# Borrow from OSX and agora_evaluation import torch from torchvision import transforms import numpy as np import scipy import colorsys from torch.nn import functional as F unNormalize = transforms.Normalize( mean=-np.array([0.485,0.456,0.406]) / np.array([0.229,0.224,0.225]), std=1 / np.array([0.229,0.224,0.225])) def adjust_colors(colors, saturation_threshold = 0.3, brightness_threshold = 0.8): def adjust_func(rgb_color): r, g, b = rgb_color h, s, v = colorsys.rgb_to_hsv(r, g, b) if v < brightness_threshold: v = brightness_threshold if s > saturation_threshold: s = saturation_threshold r, g, b = colorsys.hsv_to_rgb(h, s, v) return r, g, b adjusted_colors = np.apply_along_axis(adjust_func, 1, colors) return adjusted_colors def to_zorder(img, z_order_map, y_coords, x_coords): h, w = img.shape[:2] assert max(h,w) <= z_order_map.shape[0] clipped_z = z_order_map[:h,:w].flatten() sorted_idx = torch.argsort(clipped_z) img_z = img.flatten(0,1)[sorted_idx] z_order_idx = clipped_z[sorted_idx] y_idx = y_coords[:h,:w].flatten()[sorted_idx] x_idx = x_coords[:h,:w].flatten()[sorted_idx] return img_z, z_order_idx, y_idx, x_idx def img2patch(x, patch_size): assert x.ndim == 3 # (c,h,w) c, h, w = x.shape feature_h = h//patch_size feature_w = w//patch_size x_patched = x.view(c, feature_h, patch_size, feature_w, patch_size).permute(1,3,0,2,4) return x_patched def img2patch_flat(x, patch_size): assert x.ndim == 3 # (c,h,w) c, h, w = x.shape feature_h = h//patch_size feature_w = w//patch_size x_patched = x.view(c, feature_h, patch_size, feature_w, patch_size).permute(1,3,0,2,4) return x_patched.flatten(0,1) def rot6d_to_rotmat(x): """Convert 6D rotation representation to 3x3 rotation matrix. Based on Zhou et al., "On the Continuity of Rotation Representations in Neural Networks", CVPR 2019 Input: (B,6) Batch of 6-D rotation representations Output: (B,3,3) Batch of corresponding rotation matrices """ if isinstance(x, torch.Tensor): x = x.reshape(-1, 3, 2) elif isinstance(x, np.ndarray): x = x.view(-1, 3, 2) a1 = x[:, :, 0] a2 = x[:, :, 1] b1 = F.normalize(a1) b2 = F.normalize(a2 - torch.einsum('bi,bi->b', b1, a2).unsqueeze(-1) * b1) b3 = torch.linalg.cross(b1, b2) return torch.stack((b1, b2, b3), dim=-1) def rotation_matrix_to_angle_axis(rotation_matrix): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to Rodrigues vector Args: rotation_matrix (Tensor): rotation matrix. Returns: Tensor: Rodrigues vector transformation. Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 3)` Example: >>> input = torch.rand(2, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_angle_axis(input) # Nx3 """ if rotation_matrix.shape[1:] == (3, 3): rot_mat = rotation_matrix.reshape(-1, 3, 3) hom = torch.tensor([0, 0, 1], dtype=torch.float32, device=rotation_matrix.device) hom = hom.reshape(1, 3, 1).expand(rot_mat.shape[0], -1, -1) rotation_matrix = torch.cat([rot_mat, hom], dim=-1) quaternion = rotation_matrix_to_quaternion(rotation_matrix) aa = quaternion_to_angle_axis(quaternion) aa[torch.isnan(aa)] = 0.0 return aa def quaternion_to_angle_axis(quaternion: torch.Tensor) -> torch.Tensor: """ This function is borrowed from https://github.com/kornia/kornia Convert quaternion vector to angle axis of rotation. Adapted from ceres C++ library: ceres-solver/include/ceres/rotation.h Args: quaternion (torch.Tensor): tensor with quaternions. Return: torch.Tensor: tensor with angle axis of rotation. Shape: - Input: :math:`(*, 4)` where `*` means, any number of dimensions - Output: :math:`(*, 3)` Example: >>> quaternion = torch.rand(2, 4) # Nx4 >>> angle_axis = tgm.quaternion_to_angle_axis(quaternion) # Nx3 """ if not torch.is_tensor(quaternion): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(quaternion))) if not quaternion.shape[-1] == 4: raise ValueError( 'Input must be a tensor of shape Nx4 or 4. Got {}'.format( quaternion.shape)) # unpack input and compute conversion q1: torch.Tensor = quaternion[..., 1] q2: torch.Tensor = quaternion[..., 2] q3: torch.Tensor = quaternion[..., 3] sin_squared_theta: torch.Tensor = q1 * q1 + q2 * q2 + q3 * q3 sin_theta: torch.Tensor = torch.sqrt(sin_squared_theta) cos_theta: torch.Tensor = quaternion[..., 0] two_theta: torch.Tensor = 2.0 * torch.where( cos_theta < 0.0, torch.atan2(-sin_theta, -cos_theta), torch.atan2(sin_theta, cos_theta)) k_pos: torch.Tensor = two_theta / sin_theta k_neg: torch.Tensor = 2.0 * torch.ones_like(sin_theta) k: torch.Tensor = torch.where(sin_squared_theta > 0.0, k_pos, k_neg) angle_axis: torch.Tensor = torch.zeros_like(quaternion)[..., :3] angle_axis[..., 0] += q1 * k angle_axis[..., 1] += q2 * k angle_axis[..., 2] += q3 * k return angle_axis def rotation_matrix_to_quaternion(rotation_matrix, eps=1e-6): """ This function is borrowed from https://github.com/kornia/kornia Convert 3x4 rotation matrix to 4d quaternion vector This algorithm is based on algorithm described in https://github.com/KieranWynn/pyquaternion/blob/master/pyquaternion/quaternion.py#L201 Args: rotation_matrix (Tensor): the rotation matrix to convert. Return: Tensor: the rotation in quaternion Shape: - Input: :math:`(N, 3, 4)` - Output: :math:`(N, 4)` Example: >>> input = torch.rand(4, 3, 4) # Nx3x4 >>> output = tgm.rotation_matrix_to_quaternion(input) # Nx4 """ if not torch.is_tensor(rotation_matrix): raise TypeError('Input type is not a torch.Tensor. Got {}'.format( type(rotation_matrix))) if len(rotation_matrix.shape) > 3: raise ValueError( 'Input size must be a three dimensional tensor. Got {}'.format( rotation_matrix.shape)) if not rotation_matrix.shape[-2:] == (3, 4): raise ValueError( 'Input size must be a N x 3 x 4 tensor. Got {}'.format( rotation_matrix.shape)) rmat_t = torch.transpose(rotation_matrix, 1, 2) mask_d2 = rmat_t[:, 2, 2] < eps mask_d0_d1 = rmat_t[:, 0, 0] > rmat_t[:, 1, 1] mask_d0_nd1 = rmat_t[:, 0, 0] < -rmat_t[:, 1, 1] t0 = 1 + rmat_t[:, 0, 0] - rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q0 = torch.stack([ rmat_t[:, 1, 2] - rmat_t[:, 2, 1], t0, rmat_t[:, 0, 1] + rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2] ], -1) t0_rep = t0.repeat(4, 1).t() t1 = 1 - rmat_t[:, 0, 0] + rmat_t[:, 1, 1] - rmat_t[:, 2, 2] q1 = torch.stack([ rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] + rmat_t[:, 1, 0], t1, rmat_t[:, 1, 2] + rmat_t[:, 2, 1] ], -1) t1_rep = t1.repeat(4, 1).t() t2 = 1 - rmat_t[:, 0, 0] - rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q2 = torch.stack([ rmat_t[:, 0, 1] - rmat_t[:, 1, 0], rmat_t[:, 2, 0] + rmat_t[:, 0, 2], rmat_t[:, 1, 2] + rmat_t[:, 2, 1], t2 ], -1) t2_rep = t2.repeat(4, 1).t() t3 = 1 + rmat_t[:, 0, 0] + rmat_t[:, 1, 1] + rmat_t[:, 2, 2] q3 = torch.stack([ t3, rmat_t[:, 1, 2] - rmat_t[:, 2, 1], rmat_t[:, 2, 0] - rmat_t[:, 0, 2], rmat_t[:, 0, 1] - rmat_t[:, 1, 0] ], -1) t3_rep = t3.repeat(4, 1).t() mask_c0 = mask_d2 * mask_d0_d1 mask_c1 = mask_d2 * ~mask_d0_d1 mask_c2 = ~mask_d2 * mask_d0_nd1 mask_c3 = ~mask_d2 * ~mask_d0_nd1 mask_c0 = mask_c0.view(-1, 1).type_as(q0) mask_c1 = mask_c1.view(-1, 1).type_as(q1) mask_c2 = mask_c2.view(-1, 1).type_as(q2) mask_c3 = mask_c3.view(-1, 1).type_as(q3) q = q0 * mask_c0 + q1 * mask_c1 + q2 * mask_c2 + q3 * mask_c3 q /= torch.sqrt(t0_rep * mask_c0 + t1_rep * mask_c1 + # noqa t2_rep * mask_c2 + t3_rep * mask_c3) # noqa q *= 0.5 return q def rot6d_to_axis_angle(x): bs,num_queries,_ = x.shape rot_mat = rot6d_to_rotmat(x) rot_mat = torch.cat([rot_mat, torch.zeros((rot_mat.shape[0], 3, 1)).cuda().float()], 2) # 3x4 rotation matrix axis_angle = rotation_matrix_to_angle_axis(rot_mat).reshape(-1, 3) # axis-angle axis_angle[torch.isnan(axis_angle)] = 0.0 return axis_angle.reshape(bs,num_queries,-1) def rigid_transform_3D(A, B): n, dim = A.shape centroid_A = np.mean(A, axis=0) centroid_B = np.mean(B, axis=0) H = np.dot(np.transpose(A - centroid_A), B - centroid_B) / n U, s, V = np.linalg.svd(H) R = np.dot(np.transpose(V), np.transpose(U)) if np.linalg.det(R) < 0: s[-1] = -s[-1] V[2] = -V[2] R = np.dot(np.transpose(V), np.transpose(U)) varP = np.var(A, axis=0).sum() c = 1 / varP * np.sum(s) t = -np.dot(c * R, np.transpose(centroid_A)) + np.transpose(centroid_B) return c, R, t def rigid_align(A, B): c, R, t = rigid_transform_3D(A, B) A2 = np.transpose(np.dot(c * R, np.transpose(A))) + t return A2 def pelvis_align(joints, verts=None): left_id = 1 right_id = 2 pelvis = (joints[left_id, :] + joints[right_id, :]) / 2.0 if verts is not None: return verts - np.expand_dims(pelvis, axis=0) else: return joints - np.expand_dims(pelvis, axis=0) def root_align(joints, verts=None): left_id = 1 right_id = 2 root = joints[0, :] if verts is not None: return verts - np.expand_dims(root, axis=0) else: return joints - np.expand_dims(root, axis=0)