File size: 8,976 Bytes
7efee70 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
# evaluation metrics
import torch
import math
from functools import partial
from typing import Optional
import numpy as np
import ot as pot
import torch
def wasserstein(
x0: torch.Tensor,
x1: torch.Tensor,
method: Optional[str] = None,
reg: float = 0.05,
power: int = 2,
**kwargs,
) -> float:
assert power == 1 or power == 2
# ot_fn should take (a, b, M) as arguments where a, b are marginals and
# M is a cost matrix
if method == "exact" or method is None:
ot_fn = pot.emd2
elif method == "sinkhorn":
ot_fn = partial(pot.sinkhorn2, reg=reg)
else:
raise ValueError(f"Unknown method: {method}")
a, b = pot.unif(x0.shape[0]), pot.unif(x1.shape[0])
if x0.dim() > 2:
x0 = x0.reshape(x0.shape[0], -1)
if x1.dim() > 2:
x1 = x1.reshape(x1.shape[0], -1)
M = torch.cdist(x0, x1)
if power == 2:
M = M**2
ret = ot_fn(a, b, M.detach().cpu().numpy(), numItermax=1e7)
if power == 2:
ret = math.sqrt(ret)
return ret
min_var_est = 1e-8
# Consider linear time MMD with a linear kernel:
# K(f(x), f(y)) = f(x)^Tf(y)
# h(z_i, z_j) = k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i)
# = [f(x_i) - f(y_i)]^T[f(x_j) - f(y_j)]
#
# f_of_X: batch_size * k
# f_of_Y: batch_size * k
def linear_mmd2(f_of_X, f_of_Y):
loss = 0.0
delta = f_of_X - f_of_Y
loss = torch.mean((delta[:-1] * delta[1:]).sum(1))
return loss
# Consider linear time MMD with a polynomial kernel:
# K(f(x), f(y)) = (alpha*f(x)^Tf(y) + c)^d
# f_of_X: batch_size * k
# f_of_Y: batch_size * k
def poly_mmd2(f_of_X, f_of_Y, d=2, alpha=1.0, c=2.0):
K_XX = alpha * (f_of_X[:-1] * f_of_X[1:]).sum(1) + c
K_XX_mean = torch.mean(K_XX.pow(d))
K_YY = alpha * (f_of_Y[:-1] * f_of_Y[1:]).sum(1) + c
K_YY_mean = torch.mean(K_YY.pow(d))
K_XY = alpha * (f_of_X[:-1] * f_of_Y[1:]).sum(1) + c
K_XY_mean = torch.mean(K_XY.pow(d))
K_YX = alpha * (f_of_Y[:-1] * f_of_X[1:]).sum(1) + c
K_YX_mean = torch.mean(K_YX.pow(d))
return K_XX_mean + K_YY_mean - K_XY_mean - K_YX_mean
def _mix_rbf_kernel(X, Y, sigma_list):
assert X.size(0) == Y.size(0)
m = X.size(0)
Z = torch.cat((X, Y), 0)
ZZT = torch.mm(Z, Z.t())
diag_ZZT = torch.diag(ZZT).unsqueeze(1)
Z_norm_sqr = diag_ZZT.expand_as(ZZT)
exponent = Z_norm_sqr - 2 * ZZT + Z_norm_sqr.t()
K = 0.0
for sigma in sigma_list:
gamma = 1.0 / (2 * sigma**2)
K += torch.exp(-gamma * exponent)
return K[:m, :m], K[:m, m:], K[m:, m:], len(sigma_list)
def mix_rbf_mmd2(X, Y, sigma_list, biased=True):
K_XX, K_XY, K_YY, d = _mix_rbf_kernel(X, Y, sigma_list)
# return _mmd2(K_XX, K_XY, K_YY, const_diagonal=d, biased=biased)
return _mmd2(K_XX, K_XY, K_YY, const_diagonal=False, biased=biased)
def mix_rbf_mmd2_and_ratio(X, Y, sigma_list, biased=True):
K_XX, K_XY, K_YY, d = _mix_rbf_kernel(X, Y, sigma_list)
# return _mmd2_and_ratio(K_XX, K_XY, K_YY, const_diagonal=d, biased=biased)
return _mmd2_and_ratio(K_XX, K_XY, K_YY, const_diagonal=False, biased=biased)
################################################################################
# Helper functions to compute variances based on kernel matrices
################################################################################
def _mmd2(K_XX, K_XY, K_YY, const_diagonal=False, biased=False):
m = K_XX.size(0) # assume X, Y are same shape
# Get the various sums of kernels that we'll use
# Kts drop the diagonal, but we don't need to compute them explicitly
if const_diagonal is not False:
diag_X = diag_Y = const_diagonal
sum_diag_X = sum_diag_Y = m * const_diagonal
else:
diag_X = torch.diag(K_XX) # (m,)
diag_Y = torch.diag(K_YY) # (m,)
sum_diag_X = torch.sum(diag_X)
sum_diag_Y = torch.sum(diag_Y)
Kt_XX_sums = K_XX.sum(dim=1) - diag_X # \tilde{K}_XX * e = K_XX * e - diag_X
Kt_YY_sums = K_YY.sum(dim=1) - diag_Y # \tilde{K}_YY * e = K_YY * e - diag_Y
K_XY_sums_0 = K_XY.sum(dim=0) # K_{XY}^T * e
Kt_XX_sum = Kt_XX_sums.sum() # e^T * \tilde{K}_XX * e
Kt_YY_sum = Kt_YY_sums.sum() # e^T * \tilde{K}_YY * e
K_XY_sum = K_XY_sums_0.sum() # e^T * K_{XY} * e
if biased:
mmd2 = (
(Kt_XX_sum + sum_diag_X) / (m * m)
+ (Kt_YY_sum + sum_diag_Y) / (m * m)
- 2.0 * K_XY_sum / (m * m)
)
else:
mmd2 = Kt_XX_sum / (m * (m - 1)) + Kt_YY_sum / (m * (m - 1)) - 2.0 * K_XY_sum / (m * m)
return mmd2
def _mmd2_and_ratio(K_XX, K_XY, K_YY, const_diagonal=False, biased=False):
mmd2, var_est = _mmd2_and_variance(
K_XX, K_XY, K_YY, const_diagonal=const_diagonal, biased=biased
)
loss = mmd2 / torch.sqrt(torch.clamp(var_est, min=min_var_est))
return loss, mmd2, var_est
def _mmd2_and_variance(K_XX, K_XY, K_YY, const_diagonal=False, biased=False):
m = K_XX.size(0) # assume X, Y are same shape
# Get the various sums of kernels that we'll use
# Kts drop the diagonal, but we don't need to compute them explicitly
if const_diagonal is not False:
diag_X = diag_Y = const_diagonal
sum_diag_X = sum_diag_Y = m * const_diagonal
sum_diag2_X = sum_diag2_Y = m * const_diagonal**2
else:
diag_X = torch.diag(K_XX) # (m,)
diag_Y = torch.diag(K_YY) # (m,)
sum_diag_X = torch.sum(diag_X)
sum_diag_Y = torch.sum(diag_Y)
sum_diag2_X = diag_X.dot(diag_X)
sum_diag2_Y = diag_Y.dot(diag_Y)
Kt_XX_sums = K_XX.sum(dim=1) - diag_X # \tilde{K}_XX * e = K_XX * e - diag_X
Kt_YY_sums = K_YY.sum(dim=1) - diag_Y # \tilde{K}_YY * e = K_YY * e - diag_Y
K_XY_sums_0 = K_XY.sum(dim=0) # K_{XY}^T * e
K_XY_sums_1 = K_XY.sum(dim=1) # K_{XY} * e
Kt_XX_sum = Kt_XX_sums.sum() # e^T * \tilde{K}_XX * e
Kt_YY_sum = Kt_YY_sums.sum() # e^T * \tilde{K}_YY * e
K_XY_sum = K_XY_sums_0.sum() # e^T * K_{XY} * e
Kt_XX_2_sum = (K_XX**2).sum() - sum_diag2_X # \| \tilde{K}_XX \|_F^2
Kt_YY_2_sum = (K_YY**2).sum() - sum_diag2_Y # \| \tilde{K}_YY \|_F^2
K_XY_2_sum = (K_XY**2).sum() # \| K_{XY} \|_F^2
if biased:
mmd2 = (
(Kt_XX_sum + sum_diag_X) / (m * m)
+ (Kt_YY_sum + sum_diag_Y) / (m * m)
- 2.0 * K_XY_sum / (m * m)
)
else:
mmd2 = Kt_XX_sum / (m * (m - 1)) + Kt_YY_sum / (m * (m - 1)) - 2.0 * K_XY_sum / (m * m)
var_est = (
2.0
/ (m**2 * (m - 1.0) ** 2)
* (
2 * Kt_XX_sums.dot(Kt_XX_sums)
- Kt_XX_2_sum
+ 2 * Kt_YY_sums.dot(Kt_YY_sums)
- Kt_YY_2_sum
)
- (4.0 * m - 6.0) / (m**3 * (m - 1.0) ** 3) * (Kt_XX_sum**2 + Kt_YY_sum**2)
+ 4.0
* (m - 2.0)
/ (m**3 * (m - 1.0) ** 2)
* (K_XY_sums_1.dot(K_XY_sums_1) + K_XY_sums_0.dot(K_XY_sums_0))
- 4.0 * (m - 3.0) / (m**3 * (m - 1.0) ** 2) * (K_XY_2_sum)
- (8 * m - 12) / (m**5 * (m - 1)) * K_XY_sum**2
+ 8.0
/ (m**3 * (m - 1.0))
* (
1.0 / m * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
- Kt_XX_sums.dot(K_XY_sums_1)
- Kt_YY_sums.dot(K_XY_sums_0)
)
)
return mmd2, var_est
from typing import Union
def compute_distances(pred, true):
"""Computes distances between vectors."""
mse = torch.nn.functional.mse_loss(pred, true).item()
me = math.sqrt(mse)
mae = torch.mean(torch.abs(pred - true)).item()
return mse, me, mae
def compute_distribution_distances(pred: torch.Tensor, true: Union[torch.Tensor, list]):
"""computes distances between distributions.
This handles jagged times as a list of tensors.
"""
NAMES = [
"1-Wasserstein",
"2-Wasserstein",
"RBF_MMD",
"Mean_MSE",
"Mean_L2",
"Mean_L1",
"Median_MSE",
"Median_L2",
"Median_L1",
"Eq-EMD2",
]
a = pred
b = true
pred_2d = pred[:, :2]
true_2d = true[:, :2]
w1 = wasserstein(pred_2d, true_2d, power=1)
w2 = wasserstein(pred_2d, true_2d, power=2)
mmd_rbf = mix_rbf_mmd2(a, b, sigma_list=[0.01, 0.1, 1, 10, 100]).item()
mean_dists = compute_distances(torch.mean(a, dim=0), torch.mean(b, dim=0))
median_dists = compute_distances(torch.median(a, dim=0)[0], torch.median(b, dim=0)[0])
dists = [w1, w2, mmd_rbf, *mean_dists, *median_dists]
return NAMES, dists
def compute_wasserstein_distances(pred: torch.Tensor, true: Union[torch.Tensor, list]):
"""computes distances between distributions.
This handles jagged times as a list of tensors.
"""
NAMES = [
"1-Wasserstein",
"2-Wasserstein",
]
pred_2d = pred[:, :2]
true_2d = true[:, :2]
w1 = wasserstein(pred_2d, true_2d, power=1)
w2 = wasserstein(pred_2d, true_2d, power=2)
dists = [w1, w2]
return NAMES, dists |