File size: 8,976 Bytes
7efee70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

# evaluation metrics
import torch
import math
from functools import partial
from typing import Optional

import numpy as np
import ot as pot
import torch

def wasserstein(
    x0: torch.Tensor,
    x1: torch.Tensor,
    method: Optional[str] = None,
    reg: float = 0.05,
    power: int = 2,
    **kwargs,
) -> float:
    assert power == 1 or power == 2
    # ot_fn should take (a, b, M) as arguments where a, b are marginals and
    # M is a cost matrix
    if method == "exact" or method is None:
        ot_fn = pot.emd2
    elif method == "sinkhorn":
        ot_fn = partial(pot.sinkhorn2, reg=reg)
    else:
        raise ValueError(f"Unknown method: {method}")

    a, b = pot.unif(x0.shape[0]), pot.unif(x1.shape[0])
    if x0.dim() > 2:
        x0 = x0.reshape(x0.shape[0], -1)
    if x1.dim() > 2:
        x1 = x1.reshape(x1.shape[0], -1)
    M = torch.cdist(x0, x1)
    if power == 2:
        M = M**2
    ret = ot_fn(a, b, M.detach().cpu().numpy(), numItermax=1e7)
    if power == 2:
        ret = math.sqrt(ret)
    return ret

min_var_est = 1e-8


# Consider linear time MMD with a linear kernel:
# K(f(x), f(y)) = f(x)^Tf(y)
# h(z_i, z_j) = k(x_i, x_j) + k(y_i, y_j) - k(x_i, y_j) - k(x_j, y_i)
#             = [f(x_i) - f(y_i)]^T[f(x_j) - f(y_j)]
#
# f_of_X: batch_size * k
# f_of_Y: batch_size * k
def linear_mmd2(f_of_X, f_of_Y):
    loss = 0.0
    delta = f_of_X - f_of_Y
    loss = torch.mean((delta[:-1] * delta[1:]).sum(1))
    return loss


# Consider linear time MMD with a polynomial kernel:
# K(f(x), f(y)) = (alpha*f(x)^Tf(y) + c)^d
# f_of_X: batch_size * k
# f_of_Y: batch_size * k
def poly_mmd2(f_of_X, f_of_Y, d=2, alpha=1.0, c=2.0):
    K_XX = alpha * (f_of_X[:-1] * f_of_X[1:]).sum(1) + c
    K_XX_mean = torch.mean(K_XX.pow(d))

    K_YY = alpha * (f_of_Y[:-1] * f_of_Y[1:]).sum(1) + c
    K_YY_mean = torch.mean(K_YY.pow(d))

    K_XY = alpha * (f_of_X[:-1] * f_of_Y[1:]).sum(1) + c
    K_XY_mean = torch.mean(K_XY.pow(d))

    K_YX = alpha * (f_of_Y[:-1] * f_of_X[1:]).sum(1) + c
    K_YX_mean = torch.mean(K_YX.pow(d))

    return K_XX_mean + K_YY_mean - K_XY_mean - K_YX_mean


def _mix_rbf_kernel(X, Y, sigma_list):
    assert X.size(0) == Y.size(0)
    m = X.size(0)

    Z = torch.cat((X, Y), 0)
    ZZT = torch.mm(Z, Z.t())
    diag_ZZT = torch.diag(ZZT).unsqueeze(1)
    Z_norm_sqr = diag_ZZT.expand_as(ZZT)
    exponent = Z_norm_sqr - 2 * ZZT + Z_norm_sqr.t()

    K = 0.0
    for sigma in sigma_list:
        gamma = 1.0 / (2 * sigma**2)
        K += torch.exp(-gamma * exponent)

    return K[:m, :m], K[:m, m:], K[m:, m:], len(sigma_list)


def mix_rbf_mmd2(X, Y, sigma_list, biased=True):
    K_XX, K_XY, K_YY, d = _mix_rbf_kernel(X, Y, sigma_list)
    # return _mmd2(K_XX, K_XY, K_YY, const_diagonal=d, biased=biased)
    return _mmd2(K_XX, K_XY, K_YY, const_diagonal=False, biased=biased)


def mix_rbf_mmd2_and_ratio(X, Y, sigma_list, biased=True):
    K_XX, K_XY, K_YY, d = _mix_rbf_kernel(X, Y, sigma_list)
    # return _mmd2_and_ratio(K_XX, K_XY, K_YY, const_diagonal=d, biased=biased)
    return _mmd2_and_ratio(K_XX, K_XY, K_YY, const_diagonal=False, biased=biased)


################################################################################
# Helper functions to compute variances based on kernel matrices
################################################################################


def _mmd2(K_XX, K_XY, K_YY, const_diagonal=False, biased=False):
    m = K_XX.size(0)  # assume X, Y are same shape

    # Get the various sums of kernels that we'll use
    # Kts drop the diagonal, but we don't need to compute them explicitly
    if const_diagonal is not False:
        diag_X = diag_Y = const_diagonal
        sum_diag_X = sum_diag_Y = m * const_diagonal
    else:
        diag_X = torch.diag(K_XX)  # (m,)
        diag_Y = torch.diag(K_YY)  # (m,)
        sum_diag_X = torch.sum(diag_X)
        sum_diag_Y = torch.sum(diag_Y)

    Kt_XX_sums = K_XX.sum(dim=1) - diag_X  # \tilde{K}_XX * e = K_XX * e - diag_X
    Kt_YY_sums = K_YY.sum(dim=1) - diag_Y  # \tilde{K}_YY * e = K_YY * e - diag_Y
    K_XY_sums_0 = K_XY.sum(dim=0)  # K_{XY}^T * e

    Kt_XX_sum = Kt_XX_sums.sum()  # e^T * \tilde{K}_XX * e
    Kt_YY_sum = Kt_YY_sums.sum()  # e^T * \tilde{K}_YY * e
    K_XY_sum = K_XY_sums_0.sum()  # e^T * K_{XY} * e

    if biased:
        mmd2 = (
            (Kt_XX_sum + sum_diag_X) / (m * m)
            + (Kt_YY_sum + sum_diag_Y) / (m * m)
            - 2.0 * K_XY_sum / (m * m)
        )
    else:
        mmd2 = Kt_XX_sum / (m * (m - 1)) + Kt_YY_sum / (m * (m - 1)) - 2.0 * K_XY_sum / (m * m)

    return mmd2


def _mmd2_and_ratio(K_XX, K_XY, K_YY, const_diagonal=False, biased=False):
    mmd2, var_est = _mmd2_and_variance(
        K_XX, K_XY, K_YY, const_diagonal=const_diagonal, biased=biased
    )
    loss = mmd2 / torch.sqrt(torch.clamp(var_est, min=min_var_est))
    return loss, mmd2, var_est


def _mmd2_and_variance(K_XX, K_XY, K_YY, const_diagonal=False, biased=False):
    m = K_XX.size(0)  # assume X, Y are same shape

    # Get the various sums of kernels that we'll use
    # Kts drop the diagonal, but we don't need to compute them explicitly
    if const_diagonal is not False:
        diag_X = diag_Y = const_diagonal
        sum_diag_X = sum_diag_Y = m * const_diagonal
        sum_diag2_X = sum_diag2_Y = m * const_diagonal**2
    else:
        diag_X = torch.diag(K_XX)  # (m,)
        diag_Y = torch.diag(K_YY)  # (m,)
        sum_diag_X = torch.sum(diag_X)
        sum_diag_Y = torch.sum(diag_Y)
        sum_diag2_X = diag_X.dot(diag_X)
        sum_diag2_Y = diag_Y.dot(diag_Y)

    Kt_XX_sums = K_XX.sum(dim=1) - diag_X  # \tilde{K}_XX * e = K_XX * e - diag_X
    Kt_YY_sums = K_YY.sum(dim=1) - diag_Y  # \tilde{K}_YY * e = K_YY * e - diag_Y
    K_XY_sums_0 = K_XY.sum(dim=0)  # K_{XY}^T * e
    K_XY_sums_1 = K_XY.sum(dim=1)  # K_{XY} * e

    Kt_XX_sum = Kt_XX_sums.sum()  # e^T * \tilde{K}_XX * e
    Kt_YY_sum = Kt_YY_sums.sum()  # e^T * \tilde{K}_YY * e
    K_XY_sum = K_XY_sums_0.sum()  # e^T * K_{XY} * e

    Kt_XX_2_sum = (K_XX**2).sum() - sum_diag2_X  # \| \tilde{K}_XX \|_F^2
    Kt_YY_2_sum = (K_YY**2).sum() - sum_diag2_Y  # \| \tilde{K}_YY \|_F^2
    K_XY_2_sum = (K_XY**2).sum()  # \| K_{XY} \|_F^2

    if biased:
        mmd2 = (
            (Kt_XX_sum + sum_diag_X) / (m * m)
            + (Kt_YY_sum + sum_diag_Y) / (m * m)
            - 2.0 * K_XY_sum / (m * m)
        )
    else:
        mmd2 = Kt_XX_sum / (m * (m - 1)) + Kt_YY_sum / (m * (m - 1)) - 2.0 * K_XY_sum / (m * m)

    var_est = (
        2.0
        / (m**2 * (m - 1.0) ** 2)
        * (
            2 * Kt_XX_sums.dot(Kt_XX_sums)
            - Kt_XX_2_sum
            + 2 * Kt_YY_sums.dot(Kt_YY_sums)
            - Kt_YY_2_sum
        )
        - (4.0 * m - 6.0) / (m**3 * (m - 1.0) ** 3) * (Kt_XX_sum**2 + Kt_YY_sum**2)
        + 4.0
        * (m - 2.0)
        / (m**3 * (m - 1.0) ** 2)
        * (K_XY_sums_1.dot(K_XY_sums_1) + K_XY_sums_0.dot(K_XY_sums_0))
        - 4.0 * (m - 3.0) / (m**3 * (m - 1.0) ** 2) * (K_XY_2_sum)
        - (8 * m - 12) / (m**5 * (m - 1)) * K_XY_sum**2
        + 8.0
        / (m**3 * (m - 1.0))
        * (
            1.0 / m * (Kt_XX_sum + Kt_YY_sum) * K_XY_sum
            - Kt_XX_sums.dot(K_XY_sums_1)
            - Kt_YY_sums.dot(K_XY_sums_0)
        )
    )
    return mmd2, var_est

from typing import Union
def compute_distances(pred, true):
    """Computes distances between vectors."""
    mse = torch.nn.functional.mse_loss(pred, true).item()
    me = math.sqrt(mse)
    mae = torch.mean(torch.abs(pred - true)).item()
    return mse, me, mae

def compute_distribution_distances(pred: torch.Tensor, true: Union[torch.Tensor, list]):
    """computes distances between distributions.

    This handles jagged times as a list of tensors.
    """
    NAMES = [
        "1-Wasserstein",
        "2-Wasserstein",
        "RBF_MMD",
        "Mean_MSE",
        "Mean_L2",
        "Mean_L1",
        "Median_MSE",
        "Median_L2",
        "Median_L1",
        "Eq-EMD2",
    ]
    a = pred
    b = true
    pred_2d = pred[:, :2]
    true_2d = true[:, :2]
    w1 = wasserstein(pred_2d, true_2d, power=1)
    w2 = wasserstein(pred_2d, true_2d, power=2)

    mmd_rbf = mix_rbf_mmd2(a, b, sigma_list=[0.01, 0.1, 1, 10, 100]).item()
    mean_dists = compute_distances(torch.mean(a, dim=0), torch.mean(b, dim=0))
    median_dists = compute_distances(torch.median(a, dim=0)[0], torch.median(b, dim=0)[0])
    dists = [w1, w2, mmd_rbf, *mean_dists, *median_dists]
    return NAMES, dists


def compute_wasserstein_distances(pred: torch.Tensor, true: Union[torch.Tensor, list]):
    """computes distances between distributions.

    This handles jagged times as a list of tensors.
    """
    NAMES = [
        "1-Wasserstein",
        "2-Wasserstein",
    ]
    pred_2d = pred[:, :2]
    true_2d = true[:, :2]
    w1 = wasserstein(pred_2d, true_2d, power=1)
    w2 = wasserstein(pred_2d, true_2d, power=2)
    
    dists = [w1, w2]
    return NAMES, dists