoch": 0.17013333333333333, + "grad_norm": 0.6124886274337769, + "learning_rate": 1.6642245989304814e-05, + "loss": 0.5737, + "mean_token_accuracy": 0.8296309813857079, + "num_tokens": 209059737.0, + "step": 6380 + }, + { + "entropy": 0.6034312576055527, + "epoch": 0.1704, + "grad_norm": 0.48503589630126953, + "learning_rate": 1.6636898395721925e-05, + "loss": 0.5955, + "mean_token_accuracy": 0.8250946953892708, + "num_tokens": 209387417.0, + "step": 6390 + }, + { + "entropy": 0.5928628303110599, + "epoch": 0.17066666666666666, + "grad_norm": 0.6071211695671082, + "learning_rate": 1.6631550802139037e-05, + "loss": 0.5795, + "mean_token_accuracy": 0.8299303516745568, + "num_tokens": 209715097.0, + "step": 6400 + }, + { + "entropy": 0.6154975153505802, + "epoch": 0.17093333333333333, + "grad_norm": 0.5648673176765442, + "learning_rate": 1.6626203208556152e-05, + "loss": 0.6087, + "mean_token_accuracy": 0.8209341391921043, + "num_tokens": 210042777.0, + "step": 6410 + }, + { + "entropy": 0.5974450670182705, + "epoch": 0.1712, + "grad_norm": 0.6501736640930176, + "learning_rate": 1.6620855614973264e-05, + "loss": 0.5791, + "mean_token_accuracy": 0.8285709902644157, + "num_tokens": 210370457.0, + "step": 6420 + }, + { + "entropy": 0.6025378443300724, + "epoch": 0.17146666666666666, + "grad_norm": 0.4831034541130066, + "learning_rate": 1.6615508021390376e-05, + "loss": 0.5969, + "mean_token_accuracy": 0.8247403427958488, + "num_tokens": 210698137.0, + "step": 6430 + }, + { + "entropy": 0.6084349028766155, + "epoch": 0.17173333333333332, + "grad_norm": 0.5307326316833496, + "learning_rate": 1.6610160427807488e-05, + "loss": 0.5996, + "mean_token_accuracy": 0.8245876103639602, + "num_tokens": 211025817.0, + "step": 6440 + }, + { + "entropy": 0.5916773281991482, + "epoch": 0.172, + "grad_norm": 0.6217837929725647, + "learning_rate": 1.66048128342246e-05, + "loss": 0.5798, + "mean_token_accuracy": 0.8278867259621621, + "num_tokens": 211353497.0, + "step": 6450 + }, + { + "entropy": 0.5969949141144753, + "epoch": 0.17226666666666668, + "grad_norm": 0.6196262836456299, + "learning_rate": 1.659946524064171e-05, + "loss": 0.5814, + "mean_token_accuracy": 0.8283938154578209, + "num_tokens": 211681177.0, + "step": 6460 + }, + { + "entropy": 0.6075404763221741, + "epoch": 0.17253333333333334, + "grad_norm": 0.4899851083755493, + "learning_rate": 1.6594117647058827e-05, + "loss": 0.6022, + "mean_token_accuracy": 0.8226600661873817, + "num_tokens": 212008857.0, + "step": 6470 + }, + { + "entropy": 0.5535336039960385, + "epoch": 0.1728, + "grad_norm": 0.5444864630699158, + "learning_rate": 1.658877005347594e-05, + "loss": 0.5405, + "mean_token_accuracy": 0.8371945276856423, + "num_tokens": 212336537.0, + "step": 6480 + }, + { + "entropy": 0.5652446046471595, + "epoch": 0.17306666666666667, + "grad_norm": 0.6054065823554993, + "learning_rate": 1.658342245989305e-05, + "loss": 0.5549, + "mean_token_accuracy": 0.8349279016256332, + "num_tokens": 212664217.0, + "step": 6490 + }, + { + "entropy": 0.5821892686188221, + "epoch": 0.17333333333333334, + "grad_norm": 0.5747592449188232, + "learning_rate": 1.6578074866310162e-05, + "loss": 0.5716, + "mean_token_accuracy": 0.8304496541619301, + "num_tokens": 212991897.0, + "step": 6500 + }, + { + "entropy": 0.5729347303509712, + "epoch": 0.1736, + "grad_norm": 0.648250162601471, + "learning_rate": 1.6572727272727274e-05, + "loss": 0.5634, + "mean_token_accuracy": 0.833754888176918, + "num_tokens": 213319577.0, + "step": 6510 + }, + { + "entropy": 0.5992898546159268, + "epoch": 0.17386666666666667, + "grad_norm": 0.5348318815231323, + "learning_rate": 1.6567379679144386e-05, + "loss": 0.586, + "mean_token_accuracy": 0.8264143466949463, + "num_tokens": 213647257.0, + "step": 6520 + }, + { + "entropy": 0.5950483039021492, + "epoch": 0.17413333333333333, + "grad_norm": 0.564141035079956, + "learning_rate": 1.6562032085561498e-05, + "loss": 0.5829, + "mean_token_accuracy": 0.8273857519030571, + "num_tokens": 213974937.0, + "step": 6530 + }, + { + "entropy": 0.5864290438592434, + "epoch": 0.1744, + "grad_norm": 0.5282854437828064, + "learning_rate": 1.6556684491978613e-05, + "loss": 0.5734, + "mean_token_accuracy": 0.8302297130227089, + "num_tokens": 214302617.0, + "step": 6540 + }, + { + "entropy": 0.575074841082096, + "epoch": 0.17466666666666666, + "grad_norm": 0.7073062658309937, + "learning_rate": 1.655133689839572e-05, + "loss": 0.5675, + "mean_token_accuracy": 0.8316715508699417, + "num_tokens": 214630297.0, + "step": 6550 + }, + { + "entropy": 0.60054025426507, + "epoch": 0.17493333333333333, + "grad_norm": 0.542799174785614, + "learning_rate": 1.6545989304812836e-05, + "loss": 0.5877, + "mean_token_accuracy": 0.8250641465187073, + "num_tokens": 214957977.0, + "step": 6560 + }, + { + "entropy": 0.5946882419288159, + "epoch": 0.1752, + "grad_norm": 0.5276074409484863, + "learning_rate": 1.6540641711229948e-05, + "loss": 0.5819, + "mean_token_accuracy": 0.827055835723877, + "num_tokens": 215285657.0, + "step": 6570 + }, + { + "entropy": 0.559986025094986, + "epoch": 0.17546666666666666, + "grad_norm": 0.6103901267051697, + "learning_rate": 1.653529411764706e-05, + "loss": 0.5507, + "mean_token_accuracy": 0.8358565449714661, + "num_tokens": 215613337.0, + "step": 6580 + }, + { + "entropy": 0.5709345504641533, + "epoch": 0.17573333333333332, + "grad_norm": 0.5542101860046387, + "learning_rate": 1.6529946524064172e-05, + "loss": 0.5599, + "mean_token_accuracy": 0.8338892966508865, + "num_tokens": 215941017.0, + "step": 6590 + }, + { + "entropy": 0.6008732952177525, + "epoch": 0.176, + "grad_norm": 0.4829970896244049, + "learning_rate": 1.6524598930481284e-05, + "loss": 0.591, + "mean_token_accuracy": 0.823536778986454, + "num_tokens": 216268697.0, + "step": 6600 + }, + { + "entropy": 0.578897013515234, + "epoch": 0.17626666666666665, + "grad_norm": 0.4680696129798889, + "learning_rate": 1.6519251336898395e-05, + "loss": 0.571, + "mean_token_accuracy": 0.8300830811262131, + "num_tokens": 216596377.0, + "step": 6610 + }, + { + "entropy": 0.6060771636664868, + "epoch": 0.17653333333333332, + "grad_norm": 0.641050398349762, + "learning_rate": 1.651390374331551e-05, + "loss": 0.5989, + "mean_token_accuracy": 0.8213648572564125, + "num_tokens": 216924057.0, + "step": 6620 + }, + { + "entropy": 0.570600051432848, + "epoch": 0.1768, + "grad_norm": 0.5095393061637878, + "learning_rate": 1.6508556149732622e-05, + "loss": 0.5581, + "mean_token_accuracy": 0.8336479663848877, + "num_tokens": 217251737.0, + "step": 6630 + }, + { + "entropy": 0.5739085115492344, + "epoch": 0.17706666666666668, + "grad_norm": 0.46836841106414795, + "learning_rate": 1.6503208556149734e-05, + "loss": 0.5584, + "mean_token_accuracy": 0.8324046924710273, + "num_tokens": 217579417.0, + "step": 6640 + }, + { + "entropy": 0.5799085564911366, + "epoch": 0.17733333333333334, + "grad_norm": 0.6916756629943848, + "learning_rate": 1.6497860962566846e-05, + "loss": 0.5746, + "mean_token_accuracy": 0.8289345040917396, + "num_tokens": 217907097.0, + "step": 6650 + }, + { + "entropy": 0.5554201230406761, + "epoch": 0.1776, + "grad_norm": 0.5233904123306274, + "learning_rate": 1.6492513368983958e-05, + "loss": 0.5474, + "mean_token_accuracy": 0.8372525691986084, + "num_tokens": 218234777.0, + "step": 6660 + }, + { + "entropy": 0.6153477519750595, + "epoch": 0.17786666666666667, + "grad_norm": 0.49100571870803833, + "learning_rate": 1.648716577540107e-05, + "loss": 0.6032, + "mean_token_accuracy": 0.8213343068957328, + "num_tokens": 218562457.0, + "step": 6670 + }, + { + "entropy": 0.5932588912546635, + "epoch": 0.17813333333333334, + "grad_norm": 0.5693761706352234, + "learning_rate": 1.6481818181818185e-05, + "loss": 0.5838, + "mean_token_accuracy": 0.8263349220156669, + "num_tokens": 218890137.0, + "step": 6680 + }, + { + "entropy": 0.5758526347577572, + "epoch": 0.1784, + "grad_norm": 0.4948122501373291, + "learning_rate": 1.6476470588235297e-05, + "loss": 0.5647, + "mean_token_accuracy": 0.8308101162314415, + "num_tokens": 219217817.0, + "step": 6690 + }, + { + "entropy": 0.5738284692168236, + "epoch": 0.17866666666666667, + "grad_norm": 0.5143077373504639, + "learning_rate": 1.647112299465241e-05, + "loss": 0.5637, + "mean_token_accuracy": 0.8301075264811516, + "num_tokens": 219545497.0, + "step": 6700 + }, + { + "entropy": 0.5862717747688293, + "epoch": 0.17893333333333333, + "grad_norm": 0.5274414420127869, + "learning_rate": 1.646577540106952e-05, + "loss": 0.5743, + "mean_token_accuracy": 0.8307337448000908, + "num_tokens": 219873177.0, + "step": 6710 + }, + { + "entropy": 0.5796642459928989, + "epoch": 0.1792, + "grad_norm": 0.5390974283218384, + "learning_rate": 1.6460427807486632e-05, + "loss": 0.5651, + "mean_token_accuracy": 0.8310850381851196, + "num_tokens": 220200857.0, + "step": 6720 + }, + { + "entropy": 0.5697744220495224, + "epoch": 0.17946666666666666, + "grad_norm": 0.5789408087730408, + "learning_rate": 1.6455080213903744e-05, + "loss": 0.5583, + "mean_token_accuracy": 0.832731555402279, + "num_tokens": 220528537.0, + "step": 6730 + }, + { + "entropy": 0.5707231611013412, + "epoch": 0.17973333333333333, + "grad_norm": 0.6618065237998962, + "learning_rate": 1.644973262032086e-05, + "loss": 0.566, + "mean_token_accuracy": 0.8317754209041596, + "num_tokens": 220856217.0, + "step": 6740 + }, + { + "entropy": 0.5884986869990826, + "epoch": 0.18, + "grad_norm": 0.56649249792099, + "learning_rate": 1.644438502673797e-05, + "loss": 0.5703, + "mean_token_accuracy": 0.8303549617528916, + "num_tokens": 221183897.0, + "step": 6750 + }, + { + "entropy": 0.5946214132010936, + "epoch": 0.18026666666666666, + "grad_norm": 0.622614324092865, + "learning_rate": 1.643903743315508e-05, + "loss": 0.5848, + "mean_token_accuracy": 0.8271841391921043, + "num_tokens": 221511577.0, + "step": 6760 + }, + { + "entropy": 0.6006936706602574, + "epoch": 0.18053333333333332, + "grad_norm": 0.5833432078361511, + "learning_rate": 1.6433689839572194e-05, + "loss": 0.5924, + "mean_token_accuracy": 0.8243798896670341, + "num_tokens": 221839257.0, + "step": 6770 + }, + { + "entropy": 0.5920550875365734, + "epoch": 0.1808, + "grad_norm": 0.5601273775100708, + "learning_rate": 1.6428342245989306e-05, + "loss": 0.5823, + "mean_token_accuracy": 0.8285984843969345, + "num_tokens": 222166937.0, + "step": 6780 + }, + { + "entropy": 0.5985722951591015, + "epoch": 0.18106666666666665, + "grad_norm": 0.5148204565048218, + "learning_rate": 1.6422994652406418e-05, + "loss": 0.5853, + "mean_token_accuracy": 0.8262707710266113, + "num_tokens": 222494617.0, + "step": 6790 + }, + { + "entropy": 0.5800035849213601, + "epoch": 0.18133333333333335, + "grad_norm": 0.6548101902008057, + "learning_rate": 1.641764705882353e-05, + "loss": 0.5705, + "mean_token_accuracy": 0.8306207180023193, + "num_tokens": 222822297.0, + "step": 6800 + }, + { + "entropy": 0.5585036732256412, + "epoch": 0.1816, + "grad_norm": 0.7687767744064331, + "learning_rate": 1.641229946524064e-05, + "loss": 0.5542, + "mean_token_accuracy": 0.8359176456928253, + "num_tokens": 223149977.0, + "step": 6810 + }, + { + "entropy": 0.5878450192511082, + "epoch": 0.18186666666666668, + "grad_norm": 0.5204241275787354, + "learning_rate": 1.6406951871657753e-05, + "loss": 0.5737, + "mean_token_accuracy": 0.8306757047772407, + "num_tokens": 223477657.0, + "step": 6820 + }, + { + "entropy": 0.5614672973752022, + "epoch": 0.18213333333333334, + "grad_norm": 0.56757652759552, + "learning_rate": 1.640160427807487e-05, + "loss": 0.5491, + "mean_token_accuracy": 0.8362933769822121, + "num_tokens": 223805337.0, + "step": 6830 + }, + { + "entropy": 0.5568563647568225, + "epoch": 0.1824, + "grad_norm": 0.6357690095901489, + "learning_rate": 1.639625668449198e-05, + "loss": 0.5419, + "mean_token_accuracy": 0.8382422998547554, + "num_tokens": 224133017.0, + "step": 6840 + }, + { + "entropy": 0.5902631767094135, + "epoch": 0.18266666666666667, + "grad_norm": 0.5143821835517883, + "learning_rate": 1.6390909090909092e-05, + "loss": 0.5869, + "mean_token_accuracy": 0.8271871924400329, + "num_tokens": 224460697.0, + "step": 6850 + }, + { + "entropy": 0.5736261554062366, + "epoch": 0.18293333333333334, + "grad_norm": 0.5533968210220337, + "learning_rate": 1.6385561497326204e-05, + "loss": 0.565, + "mean_token_accuracy": 0.8309562891721726, + "num_tokens": 224788340.0, + "step": 6860 + }, + { + "entropy": 0.5782340429723263, + "epoch": 0.1832, + "grad_norm": 0.49603626132011414, + "learning_rate": 1.6380213903743316e-05, + "loss": 0.566, + "mean_token_accuracy": 0.8320259049534797, + "num_tokens": 225116020.0, + "step": 6870 + }, + { + "entropy": 0.5815359979867936, + "epoch": 0.18346666666666667, + "grad_norm": 0.6053258180618286, + "learning_rate": 1.6374866310160428e-05, + "loss": 0.5716, + "mean_token_accuracy": 0.8298509255051613, + "num_tokens": 225443700.0, + "step": 6880 + }, + { + "entropy": 0.5724253945052624, + "epoch": 0.18373333333333333, + "grad_norm": 0.5965639352798462, + "learning_rate": 1.6369518716577543e-05, + "loss": 0.5619, + "mean_token_accuracy": 0.8321144908666611, + "num_tokens": 225771380.0, + "step": 6890 + }, + { + "entropy": 0.5732321299612522, + "epoch": 0.184, + "grad_norm": 0.47802549600601196, + "learning_rate": 1.6364171122994655e-05, + "loss": 0.5594, + "mean_token_accuracy": 0.8322488993406296, + "num_tokens": 226099060.0, + "step": 6900 + }, + { + "entropy": 0.5756403647363186, + "epoch": 0.18426666666666666, + "grad_norm": 0.46938326954841614, + "learning_rate": 1.6358823529411767e-05, + "loss": 0.5635, + "mean_token_accuracy": 0.8330309122800827, + "num_tokens": 226426740.0, + "step": 6910 + }, + { + "entropy": 0.586973873525858, + "epoch": 0.18453333333333333, + "grad_norm": 0.7300186157226562, + "learning_rate": 1.635347593582888e-05, + "loss": 0.5772, + "mean_token_accuracy": 0.8305107519030571, + "num_tokens": 226754420.0, + "step": 6920 + }, + { + "entropy": 0.5723816439509392, + "epoch": 0.1848, + "grad_norm": 0.5234711170196533, + "learning_rate": 1.634812834224599e-05, + "loss": 0.5593, + "mean_token_accuracy": 0.834008426964283, + "num_tokens": 227082100.0, + "step": 6930 + }, + { + "entropy": 0.5828194707632065, + "epoch": 0.18506666666666666, + "grad_norm": 0.5104115009307861, + "learning_rate": 1.6342780748663102e-05, + "loss": 0.567, + "mean_token_accuracy": 0.8320075750350953, + "num_tokens": 227409780.0, + "step": 6940 + }, + { + "entropy": 0.5742134064435959, + "epoch": 0.18533333333333332, + "grad_norm": 0.519476056098938, + "learning_rate": 1.6337433155080217e-05, + "loss": 0.5641, + "mean_token_accuracy": 0.8308773189783096, + "num_tokens": 227737460.0, + "step": 6950 + }, + { + "entropy": 0.5768377736210824, + "epoch": 0.1856, + "grad_norm": 0.5409111976623535, + "learning_rate": 1.633208556149733e-05, + "loss": 0.5644, + "mean_token_accuracy": 0.8322916686534881, + "num_tokens": 228065140.0, + "step": 6960 + }, + { + "entropy": 0.619147316366434, + "epoch": 0.18586666666666668, + "grad_norm": 0.5893325209617615, + "learning_rate": 1.6326737967914437e-05, + "loss": 0.6102, + "mean_token_accuracy": 0.8220643892884254, + "num_tokens": 228392820.0, + "step": 6970 + }, + { + "entropy": 0.5809510044753552, + "epoch": 0.18613333333333335, + "grad_norm": 0.5766249895095825, + "learning_rate": 1.6321390374331553e-05, + "loss": 0.5694, + "mean_token_accuracy": 0.8289375618100167, + "num_tokens": 228720500.0, + "step": 6980 + }, + { + "entropy": 0.5793126672506332, + "epoch": 0.1864, + "grad_norm": 0.6064351201057434, + "learning_rate": 1.6316042780748664e-05, + "loss": 0.5727, + "mean_token_accuracy": 0.831185844540596, + "num_tokens": 229048180.0, + "step": 6990 + }, + { + "entropy": 0.5913950525224209, + "epoch": 0.18666666666666668, + "grad_norm": 0.5988383889198303, + "learning_rate": 1.6310695187165776e-05, + "loss": 0.5775, + "mean_token_accuracy": 0.8289558902382851, + "num_tokens": 229375860.0, + "step": 7000 + } + ], + "logging_steps": 10, + "max_steps": 37500, + "num_input_tokens_seen": 0, + "num_train_epochs": 1, + "save_steps": 7000, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": true, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 4.4215634285066977e+18, + "train_batch_size": 1, + "trial_name": null, + "trial_params": null +}