File size: 10,014 Bytes
ff07ed4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 |
# Borrow from OSX and agora_evaluation
import torch
from torchvision import transforms
import numpy as np
import scipy
import colorsys
from torch.nn import functional as F
unNormalize = transforms.Normalize(
mean=-np.array([0.485,0.456,0.406]) / np.array([0.229,0.224,0.225]),
std=1 / np.array([0.229,0.224,0.225]))
def adjust_colors(colors, saturation_threshold = 0.3, brightness_threshold = 0.8):
def adjust_func(rgb_color):
r, g, b = rgb_color
h, s, v = colorsys.rgb_to_hsv(r, g, b)
if v < brightness_threshold:
v = brightness_threshold
if s > saturation_threshold:
s = saturation_threshold
r, g, b = colorsys.hsv_to_rgb(h, s, v)
return r, g, b
adjusted_colors = np.apply_along_axis(adjust_func, 1, colors)
return adjusted_colors
def to_zorder(img, z_order_map, y_coords, x_coords):
h, w = img.shape[:2]
assert max(h,w) <= z_order_map.shape[0]
clipped_z = z_order_map[:h,:w].flatten()
sorted_idx = torch.argsort(clipped_z)
img_z = img.flatten(0,1)[sorted_idx]
z_order_idx = clipped_z[sorted_idx]
y_idx = y_coords[:h,:w].flatten()[sorted_idx]
x_idx = x_coords[:h,:w].flatten()[sorted_idx]
return img_z, z_order_idx, y_idx, x_idx
def img2patch(x, patch_size):
assert x.ndim == 3 # (c,h,w)
c, h, w = x.shape
feature_h = h//patch_size
feature_w = w//patch_size
x_patched = x.view(c, feature_h, patch_size, feature_w, patch_size).permute(1,3,0,2,4)
return x_patched
def img2patch_flat(x, patch_size):
assert x.ndim == 3 # (c,h,w)
c, h, w = x.shape
feature_h = h//patch_size
feature_w = w//patch_size
x_patched = x.view(c, feature_h, patch_size, feature_w, patch_size).permute(1,3,0,2,4)
return x_patched.flatten(0,1)
def rot6d_to_rotmat(x):
"""Convert 6D rotation representation to 3x3 rotation matrix.
Based on Zhou et al., "On the Continuity of Rotation
Representations in Neural Networks", CVPR 2019
Input:
(B,6) Batch of 6-D rotation representations
Output:
(B,3,3) Batch of corresponding rotation matrices
"""
if isinstance(x, torch.Tensor):
x = x.reshape(-1, 3, 2)
elif isinstance(x, np.ndarray):
x = x.view(-1, 3, 2)
a1 = x[:, :, 0]
a2 = x[:, :, 1]
b1 = F.normalize(a1)
b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1)
b3 = torch.linalg.cross(b1, b2)
return torch.stack((b1, b2, b3), dim=-1)
def rotation_matrix_to_angle_axis(rotation_matrix):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to Rodrigues vector
Args:
rotation_matrix (Tensor): rotation matrix.
Returns:
Tensor: Rodrigues vector transformation.
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 3)`
Example:
>>> input = torch.rand(2, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3
"""
if rotation_matrix.shape[1:] == (3, 3):
rot_mat = rotation_matrix.reshape(-1, 3, 3)
hom = torch.tensor([0, 0, 1],
dtype=torch.float32,
device=rotation_matrix.device)
hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1)
rotation_matrix = torch.cat([rot_mat, hom], dim=-1)
quaternion = rotation_matrix_to_quaternion(rotation_matrix)
aa = quaternion_to_angle_axis(quaternion)
aa[torch.isnan(aa)] = 0.0
return aa
def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor:
"""
This function is borrowed from https://github.com/kornia/kornia
Convert quaternion vector to angle axis of rotation.
Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h
Args:
quaternion (torch.Tensor): tensor with quaternions.
Return:
torch.Tensor: tensor with angle axis of rotation.
Shape:
- Input: :math:`(*, 4)` where `*` means, any number of dimensions
- Output: :math:`(*, 3)`
Example:
>>> quaternion = torch.rand(2, 4) # Nx4
>>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3
"""
if not torch.is_tensor(quaternion):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(quaternion)))
if not quaternion.shape[-1] == 4:
raise ValueError(
'Input must be a tensor of shape Nx4 or 4. Got {}'.format(
quaternion.shape))
# unpack input and compute conversion
q1: torch.Tensor = quaternion[..., 1]
q2: torch.Tensor = quaternion[..., 2]
q3: torch.Tensor = quaternion[..., 3]
sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3
sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta)
cos_theta: torch.Tensor = quaternion[..., 0]
two_theta: torch.Tensor = 2.0 * torch.where(
cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta),
torch.atan2(sin_theta, cos_theta))
k_pos: torch.Tensor = two_theta / sin_theta
k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta)
k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg)
angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3]
angle_axis[..., 0] += q1 * k
angle_axis[..., 1] += q2 * k
angle_axis[..., 2] += q3 * k
return angle_axis
def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6):
"""
This function is borrowed from https://github.com/kornia/kornia
Convert 3x4 rotation matrix to 4d quaternion vector
This algorithm is based on algorithm described in
https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201
Args:
rotation_matrix (Tensor): the rotation matrix to convert.
Return:
Tensor: the rotation in quaternion
Shape:
- Input: :math:`(N, 3, 4)`
- Output: :math:`(N, 4)`
Example:
>>> input = torch.rand(4, 3, 4) # Nx3x4
>>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4
"""
if not torch.is_tensor(rotation_matrix):
raise TypeError('Input type is not a torch.Tensor. Got {}'.format(
type(rotation_matrix)))
if len(rotation_matrix.shape) > 3:
raise ValueError(
'Input size must be a three dimensional tensor. Got {}'.format(
rotation_matrix.shape))
if not rotation_matrix.shape[-2:] == (3, 4):
raise ValueError(
'Input size must be a N x 3 x 4 tensor. Got {}'.format(
rotation_matrix.shape))
rmat_t = torch.transpose(rotation_matrix, 1, 2)
mask_d2 = rmat_t[:, 2, 2] < eps
mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1]
mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1]
t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q0 = torch.stack([
rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0,
rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2]
], -1)
t0_rep = t0.repeat(4, 1).t()
t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2]
q1 = torch.stack([
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0],
t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1]
], -1)
t1_rep = t1.repeat(4, 1).t()
t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q2 = torch.stack([
rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2],
rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2
], -1)
t2_rep = t2.repeat(4, 1).t()
t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2]
q3 = torch.stack([
t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1],
rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0]
], -1)
t3_rep = t3.repeat(4, 1).t()
mask_c0 = mask_d2 * mask_d0_d1
mask_c1 = mask_d2 * ~mask_d0_d1
mask_c2 = ~mask_d2 * mask_d0_nd1
mask_c3 = ~mask_d2 * ~mask_d0_nd1
mask_c0 = mask_c0.view(-1, 1).type_as(q0)
mask_c1 = mask_c1.view(-1, 1).type_as(q1)
mask_c2 = mask_c2.view(-1, 1).type_as(q2)
mask_c3 = mask_c3.view(-1, 1).type_as(q3)
q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3
q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa
t2_rep * mask_c2 + t3_rep * mask_c3) # noqa
q *= 0.5
return q
def rot6d_to_axis_angle(x):
bs,num_queries,_ = x.shape
rot_mat = rot6d_to_rotmat(x)
rot_mat = torch.cat([rot_mat, torch.zeros((rot_mat.shape[0], 3, 1)).cuda().float()], 2) # 3x4 rotation matrix
axis_angle = rotation_matrix_to_angle_axis(rot_mat).reshape(-1, 3) # axis-angle
axis_angle[torch.isnan(axis_angle)] = 0.0
return axis_angle.reshape(bs,num_queries,-1)
def rigid_transform_3D(A, B):
n, dim = A.shape
centroid_A = np.mean(A, axis=0)
centroid_B = np.mean(B, axis=0)
H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n
U, s, V = np.linalg.svd(H)
R = np.dot(np.transpose(V), np.transpose(U))
if np.linalg.det(R) < 0:
s[-1] = -s[-1]
V[2] = -V[2]
R = np.dot(np.transpose(V), np.transpose(U))
varP = np.var(A, axis=0).sum()
c = 1 / varP * np.sum(s)
t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B)
return c, R, t
def rigid_align(A, B):
c, R, t = rigid_transform_3D(A, B)
A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t
return A2
def pelvis_align(joints, verts=None):
left_id = 1
right_id = 2
pelvis = (joints[left_id, :] + joints[right_id, :]) / 2.0
if verts is not None:
return verts - np.expand_dims(pelvis, axis=0)
else:
return joints - np.expand_dims(pelvis, axis=0)
def root_align(joints, verts=None):
left_id = 1
right_id = 2
root = joints[0, :]
if verts is not None:
return verts - np.expand_dims(root, axis=0)
else:
return joints - np.expand_dims(root, axis=0) |