CocoRoF commited on
Commit
b0baadb
·
verified ·
1 Parent(s): 700b400

Training in progress, step 2000, checkpoint

Browse files
last-checkpoint/model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0c4b3264d8426687f4b50168cdca6241441dfbc285a4c51940c82f0dd3b7d88c
3
  size 735217848
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4531cecc4e308a35dc907f81b5204f58f87403a6008584884dae9f8d5e3178ad
3
  size 735217848
last-checkpoint/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:45522e2d95b727a7794c89784a8dbeb658a6e8d547dd1f60be95776967ef24f6
3
  size 1470521978
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41adcafe7f4fb36e8df90cb2a36c6fc9005eadf99b272fd5a69c8b1c71c58878
3
  size 1470521978
last-checkpoint/rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5672d4a2bab2f5ec1b202aa86f336deecf9ade33ecc3e9f1ae101d08c2403c85
3
  size 14244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0886b5e6b4eb6c54d008834760837138a75d96ac8156628b1654cc847af0e990
3
  size 14244
last-checkpoint/scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dea0aba72f700814d776f8926ad184d76b3c510f754b334a94c0cd38ed47ebbb
3
  size 1000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5146063efca63e5eea8f3db237a9d2214ab60b2b370c91142e2b5e596c8cc2ad
3
  size 1000
last-checkpoint/trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 0.7029053420805998,
5
  "eval_steps": 100,
6
- "global_step": 1500,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -1297,6 +1297,436 @@
1297
  "eval_spearman_manhattan": 0.8025975518083548,
1298
  "eval_steps_per_second": 20.154,
1299
  "step": 1500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300
  }
1301
  ],
1302
  "logging_steps": 10,
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 0.9372071227741331,
5
  "eval_steps": 100,
6
+ "global_step": 2000,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
1297
  "eval_spearman_manhattan": 0.8025975518083548,
1298
  "eval_steps_per_second": 20.154,
1299
  "step": 1500
1300
+ },
1301
+ {
1302
+ "epoch": 0.7075913776944704,
1303
+ "grad_norm": 1.590140700340271,
1304
+ "learning_rate": 9.115510777881913e-05,
1305
+ "loss": 0.2743,
1306
+ "step": 1510
1307
+ },
1308
+ {
1309
+ "epoch": 0.7122774133083412,
1310
+ "grad_norm": 1.7297847270965576,
1311
+ "learning_rate": 9.109653233364575e-05,
1312
+ "loss": 0.3274,
1313
+ "step": 1520
1314
+ },
1315
+ {
1316
+ "epoch": 0.7169634489222118,
1317
+ "grad_norm": 1.7958931922912598,
1318
+ "learning_rate": 9.103795688847235e-05,
1319
+ "loss": 0.3184,
1320
+ "step": 1530
1321
+ },
1322
+ {
1323
+ "epoch": 0.7216494845360825,
1324
+ "grad_norm": 1.4942468404769897,
1325
+ "learning_rate": 9.097938144329897e-05,
1326
+ "loss": 0.3055,
1327
+ "step": 1540
1328
+ },
1329
+ {
1330
+ "epoch": 0.7263355201499532,
1331
+ "grad_norm": 1.6255275011062622,
1332
+ "learning_rate": 9.092080599812559e-05,
1333
+ "loss": 0.3008,
1334
+ "step": 1550
1335
+ },
1336
+ {
1337
+ "epoch": 0.7310215557638238,
1338
+ "grad_norm": 1.8744940757751465,
1339
+ "learning_rate": 9.086223055295222e-05,
1340
+ "loss": 0.3223,
1341
+ "step": 1560
1342
+ },
1343
+ {
1344
+ "epoch": 0.7357075913776945,
1345
+ "grad_norm": 2.46989369392395,
1346
+ "learning_rate": 9.080365510777883e-05,
1347
+ "loss": 0.3255,
1348
+ "step": 1570
1349
+ },
1350
+ {
1351
+ "epoch": 0.7403936269915652,
1352
+ "grad_norm": 1.6579105854034424,
1353
+ "learning_rate": 9.074507966260544e-05,
1354
+ "loss": 0.3162,
1355
+ "step": 1580
1356
+ },
1357
+ {
1358
+ "epoch": 0.7450796626054358,
1359
+ "grad_norm": 1.74732506275177,
1360
+ "learning_rate": 9.068650421743205e-05,
1361
+ "loss": 0.3602,
1362
+ "step": 1590
1363
+ },
1364
+ {
1365
+ "epoch": 0.7497656982193065,
1366
+ "grad_norm": 2.1454904079437256,
1367
+ "learning_rate": 9.062792877225867e-05,
1368
+ "loss": 0.3411,
1369
+ "step": 1600
1370
+ },
1371
+ {
1372
+ "epoch": 0.7497656982193065,
1373
+ "eval_loss": 0.04926175996661186,
1374
+ "eval_pearson_cosine": 0.8161287135448276,
1375
+ "eval_pearson_dot": 0.8223874860494362,
1376
+ "eval_pearson_euclidean": 0.8018699359881083,
1377
+ "eval_pearson_manhattan": 0.8013834703697782,
1378
+ "eval_runtime": 4.7094,
1379
+ "eval_samples_per_second": 318.509,
1380
+ "eval_spearman_cosine": 0.8189562831716073,
1381
+ "eval_spearman_dot": 0.8236193691999756,
1382
+ "eval_spearman_euclidean": 0.8078062231815545,
1383
+ "eval_spearman_manhattan": 0.8072727629308311,
1384
+ "eval_steps_per_second": 19.96,
1385
+ "step": 1600
1386
+ },
1387
+ {
1388
+ "epoch": 0.7544517338331771,
1389
+ "grad_norm": 2.28283953666687,
1390
+ "learning_rate": 9.056935332708529e-05,
1391
+ "loss": 0.3234,
1392
+ "step": 1610
1393
+ },
1394
+ {
1395
+ "epoch": 0.7591377694470478,
1396
+ "grad_norm": 1.6917240619659424,
1397
+ "learning_rate": 9.051077788191192e-05,
1398
+ "loss": 0.352,
1399
+ "step": 1620
1400
+ },
1401
+ {
1402
+ "epoch": 0.7638238050609185,
1403
+ "grad_norm": 1.712475061416626,
1404
+ "learning_rate": 9.045220243673852e-05,
1405
+ "loss": 0.3107,
1406
+ "step": 1630
1407
+ },
1408
+ {
1409
+ "epoch": 0.7685098406747891,
1410
+ "grad_norm": 1.6429861783981323,
1411
+ "learning_rate": 9.039362699156514e-05,
1412
+ "loss": 0.3175,
1413
+ "step": 1640
1414
+ },
1415
+ {
1416
+ "epoch": 0.7731958762886598,
1417
+ "grad_norm": 1.5003321170806885,
1418
+ "learning_rate": 9.033505154639176e-05,
1419
+ "loss": 0.3502,
1420
+ "step": 1650
1421
+ },
1422
+ {
1423
+ "epoch": 0.7778819119025304,
1424
+ "grad_norm": 1.9713871479034424,
1425
+ "learning_rate": 9.027647610121837e-05,
1426
+ "loss": 0.3691,
1427
+ "step": 1660
1428
+ },
1429
+ {
1430
+ "epoch": 0.7825679475164011,
1431
+ "grad_norm": 2.0830156803131104,
1432
+ "learning_rate": 9.021790065604499e-05,
1433
+ "loss": 0.3226,
1434
+ "step": 1670
1435
+ },
1436
+ {
1437
+ "epoch": 0.7872539831302718,
1438
+ "grad_norm": 2.0364925861358643,
1439
+ "learning_rate": 9.015932521087161e-05,
1440
+ "loss": 0.3344,
1441
+ "step": 1680
1442
+ },
1443
+ {
1444
+ "epoch": 0.7919400187441424,
1445
+ "grad_norm": 1.7688632011413574,
1446
+ "learning_rate": 9.010074976569822e-05,
1447
+ "loss": 0.328,
1448
+ "step": 1690
1449
+ },
1450
+ {
1451
+ "epoch": 0.7966260543580131,
1452
+ "grad_norm": 2.0706257820129395,
1453
+ "learning_rate": 9.004217432052484e-05,
1454
+ "loss": 0.3284,
1455
+ "step": 1700
1456
+ },
1457
+ {
1458
+ "epoch": 0.7966260543580131,
1459
+ "eval_loss": 0.042656708508729935,
1460
+ "eval_pearson_cosine": 0.8112926503111737,
1461
+ "eval_pearson_dot": 0.818754256660867,
1462
+ "eval_pearson_euclidean": 0.7946703633011838,
1463
+ "eval_pearson_manhattan": 0.7944877991875288,
1464
+ "eval_runtime": 4.8215,
1465
+ "eval_samples_per_second": 311.103,
1466
+ "eval_spearman_cosine": 0.812852551114096,
1467
+ "eval_spearman_dot": 0.8198186422414758,
1468
+ "eval_spearman_euclidean": 0.8004155438327007,
1469
+ "eval_spearman_manhattan": 0.8002132702523219,
1470
+ "eval_steps_per_second": 19.496,
1471
+ "step": 1700
1472
+ },
1473
+ {
1474
+ "epoch": 0.8013120899718837,
1475
+ "grad_norm": 1.6608582735061646,
1476
+ "learning_rate": 8.998359887535146e-05,
1477
+ "loss": 0.3321,
1478
+ "step": 1710
1479
+ },
1480
+ {
1481
+ "epoch": 0.8059981255857545,
1482
+ "grad_norm": 2.178337574005127,
1483
+ "learning_rate": 8.992502343017808e-05,
1484
+ "loss": 0.3289,
1485
+ "step": 1720
1486
+ },
1487
+ {
1488
+ "epoch": 0.8106841611996252,
1489
+ "grad_norm": 2.123746633529663,
1490
+ "learning_rate": 8.986644798500469e-05,
1491
+ "loss": 0.3393,
1492
+ "step": 1730
1493
+ },
1494
+ {
1495
+ "epoch": 0.8153701968134958,
1496
+ "grad_norm": 1.5920015573501587,
1497
+ "learning_rate": 8.980787253983131e-05,
1498
+ "loss": 0.3137,
1499
+ "step": 1740
1500
+ },
1501
+ {
1502
+ "epoch": 0.8200562324273665,
1503
+ "grad_norm": 1.6964048147201538,
1504
+ "learning_rate": 8.974929709465793e-05,
1505
+ "loss": 0.3242,
1506
+ "step": 1750
1507
+ },
1508
+ {
1509
+ "epoch": 0.8247422680412371,
1510
+ "grad_norm": 2.2545530796051025,
1511
+ "learning_rate": 8.969072164948454e-05,
1512
+ "loss": 0.3473,
1513
+ "step": 1760
1514
+ },
1515
+ {
1516
+ "epoch": 0.8294283036551078,
1517
+ "grad_norm": 1.829145073890686,
1518
+ "learning_rate": 8.963214620431116e-05,
1519
+ "loss": 0.2871,
1520
+ "step": 1770
1521
+ },
1522
+ {
1523
+ "epoch": 0.8341143392689785,
1524
+ "grad_norm": 1.7790557146072388,
1525
+ "learning_rate": 8.957357075913777e-05,
1526
+ "loss": 0.2979,
1527
+ "step": 1780
1528
+ },
1529
+ {
1530
+ "epoch": 0.8388003748828491,
1531
+ "grad_norm": 1.6724668741226196,
1532
+ "learning_rate": 8.95149953139644e-05,
1533
+ "loss": 0.3094,
1534
+ "step": 1790
1535
+ },
1536
+ {
1537
+ "epoch": 0.8434864104967198,
1538
+ "grad_norm": 1.939370036125183,
1539
+ "learning_rate": 8.945641986879101e-05,
1540
+ "loss": 0.2845,
1541
+ "step": 1800
1542
+ },
1543
+ {
1544
+ "epoch": 0.8434864104967198,
1545
+ "eval_loss": 0.04392844811081886,
1546
+ "eval_pearson_cosine": 0.8097501259779989,
1547
+ "eval_pearson_dot": 0.8164764225020082,
1548
+ "eval_pearson_euclidean": 0.7921053664943116,
1549
+ "eval_pearson_manhattan": 0.7914097303155287,
1550
+ "eval_runtime": 4.6495,
1551
+ "eval_samples_per_second": 322.617,
1552
+ "eval_spearman_cosine": 0.8123240085388628,
1553
+ "eval_spearman_dot": 0.8183737971290131,
1554
+ "eval_spearman_euclidean": 0.7989029211686818,
1555
+ "eval_spearman_manhattan": 0.7978239561899777,
1556
+ "eval_steps_per_second": 20.217,
1557
+ "step": 1800
1558
+ },
1559
+ {
1560
+ "epoch": 0.8481724461105904,
1561
+ "grad_norm": 1.730468511581421,
1562
+ "learning_rate": 8.939784442361763e-05,
1563
+ "loss": 0.3206,
1564
+ "step": 1810
1565
+ },
1566
+ {
1567
+ "epoch": 0.8528584817244611,
1568
+ "grad_norm": 1.5852857828140259,
1569
+ "learning_rate": 8.933926897844423e-05,
1570
+ "loss": 0.3159,
1571
+ "step": 1820
1572
+ },
1573
+ {
1574
+ "epoch": 0.8575445173383318,
1575
+ "grad_norm": 1.507568597793579,
1576
+ "learning_rate": 8.928069353327085e-05,
1577
+ "loss": 0.3019,
1578
+ "step": 1830
1579
+ },
1580
+ {
1581
+ "epoch": 0.8622305529522024,
1582
+ "grad_norm": 1.661995768547058,
1583
+ "learning_rate": 8.922211808809747e-05,
1584
+ "loss": 0.3407,
1585
+ "step": 1840
1586
+ },
1587
+ {
1588
+ "epoch": 0.8669165885660731,
1589
+ "grad_norm": 1.877208948135376,
1590
+ "learning_rate": 8.91635426429241e-05,
1591
+ "loss": 0.322,
1592
+ "step": 1850
1593
+ },
1594
+ {
1595
+ "epoch": 0.8716026241799437,
1596
+ "grad_norm": 1.6956888437271118,
1597
+ "learning_rate": 8.910496719775072e-05,
1598
+ "loss": 0.3434,
1599
+ "step": 1860
1600
+ },
1601
+ {
1602
+ "epoch": 0.8762886597938144,
1603
+ "grad_norm": 1.8181349039077759,
1604
+ "learning_rate": 8.904639175257732e-05,
1605
+ "loss": 0.316,
1606
+ "step": 1870
1607
+ },
1608
+ {
1609
+ "epoch": 0.8809746954076851,
1610
+ "grad_norm": 1.7894842624664307,
1611
+ "learning_rate": 8.898781630740394e-05,
1612
+ "loss": 0.2881,
1613
+ "step": 1880
1614
+ },
1615
+ {
1616
+ "epoch": 0.8856607310215557,
1617
+ "grad_norm": 2.1654884815216064,
1618
+ "learning_rate": 8.892924086223055e-05,
1619
+ "loss": 0.3423,
1620
+ "step": 1890
1621
+ },
1622
+ {
1623
+ "epoch": 0.8903467666354264,
1624
+ "grad_norm": 1.6889327764511108,
1625
+ "learning_rate": 8.887066541705717e-05,
1626
+ "loss": 0.3199,
1627
+ "step": 1900
1628
+ },
1629
+ {
1630
+ "epoch": 0.8903467666354264,
1631
+ "eval_loss": 0.05001167580485344,
1632
+ "eval_pearson_cosine": 0.8149866383088806,
1633
+ "eval_pearson_dot": 0.8233746991643329,
1634
+ "eval_pearson_euclidean": 0.7989509074968737,
1635
+ "eval_pearson_manhattan": 0.7988165127794176,
1636
+ "eval_runtime": 4.7223,
1637
+ "eval_samples_per_second": 317.643,
1638
+ "eval_spearman_cosine": 0.819837111960085,
1639
+ "eval_spearman_dot": 0.8273224990756979,
1640
+ "eval_spearman_euclidean": 0.805295090022205,
1641
+ "eval_spearman_manhattan": 0.8050664910203635,
1642
+ "eval_steps_per_second": 19.906,
1643
+ "step": 1900
1644
+ },
1645
+ {
1646
+ "epoch": 0.895032802249297,
1647
+ "grad_norm": 2.3411951065063477,
1648
+ "learning_rate": 8.88120899718838e-05,
1649
+ "loss": 0.3137,
1650
+ "step": 1910
1651
+ },
1652
+ {
1653
+ "epoch": 0.8997188378631678,
1654
+ "grad_norm": 2.0821354389190674,
1655
+ "learning_rate": 8.87535145267104e-05,
1656
+ "loss": 0.2934,
1657
+ "step": 1920
1658
+ },
1659
+ {
1660
+ "epoch": 0.9044048734770385,
1661
+ "grad_norm": 1.8365401029586792,
1662
+ "learning_rate": 8.869493908153702e-05,
1663
+ "loss": 0.3322,
1664
+ "step": 1930
1665
+ },
1666
+ {
1667
+ "epoch": 0.9090909090909091,
1668
+ "grad_norm": 2.154188632965088,
1669
+ "learning_rate": 8.863636363636364e-05,
1670
+ "loss": 0.2862,
1671
+ "step": 1940
1672
+ },
1673
+ {
1674
+ "epoch": 0.9137769447047798,
1675
+ "grad_norm": 2.136406421661377,
1676
+ "learning_rate": 8.857778819119026e-05,
1677
+ "loss": 0.3336,
1678
+ "step": 1950
1679
+ },
1680
+ {
1681
+ "epoch": 0.9184629803186504,
1682
+ "grad_norm": 2.426302671432495,
1683
+ "learning_rate": 8.851921274601687e-05,
1684
+ "loss": 0.3486,
1685
+ "step": 1960
1686
+ },
1687
+ {
1688
+ "epoch": 0.9231490159325211,
1689
+ "grad_norm": 2.407034397125244,
1690
+ "learning_rate": 8.846063730084349e-05,
1691
+ "loss": 0.3377,
1692
+ "step": 1970
1693
+ },
1694
+ {
1695
+ "epoch": 0.9278350515463918,
1696
+ "grad_norm": 2.170762062072754,
1697
+ "learning_rate": 8.840206185567011e-05,
1698
+ "loss": 0.2904,
1699
+ "step": 1980
1700
+ },
1701
+ {
1702
+ "epoch": 0.9325210871602624,
1703
+ "grad_norm": 1.6726795434951782,
1704
+ "learning_rate": 8.834348641049672e-05,
1705
+ "loss": 0.3535,
1706
+ "step": 1990
1707
+ },
1708
+ {
1709
+ "epoch": 0.9372071227741331,
1710
+ "grad_norm": 1.835772156715393,
1711
+ "learning_rate": 8.828491096532334e-05,
1712
+ "loss": 0.3544,
1713
+ "step": 2000
1714
+ },
1715
+ {
1716
+ "epoch": 0.9372071227741331,
1717
+ "eval_loss": 0.06010111793875694,
1718
+ "eval_pearson_cosine": 0.7969487570615001,
1719
+ "eval_pearson_dot": 0.8113433756657784,
1720
+ "eval_pearson_euclidean": 0.7775976461343248,
1721
+ "eval_pearson_manhattan": 0.7779361917572194,
1722
+ "eval_runtime": 4.7319,
1723
+ "eval_samples_per_second": 316.998,
1724
+ "eval_spearman_cosine": 0.8015033854161633,
1725
+ "eval_spearman_dot": 0.8149867800941926,
1726
+ "eval_spearman_euclidean": 0.7812746949762143,
1727
+ "eval_spearman_manhattan": 0.7818782293686074,
1728
+ "eval_steps_per_second": 19.865,
1729
+ "step": 2000
1730
  }
1731
  ],
1732
  "logging_steps": 10,