Training in progress, step 2134, checkpoint
Browse files- last-checkpoint/model.safetensors +1 -1
- last-checkpoint/optimizer.pt +1 -1
- last-checkpoint/trainer_state.json +677 -677
last-checkpoint/model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 735217848
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0d1940ecafb946ec472d4f0bbf359034ac82aafe67fc708bd8bdef5a90ecb5bd
|
| 3 |
size 735217848
|
last-checkpoint/optimizer.pt
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 1470521978
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2788a180080964955e9955aa3cc88e16f1bfabe1adbc739556ede5713c083501
|
| 3 |
size 1470521978
|
last-checkpoint/trainer_state.json
CHANGED
|
@@ -10,1829 +10,1829 @@
|
|
| 10 |
"log_history": [
|
| 11 |
{
|
| 12 |
"epoch": 0.004686035613870665,
|
| 13 |
-
"grad_norm":
|
| 14 |
"learning_rate": 9.994142455482662e-05,
|
| 15 |
-
"loss":
|
| 16 |
"step": 10
|
| 17 |
},
|
| 18 |
{
|
| 19 |
"epoch": 0.00937207122774133,
|
| 20 |
-
"grad_norm":
|
| 21 |
"learning_rate": 9.988284910965324e-05,
|
| 22 |
-
"loss":
|
| 23 |
"step": 20
|
| 24 |
},
|
| 25 |
{
|
| 26 |
"epoch": 0.014058106841611996,
|
| 27 |
-
"grad_norm": 6.
|
| 28 |
"learning_rate": 9.982427366447986e-05,
|
| 29 |
-
"loss":
|
| 30 |
"step": 30
|
| 31 |
},
|
| 32 |
{
|
| 33 |
"epoch": 0.01874414245548266,
|
| 34 |
-
"grad_norm":
|
| 35 |
"learning_rate": 9.976569821930647e-05,
|
| 36 |
-
"loss": 0.
|
| 37 |
"step": 40
|
| 38 |
},
|
| 39 |
{
|
| 40 |
"epoch": 0.023430178069353328,
|
| 41 |
-
"grad_norm":
|
| 42 |
"learning_rate": 9.970712277413309e-05,
|
| 43 |
-
"loss": 0.
|
| 44 |
"step": 50
|
| 45 |
},
|
| 46 |
{
|
| 47 |
"epoch": 0.028116213683223992,
|
| 48 |
-
"grad_norm":
|
| 49 |
"learning_rate": 9.964854732895971e-05,
|
| 50 |
-
"loss": 0.
|
| 51 |
"step": 60
|
| 52 |
},
|
| 53 |
{
|
| 54 |
"epoch": 0.03280224929709466,
|
| 55 |
-
"grad_norm":
|
| 56 |
"learning_rate": 9.958997188378632e-05,
|
| 57 |
-
"loss": 0.
|
| 58 |
"step": 70
|
| 59 |
},
|
| 60 |
{
|
| 61 |
"epoch": 0.03748828491096532,
|
| 62 |
-
"grad_norm":
|
| 63 |
"learning_rate": 9.953139643861293e-05,
|
| 64 |
-
"loss": 0.
|
| 65 |
"step": 80
|
| 66 |
},
|
| 67 |
{
|
| 68 |
"epoch": 0.04217432052483599,
|
| 69 |
-
"grad_norm": 4.
|
| 70 |
"learning_rate": 9.947282099343956e-05,
|
| 71 |
-
"loss": 0.
|
| 72 |
"step": 90
|
| 73 |
},
|
| 74 |
{
|
| 75 |
"epoch": 0.046860356138706656,
|
| 76 |
-
"grad_norm": 4.
|
| 77 |
"learning_rate": 9.941424554826618e-05,
|
| 78 |
-
"loss": 0.
|
| 79 |
"step": 100
|
| 80 |
},
|
| 81 |
{
|
| 82 |
"epoch": 0.046860356138706656,
|
| 83 |
-
"eval_loss": 0.
|
| 84 |
-
"eval_pearson_cosine": 0.
|
| 85 |
-
"eval_pearson_dot": 0.
|
| 86 |
-
"eval_pearson_euclidean": 0.
|
| 87 |
-
"eval_pearson_manhattan": 0.
|
| 88 |
-
"eval_runtime": 4.
|
| 89 |
-
"eval_samples_per_second":
|
| 90 |
-
"eval_spearman_cosine": 0.
|
| 91 |
-
"eval_spearman_dot": 0.
|
| 92 |
-
"eval_spearman_euclidean": 0.
|
| 93 |
-
"eval_spearman_manhattan": 0.
|
| 94 |
-
"eval_steps_per_second":
|
| 95 |
"step": 100
|
| 96 |
},
|
| 97 |
{
|
| 98 |
"epoch": 0.05154639175257732,
|
| 99 |
-
"grad_norm":
|
| 100 |
"learning_rate": 9.935567010309279e-05,
|
| 101 |
-
"loss": 0.
|
| 102 |
"step": 110
|
| 103 |
},
|
| 104 |
{
|
| 105 |
"epoch": 0.056232427366447985,
|
| 106 |
-
"grad_norm": 3.
|
| 107 |
"learning_rate": 9.929709465791941e-05,
|
| 108 |
-
"loss": 0.
|
| 109 |
"step": 120
|
| 110 |
},
|
| 111 |
{
|
| 112 |
"epoch": 0.06091846298031865,
|
| 113 |
-
"grad_norm": 4.
|
| 114 |
"learning_rate": 9.923851921274601e-05,
|
| 115 |
-
"loss": 0.
|
| 116 |
"step": 130
|
| 117 |
},
|
| 118 |
{
|
| 119 |
"epoch": 0.06560449859418932,
|
| 120 |
-
"grad_norm": 3.
|
| 121 |
"learning_rate": 9.917994376757263e-05,
|
| 122 |
-
"loss": 0.
|
| 123 |
"step": 140
|
| 124 |
},
|
| 125 |
{
|
| 126 |
"epoch": 0.07029053420805999,
|
| 127 |
-
"grad_norm":
|
| 128 |
"learning_rate": 9.912136832239926e-05,
|
| 129 |
-
"loss": 0.
|
| 130 |
"step": 150
|
| 131 |
},
|
| 132 |
{
|
| 133 |
"epoch": 0.07497656982193064,
|
| 134 |
-
"grad_norm":
|
| 135 |
"learning_rate": 9.906279287722588e-05,
|
| 136 |
-
"loss": 0.
|
| 137 |
"step": 160
|
| 138 |
},
|
| 139 |
{
|
| 140 |
"epoch": 0.07966260543580131,
|
| 141 |
-
"grad_norm": 3.
|
| 142 |
"learning_rate": 9.90042174320525e-05,
|
| 143 |
-
"loss": 0.
|
| 144 |
"step": 170
|
| 145 |
},
|
| 146 |
{
|
| 147 |
"epoch": 0.08434864104967198,
|
| 148 |
-
"grad_norm":
|
| 149 |
"learning_rate": 9.89456419868791e-05,
|
| 150 |
-
"loss": 0.
|
| 151 |
"step": 180
|
| 152 |
},
|
| 153 |
{
|
| 154 |
"epoch": 0.08903467666354264,
|
| 155 |
-
"grad_norm":
|
| 156 |
"learning_rate": 9.888706654170572e-05,
|
| 157 |
-
"loss": 0.
|
| 158 |
"step": 190
|
| 159 |
},
|
| 160 |
{
|
| 161 |
"epoch": 0.09372071227741331,
|
| 162 |
-
"grad_norm":
|
| 163 |
"learning_rate": 9.882849109653233e-05,
|
| 164 |
-
"loss": 0.
|
| 165 |
"step": 200
|
| 166 |
},
|
| 167 |
{
|
| 168 |
"epoch": 0.09372071227741331,
|
| 169 |
-
"eval_loss": 0.
|
| 170 |
-
"eval_pearson_cosine": 0.
|
| 171 |
-
"eval_pearson_dot": 0.
|
| 172 |
-
"eval_pearson_euclidean": 0.
|
| 173 |
-
"eval_pearson_manhattan": 0.
|
| 174 |
-
"eval_runtime": 4.
|
| 175 |
-
"eval_samples_per_second":
|
| 176 |
-
"eval_spearman_cosine": 0.
|
| 177 |
-
"eval_spearman_dot": 0.
|
| 178 |
-
"eval_spearman_euclidean": 0.
|
| 179 |
-
"eval_spearman_manhattan": 0.
|
| 180 |
-
"eval_steps_per_second": 20.
|
| 181 |
"step": 200
|
| 182 |
},
|
| 183 |
{
|
| 184 |
"epoch": 0.09840674789128398,
|
| 185 |
-
"grad_norm": 3.
|
| 186 |
"learning_rate": 9.876991565135896e-05,
|
| 187 |
-
"loss": 0.
|
| 188 |
"step": 210
|
| 189 |
},
|
| 190 |
{
|
| 191 |
"epoch": 0.10309278350515463,
|
| 192 |
-
"grad_norm": 2.
|
| 193 |
"learning_rate": 9.871134020618558e-05,
|
| 194 |
-
"loss": 0.
|
| 195 |
"step": 220
|
| 196 |
},
|
| 197 |
{
|
| 198 |
"epoch": 0.1077788191190253,
|
| 199 |
-
"grad_norm": 3.
|
| 200 |
"learning_rate": 9.865276476101218e-05,
|
| 201 |
-
"loss": 0.
|
| 202 |
"step": 230
|
| 203 |
},
|
| 204 |
{
|
| 205 |
"epoch": 0.11246485473289597,
|
| 206 |
-
"grad_norm":
|
| 207 |
"learning_rate": 9.85941893158388e-05,
|
| 208 |
-
"loss": 0.
|
| 209 |
"step": 240
|
| 210 |
},
|
| 211 |
{
|
| 212 |
"epoch": 0.11715089034676664,
|
| 213 |
-
"grad_norm": 2.
|
| 214 |
"learning_rate": 9.853561387066542e-05,
|
| 215 |
-
"loss": 0.
|
| 216 |
"step": 250
|
| 217 |
},
|
| 218 |
{
|
| 219 |
"epoch": 0.1218369259606373,
|
| 220 |
-
"grad_norm": 2.
|
| 221 |
"learning_rate": 9.847703842549204e-05,
|
| 222 |
-
"loss": 0.
|
| 223 |
"step": 260
|
| 224 |
},
|
| 225 |
{
|
| 226 |
"epoch": 0.12652296157450796,
|
| 227 |
-
"grad_norm":
|
| 228 |
"learning_rate": 9.841846298031867e-05,
|
| 229 |
-
"loss": 0.
|
| 230 |
"step": 270
|
| 231 |
},
|
| 232 |
{
|
| 233 |
"epoch": 0.13120899718837864,
|
| 234 |
-
"grad_norm": 2.
|
| 235 |
"learning_rate": 9.835988753514527e-05,
|
| 236 |
-
"loss": 0.
|
| 237 |
"step": 280
|
| 238 |
},
|
| 239 |
{
|
| 240 |
"epoch": 0.1358950328022493,
|
| 241 |
-
"grad_norm":
|
| 242 |
"learning_rate": 9.830131208997189e-05,
|
| 243 |
-
"loss": 0.
|
| 244 |
"step": 290
|
| 245 |
},
|
| 246 |
{
|
| 247 |
"epoch": 0.14058106841611998,
|
| 248 |
-
"grad_norm":
|
| 249 |
"learning_rate": 9.82427366447985e-05,
|
| 250 |
-
"loss": 0.
|
| 251 |
"step": 300
|
| 252 |
},
|
| 253 |
{
|
| 254 |
"epoch": 0.14058106841611998,
|
| 255 |
-
"eval_loss": 0.
|
| 256 |
-
"eval_pearson_cosine": 0.
|
| 257 |
-
"eval_pearson_dot": 0.
|
| 258 |
-
"eval_pearson_euclidean": 0.
|
| 259 |
-
"eval_pearson_manhattan": 0.
|
| 260 |
-
"eval_runtime": 4.
|
| 261 |
-
"eval_samples_per_second":
|
| 262 |
-
"eval_spearman_cosine": 0.
|
| 263 |
-
"eval_spearman_dot": 0.
|
| 264 |
-
"eval_spearman_euclidean": 0.
|
| 265 |
-
"eval_spearman_manhattan": 0.
|
| 266 |
-
"eval_steps_per_second":
|
| 267 |
"step": 300
|
| 268 |
},
|
| 269 |
{
|
| 270 |
"epoch": 0.14526710402999063,
|
| 271 |
-
"grad_norm": 3.
|
| 272 |
"learning_rate": 9.818416119962512e-05,
|
| 273 |
-
"loss": 0.
|
| 274 |
"step": 310
|
| 275 |
},
|
| 276 |
{
|
| 277 |
"epoch": 0.14995313964386128,
|
| 278 |
-
"grad_norm":
|
| 279 |
"learning_rate": 9.812558575445174e-05,
|
| 280 |
-
"loss": 0.
|
| 281 |
"step": 320
|
| 282 |
},
|
| 283 |
{
|
| 284 |
"epoch": 0.15463917525773196,
|
| 285 |
-
"grad_norm": 2.
|
| 286 |
"learning_rate": 9.806701030927836e-05,
|
| 287 |
-
"loss": 0.
|
| 288 |
"step": 330
|
| 289 |
},
|
| 290 |
{
|
| 291 |
"epoch": 0.15932521087160262,
|
| 292 |
-
"grad_norm": 2.
|
| 293 |
"learning_rate": 9.800843486410497e-05,
|
| 294 |
-
"loss": 0.
|
| 295 |
"step": 340
|
| 296 |
},
|
| 297 |
{
|
| 298 |
"epoch": 0.1640112464854733,
|
| 299 |
-
"grad_norm": 2.
|
| 300 |
"learning_rate": 9.794985941893159e-05,
|
| 301 |
-
"loss": 0.
|
| 302 |
"step": 350
|
| 303 |
},
|
| 304 |
{
|
| 305 |
"epoch": 0.16869728209934395,
|
| 306 |
-
"grad_norm": 3.
|
| 307 |
"learning_rate": 9.78912839737582e-05,
|
| 308 |
-
"loss": 0.
|
| 309 |
"step": 360
|
| 310 |
},
|
| 311 |
{
|
| 312 |
"epoch": 0.1733833177132146,
|
| 313 |
-
"grad_norm": 2.
|
| 314 |
"learning_rate": 9.783270852858482e-05,
|
| 315 |
-
"loss": 0.
|
| 316 |
"step": 370
|
| 317 |
},
|
| 318 |
{
|
| 319 |
"epoch": 0.1780693533270853,
|
| 320 |
-
"grad_norm": 2.
|
| 321 |
"learning_rate": 9.777413308341144e-05,
|
| 322 |
-
"loss": 0.
|
| 323 |
"step": 380
|
| 324 |
},
|
| 325 |
{
|
| 326 |
"epoch": 0.18275538894095594,
|
| 327 |
-
"grad_norm":
|
| 328 |
"learning_rate": 9.771555763823806e-05,
|
| 329 |
-
"loss": 0.
|
| 330 |
"step": 390
|
| 331 |
},
|
| 332 |
{
|
| 333 |
"epoch": 0.18744142455482662,
|
| 334 |
-
"grad_norm": 2.
|
| 335 |
"learning_rate": 9.765698219306467e-05,
|
| 336 |
-
"loss": 0.
|
| 337 |
"step": 400
|
| 338 |
},
|
| 339 |
{
|
| 340 |
"epoch": 0.18744142455482662,
|
| 341 |
-
"eval_loss": 0.
|
| 342 |
-
"eval_pearson_cosine": 0.
|
| 343 |
-
"eval_pearson_dot": 0.
|
| 344 |
-
"eval_pearson_euclidean": 0.
|
| 345 |
-
"eval_pearson_manhattan": 0.
|
| 346 |
-
"eval_runtime":
|
| 347 |
-
"eval_samples_per_second":
|
| 348 |
-
"eval_spearman_cosine": 0.
|
| 349 |
-
"eval_spearman_dot": 0.
|
| 350 |
-
"eval_spearman_euclidean": 0.
|
| 351 |
-
"eval_spearman_manhattan": 0.
|
| 352 |
-
"eval_steps_per_second":
|
| 353 |
"step": 400
|
| 354 |
},
|
| 355 |
{
|
| 356 |
"epoch": 0.19212746016869728,
|
| 357 |
-
"grad_norm": 3.
|
| 358 |
"learning_rate": 9.759840674789129e-05,
|
| 359 |
-
"loss": 0.
|
| 360 |
"step": 410
|
| 361 |
},
|
| 362 |
{
|
| 363 |
"epoch": 0.19681349578256796,
|
| 364 |
-
"grad_norm": 2.
|
| 365 |
"learning_rate": 9.753983130271791e-05,
|
| 366 |
-
"loss": 0.
|
| 367 |
"step": 420
|
| 368 |
},
|
| 369 |
{
|
| 370 |
"epoch": 0.2014995313964386,
|
| 371 |
-
"grad_norm":
|
| 372 |
"learning_rate": 9.748125585754451e-05,
|
| 373 |
-
"loss": 0.
|
| 374 |
"step": 430
|
| 375 |
},
|
| 376 |
{
|
| 377 |
"epoch": 0.20618556701030927,
|
| 378 |
-
"grad_norm": 2.
|
| 379 |
"learning_rate": 9.742268041237114e-05,
|
| 380 |
-
"loss": 0.
|
| 381 |
"step": 440
|
| 382 |
},
|
| 383 |
{
|
| 384 |
"epoch": 0.21087160262417995,
|
| 385 |
-
"grad_norm": 3.
|
| 386 |
"learning_rate": 9.736410496719776e-05,
|
| 387 |
-
"loss": 0.
|
| 388 |
"step": 450
|
| 389 |
},
|
| 390 |
{
|
| 391 |
"epoch": 0.2155576382380506,
|
| 392 |
-
"grad_norm":
|
| 393 |
"learning_rate": 9.730552952202438e-05,
|
| 394 |
-
"loss": 0.
|
| 395 |
"step": 460
|
| 396 |
},
|
| 397 |
{
|
| 398 |
"epoch": 0.22024367385192128,
|
| 399 |
-
"grad_norm": 2.
|
| 400 |
"learning_rate": 9.7246954076851e-05,
|
| 401 |
-
"loss": 0.
|
| 402 |
"step": 470
|
| 403 |
},
|
| 404 |
{
|
| 405 |
"epoch": 0.22492970946579194,
|
| 406 |
-
"grad_norm": 2.
|
| 407 |
"learning_rate": 9.71883786316776e-05,
|
| 408 |
-
"loss": 0.
|
| 409 |
"step": 480
|
| 410 |
},
|
| 411 |
{
|
| 412 |
"epoch": 0.2296157450796626,
|
| 413 |
-
"grad_norm":
|
| 414 |
"learning_rate": 9.712980318650421e-05,
|
| 415 |
-
"loss": 0.
|
| 416 |
"step": 490
|
| 417 |
},
|
| 418 |
{
|
| 419 |
"epoch": 0.23430178069353327,
|
| 420 |
-
"grad_norm": 2.
|
| 421 |
"learning_rate": 9.707122774133085e-05,
|
| 422 |
-
"loss": 0.
|
| 423 |
"step": 500
|
| 424 |
},
|
| 425 |
{
|
| 426 |
"epoch": 0.23430178069353327,
|
| 427 |
-
"eval_loss": 0.
|
| 428 |
-
"eval_pearson_cosine": 0.
|
| 429 |
-
"eval_pearson_dot": 0.
|
| 430 |
-
"eval_pearson_euclidean": 0.
|
| 431 |
-
"eval_pearson_manhattan": 0.
|
| 432 |
-
"eval_runtime":
|
| 433 |
-
"eval_samples_per_second":
|
| 434 |
-
"eval_spearman_cosine": 0.
|
| 435 |
-
"eval_spearman_dot": 0.
|
| 436 |
-
"eval_spearman_euclidean": 0.
|
| 437 |
-
"eval_spearman_manhattan": 0.
|
| 438 |
-
"eval_steps_per_second":
|
| 439 |
"step": 500
|
| 440 |
},
|
| 441 |
{
|
| 442 |
"epoch": 0.23898781630740393,
|
| 443 |
-
"grad_norm": 2.
|
| 444 |
"learning_rate": 9.701265229615746e-05,
|
| 445 |
-
"loss": 0.
|
| 446 |
"step": 510
|
| 447 |
},
|
| 448 |
{
|
| 449 |
"epoch": 0.2436738519212746,
|
| 450 |
-
"grad_norm":
|
| 451 |
"learning_rate": 9.695407685098408e-05,
|
| 452 |
-
"loss": 0.
|
| 453 |
"step": 520
|
| 454 |
},
|
| 455 |
{
|
| 456 |
"epoch": 0.24835988753514526,
|
| 457 |
-
"grad_norm": 2.
|
| 458 |
"learning_rate": 9.689550140581068e-05,
|
| 459 |
-
"loss": 0.
|
| 460 |
"step": 530
|
| 461 |
},
|
| 462 |
{
|
| 463 |
"epoch": 0.2530459231490159,
|
| 464 |
-
"grad_norm": 2.
|
| 465 |
"learning_rate": 9.68369259606373e-05,
|
| 466 |
-
"loss": 0.
|
| 467 |
"step": 540
|
| 468 |
},
|
| 469 |
{
|
| 470 |
"epoch": 0.25773195876288657,
|
| 471 |
-
"grad_norm": 1.
|
| 472 |
"learning_rate": 9.677835051546392e-05,
|
| 473 |
-
"loss": 0.
|
| 474 |
"step": 550
|
| 475 |
},
|
| 476 |
{
|
| 477 |
"epoch": 0.2624179943767573,
|
| 478 |
-
"grad_norm": 2.
|
| 479 |
"learning_rate": 9.671977507029055e-05,
|
| 480 |
-
"loss": 0.
|
| 481 |
"step": 560
|
| 482 |
},
|
| 483 |
{
|
| 484 |
"epoch": 0.26710402999062793,
|
| 485 |
-
"grad_norm":
|
| 486 |
"learning_rate": 9.666119962511717e-05,
|
| 487 |
-
"loss": 0.
|
| 488 |
"step": 570
|
| 489 |
},
|
| 490 |
{
|
| 491 |
"epoch": 0.2717900656044986,
|
| 492 |
-
"grad_norm":
|
| 493 |
"learning_rate": 9.660262417994377e-05,
|
| 494 |
-
"loss": 0.
|
| 495 |
"step": 580
|
| 496 |
},
|
| 497 |
{
|
| 498 |
"epoch": 0.27647610121836924,
|
| 499 |
-
"grad_norm": 2.
|
| 500 |
"learning_rate": 9.654404873477039e-05,
|
| 501 |
-
"loss": 0.
|
| 502 |
"step": 590
|
| 503 |
},
|
| 504 |
{
|
| 505 |
"epoch": 0.28116213683223995,
|
| 506 |
-
"grad_norm": 2.
|
| 507 |
"learning_rate": 9.6485473289597e-05,
|
| 508 |
-
"loss": 0.
|
| 509 |
"step": 600
|
| 510 |
},
|
| 511 |
{
|
| 512 |
"epoch": 0.28116213683223995,
|
| 513 |
-
"eval_loss": 0.
|
| 514 |
-
"eval_pearson_cosine": 0.
|
| 515 |
-
"eval_pearson_dot": 0.
|
| 516 |
-
"eval_pearson_euclidean": 0.
|
| 517 |
-
"eval_pearson_manhattan": 0.
|
| 518 |
-
"eval_runtime": 4.
|
| 519 |
-
"eval_samples_per_second": 309.
|
| 520 |
-
"eval_spearman_cosine": 0.
|
| 521 |
-
"eval_spearman_dot": 0.
|
| 522 |
-
"eval_spearman_euclidean": 0.
|
| 523 |
-
"eval_spearman_manhattan": 0.
|
| 524 |
-
"eval_steps_per_second": 19.
|
| 525 |
"step": 600
|
| 526 |
},
|
| 527 |
{
|
| 528 |
"epoch": 0.2858481724461106,
|
| 529 |
-
"grad_norm": 2.
|
| 530 |
"learning_rate": 9.642689784442362e-05,
|
| 531 |
-
"loss": 0.
|
| 532 |
"step": 610
|
| 533 |
},
|
| 534 |
{
|
| 535 |
"epoch": 0.29053420805998126,
|
| 536 |
-
"grad_norm": 2.
|
| 537 |
"learning_rate": 9.636832239925024e-05,
|
| 538 |
-
"loss": 0.
|
| 539 |
"step": 620
|
| 540 |
},
|
| 541 |
{
|
| 542 |
"epoch": 0.2952202436738519,
|
| 543 |
-
"grad_norm": 2.
|
| 544 |
"learning_rate": 9.630974695407685e-05,
|
| 545 |
-
"loss": 0.
|
| 546 |
"step": 630
|
| 547 |
},
|
| 548 |
{
|
| 549 |
"epoch": 0.29990627928772257,
|
| 550 |
-
"grad_norm":
|
| 551 |
"learning_rate": 9.625117150890347e-05,
|
| 552 |
-
"loss": 0.
|
| 553 |
"step": 640
|
| 554 |
},
|
| 555 |
{
|
| 556 |
"epoch": 0.3045923149015933,
|
| 557 |
-
"grad_norm": 2.
|
| 558 |
"learning_rate": 9.619259606373009e-05,
|
| 559 |
-
"loss": 0.
|
| 560 |
"step": 650
|
| 561 |
},
|
| 562 |
{
|
| 563 |
"epoch": 0.30927835051546393,
|
| 564 |
-
"grad_norm": 2.
|
| 565 |
"learning_rate": 9.61340206185567e-05,
|
| 566 |
-
"loss": 0.
|
| 567 |
"step": 660
|
| 568 |
},
|
| 569 |
{
|
| 570 |
"epoch": 0.3139643861293346,
|
| 571 |
-
"grad_norm": 2.
|
| 572 |
"learning_rate": 9.607544517338332e-05,
|
| 573 |
-
"loss": 0.
|
| 574 |
"step": 670
|
| 575 |
},
|
| 576 |
{
|
| 577 |
"epoch": 0.31865042174320524,
|
| 578 |
-
"grad_norm": 2.
|
| 579 |
"learning_rate": 9.601686972820994e-05,
|
| 580 |
-
"loss": 0.
|
| 581 |
"step": 680
|
| 582 |
},
|
| 583 |
{
|
| 584 |
"epoch": 0.3233364573570759,
|
| 585 |
-
"grad_norm":
|
| 586 |
"learning_rate": 9.595829428303656e-05,
|
| 587 |
-
"loss": 0.
|
| 588 |
"step": 690
|
| 589 |
},
|
| 590 |
{
|
| 591 |
"epoch": 0.3280224929709466,
|
| 592 |
-
"grad_norm": 1.
|
| 593 |
"learning_rate": 9.589971883786317e-05,
|
| 594 |
-
"loss": 0.
|
| 595 |
"step": 700
|
| 596 |
},
|
| 597 |
{
|
| 598 |
"epoch": 0.3280224929709466,
|
| 599 |
-
"eval_loss": 0.
|
| 600 |
-
"eval_pearson_cosine": 0.
|
| 601 |
-
"eval_pearson_dot": 0.
|
| 602 |
-
"eval_pearson_euclidean": 0.
|
| 603 |
-
"eval_pearson_manhattan": 0.
|
| 604 |
-
"eval_runtime": 4.
|
| 605 |
-
"eval_samples_per_second":
|
| 606 |
-
"eval_spearman_cosine": 0.
|
| 607 |
-
"eval_spearman_dot": 0.
|
| 608 |
-
"eval_spearman_euclidean": 0.
|
| 609 |
-
"eval_spearman_manhattan": 0.
|
| 610 |
-
"eval_steps_per_second":
|
| 611 |
"step": 700
|
| 612 |
},
|
| 613 |
{
|
| 614 |
"epoch": 0.33270852858481725,
|
| 615 |
-
"grad_norm": 2.
|
| 616 |
"learning_rate": 9.584114339268979e-05,
|
| 617 |
-
"loss": 0.
|
| 618 |
"step": 710
|
| 619 |
},
|
| 620 |
{
|
| 621 |
"epoch": 0.3373945641986879,
|
| 622 |
-
"grad_norm": 2.
|
| 623 |
"learning_rate": 9.578256794751641e-05,
|
| 624 |
-
"loss": 0.
|
| 625 |
"step": 720
|
| 626 |
},
|
| 627 |
{
|
| 628 |
"epoch": 0.34208059981255856,
|
| 629 |
-
"grad_norm":
|
| 630 |
"learning_rate": 9.572399250234303e-05,
|
| 631 |
-
"loss": 0.
|
| 632 |
"step": 730
|
| 633 |
},
|
| 634 |
{
|
| 635 |
"epoch": 0.3467666354264292,
|
| 636 |
-
"grad_norm": 1.
|
| 637 |
"learning_rate": 9.566541705716964e-05,
|
| 638 |
-
"loss": 0.
|
| 639 |
"step": 740
|
| 640 |
},
|
| 641 |
{
|
| 642 |
"epoch": 0.3514526710402999,
|
| 643 |
-
"grad_norm":
|
| 644 |
"learning_rate": 9.560684161199626e-05,
|
| 645 |
-
"loss": 0.
|
| 646 |
"step": 750
|
| 647 |
},
|
| 648 |
{
|
| 649 |
"epoch": 0.3561387066541706,
|
| 650 |
-
"grad_norm": 2.
|
| 651 |
"learning_rate": 9.554826616682288e-05,
|
| 652 |
-
"loss": 0.
|
| 653 |
"step": 760
|
| 654 |
},
|
| 655 |
{
|
| 656 |
"epoch": 0.36082474226804123,
|
| 657 |
-
"grad_norm": 2.
|
| 658 |
"learning_rate": 9.54896907216495e-05,
|
| 659 |
-
"loss": 0.
|
| 660 |
"step": 770
|
| 661 |
},
|
| 662 |
{
|
| 663 |
"epoch": 0.3655107778819119,
|
| 664 |
-
"grad_norm": 2.
|
| 665 |
"learning_rate": 9.54311152764761e-05,
|
| 666 |
-
"loss": 0.
|
| 667 |
"step": 780
|
| 668 |
},
|
| 669 |
{
|
| 670 |
"epoch": 0.3701968134957826,
|
| 671 |
-
"grad_norm":
|
| 672 |
"learning_rate": 9.537253983130271e-05,
|
| 673 |
-
"loss": 0.
|
| 674 |
"step": 790
|
| 675 |
},
|
| 676 |
{
|
| 677 |
"epoch": 0.37488284910965325,
|
| 678 |
-
"grad_norm":
|
| 679 |
"learning_rate": 9.531396438612934e-05,
|
| 680 |
-
"loss": 0.
|
| 681 |
"step": 800
|
| 682 |
},
|
| 683 |
{
|
| 684 |
"epoch": 0.37488284910965325,
|
| 685 |
-
"eval_loss": 0.
|
| 686 |
-
"eval_pearson_cosine": 0.
|
| 687 |
-
"eval_pearson_dot": 0.
|
| 688 |
-
"eval_pearson_euclidean": 0.
|
| 689 |
-
"eval_pearson_manhattan": 0.
|
| 690 |
-
"eval_runtime": 4.
|
| 691 |
-
"eval_samples_per_second":
|
| 692 |
-
"eval_spearman_cosine": 0.
|
| 693 |
-
"eval_spearman_dot": 0.
|
| 694 |
-
"eval_spearman_euclidean": 0.
|
| 695 |
-
"eval_spearman_manhattan": 0.
|
| 696 |
-
"eval_steps_per_second": 19.
|
| 697 |
"step": 800
|
| 698 |
},
|
| 699 |
{
|
| 700 |
"epoch": 0.3795688847235239,
|
| 701 |
-
"grad_norm": 2.
|
| 702 |
"learning_rate": 9.525538894095596e-05,
|
| 703 |
-
"loss": 0.
|
| 704 |
"step": 810
|
| 705 |
},
|
| 706 |
{
|
| 707 |
"epoch": 0.38425492033739456,
|
| 708 |
-
"grad_norm": 2.
|
| 709 |
"learning_rate": 9.519681349578258e-05,
|
| 710 |
-
"loss": 0.
|
| 711 |
"step": 820
|
| 712 |
},
|
| 713 |
{
|
| 714 |
"epoch": 0.3889409559512652,
|
| 715 |
-
"grad_norm": 2.
|
| 716 |
"learning_rate": 9.513823805060918e-05,
|
| 717 |
-
"loss": 0.
|
| 718 |
"step": 830
|
| 719 |
},
|
| 720 |
{
|
| 721 |
"epoch": 0.3936269915651359,
|
| 722 |
-
"grad_norm": 2.
|
| 723 |
"learning_rate": 9.50796626054358e-05,
|
| 724 |
-
"loss": 0.
|
| 725 |
"step": 840
|
| 726 |
},
|
| 727 |
{
|
| 728 |
"epoch": 0.3983130271790066,
|
| 729 |
-
"grad_norm": 2.
|
| 730 |
"learning_rate": 9.502108716026242e-05,
|
| 731 |
-
"loss": 0.
|
| 732 |
"step": 850
|
| 733 |
},
|
| 734 |
{
|
| 735 |
"epoch": 0.4029990627928772,
|
| 736 |
-
"grad_norm": 2.
|
| 737 |
"learning_rate": 9.496251171508905e-05,
|
| 738 |
-
"loss": 0.
|
| 739 |
"step": 860
|
| 740 |
},
|
| 741 |
{
|
| 742 |
"epoch": 0.4076850984067479,
|
| 743 |
-
"grad_norm":
|
| 744 |
"learning_rate": 9.490393626991566e-05,
|
| 745 |
-
"loss": 0.
|
| 746 |
"step": 870
|
| 747 |
},
|
| 748 |
{
|
| 749 |
"epoch": 0.41237113402061853,
|
| 750 |
-
"grad_norm": 1.
|
| 751 |
"learning_rate": 9.484536082474227e-05,
|
| 752 |
-
"loss": 0.
|
| 753 |
"step": 880
|
| 754 |
},
|
| 755 |
{
|
| 756 |
"epoch": 0.41705716963448924,
|
| 757 |
-
"grad_norm": 2.
|
| 758 |
"learning_rate": 9.478678537956888e-05,
|
| 759 |
-
"loss": 0.
|
| 760 |
"step": 890
|
| 761 |
},
|
| 762 |
{
|
| 763 |
"epoch": 0.4217432052483599,
|
| 764 |
-
"grad_norm":
|
| 765 |
"learning_rate": 9.47282099343955e-05,
|
| 766 |
-
"loss": 0.
|
| 767 |
"step": 900
|
| 768 |
},
|
| 769 |
{
|
| 770 |
"epoch": 0.4217432052483599,
|
| 771 |
-
"eval_loss": 0.
|
| 772 |
-
"eval_pearson_cosine": 0.
|
| 773 |
-
"eval_pearson_dot": 0.
|
| 774 |
-
"eval_pearson_euclidean": 0.
|
| 775 |
-
"eval_pearson_manhattan": 0.
|
| 776 |
-
"eval_runtime": 4.
|
| 777 |
-
"eval_samples_per_second":
|
| 778 |
-
"eval_spearman_cosine": 0.
|
| 779 |
-
"eval_spearman_dot": 0.
|
| 780 |
-
"eval_spearman_euclidean": 0.
|
| 781 |
-
"eval_spearman_manhattan": 0.
|
| 782 |
-
"eval_steps_per_second": 19.
|
| 783 |
"step": 900
|
| 784 |
},
|
| 785 |
{
|
| 786 |
"epoch": 0.42642924086223055,
|
| 787 |
-
"grad_norm":
|
| 788 |
"learning_rate": 9.466963448922212e-05,
|
| 789 |
-
"loss": 0.
|
| 790 |
"step": 910
|
| 791 |
},
|
| 792 |
{
|
| 793 |
"epoch": 0.4311152764761012,
|
| 794 |
-
"grad_norm": 2.
|
| 795 |
"learning_rate": 9.461105904404875e-05,
|
| 796 |
-
"loss": 0.
|
| 797 |
"step": 920
|
| 798 |
},
|
| 799 |
{
|
| 800 |
"epoch": 0.43580131208997186,
|
| 801 |
-
"grad_norm": 2.
|
| 802 |
"learning_rate": 9.455248359887535e-05,
|
| 803 |
-
"loss": 0.
|
| 804 |
"step": 930
|
| 805 |
},
|
| 806 |
{
|
| 807 |
"epoch": 0.44048734770384257,
|
| 808 |
-
"grad_norm":
|
| 809 |
"learning_rate": 9.449390815370197e-05,
|
| 810 |
-
"loss": 0.
|
| 811 |
"step": 940
|
| 812 |
},
|
| 813 |
{
|
| 814 |
"epoch": 0.4451733833177132,
|
| 815 |
-
"grad_norm": 2.
|
| 816 |
"learning_rate": 9.443533270852859e-05,
|
| 817 |
-
"loss": 0.
|
| 818 |
"step": 950
|
| 819 |
},
|
| 820 |
{
|
| 821 |
"epoch": 0.4498594189315839,
|
| 822 |
-
"grad_norm": 2.
|
| 823 |
"learning_rate": 9.43767572633552e-05,
|
| 824 |
-
"loss": 0.
|
| 825 |
"step": 960
|
| 826 |
},
|
| 827 |
{
|
| 828 |
"epoch": 0.45454545454545453,
|
| 829 |
-
"grad_norm": 2.
|
| 830 |
"learning_rate": 9.431818181818182e-05,
|
| 831 |
-
"loss": 0.
|
| 832 |
"step": 970
|
| 833 |
},
|
| 834 |
{
|
| 835 |
"epoch": 0.4592314901593252,
|
| 836 |
-
"grad_norm": 2.
|
| 837 |
"learning_rate": 9.425960637300844e-05,
|
| 838 |
-
"loss": 0.
|
| 839 |
"step": 980
|
| 840 |
},
|
| 841 |
{
|
| 842 |
"epoch": 0.4639175257731959,
|
| 843 |
-
"grad_norm":
|
| 844 |
"learning_rate": 9.420103092783506e-05,
|
| 845 |
-
"loss": 0.
|
| 846 |
"step": 990
|
| 847 |
},
|
| 848 |
{
|
| 849 |
"epoch": 0.46860356138706655,
|
| 850 |
-
"grad_norm":
|
| 851 |
"learning_rate": 9.414245548266167e-05,
|
| 852 |
-
"loss": 0.
|
| 853 |
"step": 1000
|
| 854 |
},
|
| 855 |
{
|
| 856 |
"epoch": 0.46860356138706655,
|
| 857 |
-
"eval_loss": 0.
|
| 858 |
-
"eval_pearson_cosine": 0.
|
| 859 |
-
"eval_pearson_dot": 0.
|
| 860 |
-
"eval_pearson_euclidean": 0.
|
| 861 |
-
"eval_pearson_manhattan": 0.
|
| 862 |
-
"eval_runtime": 4.
|
| 863 |
-
"eval_samples_per_second":
|
| 864 |
-
"eval_spearman_cosine": 0.
|
| 865 |
-
"eval_spearman_dot": 0.
|
| 866 |
-
"eval_spearman_euclidean": 0.
|
| 867 |
-
"eval_spearman_manhattan": 0.
|
| 868 |
-
"eval_steps_per_second": 19.
|
| 869 |
"step": 1000
|
| 870 |
},
|
| 871 |
{
|
| 872 |
"epoch": 0.4732895970009372,
|
| 873 |
-
"grad_norm": 2.
|
| 874 |
"learning_rate": 9.408388003748829e-05,
|
| 875 |
-
"loss": 0.
|
| 876 |
"step": 1010
|
| 877 |
},
|
| 878 |
{
|
| 879 |
"epoch": 0.47797563261480785,
|
| 880 |
-
"grad_norm": 1.
|
| 881 |
"learning_rate": 9.402530459231491e-05,
|
| 882 |
-
"loss": 0.
|
| 883 |
"step": 1020
|
| 884 |
},
|
| 885 |
{
|
| 886 |
"epoch": 0.48266166822867856,
|
| 887 |
-
"grad_norm":
|
| 888 |
"learning_rate": 9.396672914714152e-05,
|
| 889 |
-
"loss": 0.
|
| 890 |
"step": 1030
|
| 891 |
},
|
| 892 |
{
|
| 893 |
"epoch": 0.4873477038425492,
|
| 894 |
-
"grad_norm":
|
| 895 |
"learning_rate": 9.390815370196814e-05,
|
| 896 |
-
"loss": 0.
|
| 897 |
"step": 1040
|
| 898 |
},
|
| 899 |
{
|
| 900 |
"epoch": 0.49203373945641987,
|
| 901 |
-
"grad_norm": 2.
|
| 902 |
"learning_rate": 9.384957825679476e-05,
|
| 903 |
-
"loss": 0.
|
| 904 |
"step": 1050
|
| 905 |
},
|
| 906 |
{
|
| 907 |
"epoch": 0.4967197750702905,
|
| 908 |
-
"grad_norm":
|
| 909 |
"learning_rate": 9.379100281162138e-05,
|
| 910 |
-
"loss": 0.
|
| 911 |
"step": 1060
|
| 912 |
},
|
| 913 |
{
|
| 914 |
"epoch": 0.5014058106841612,
|
| 915 |
-
"grad_norm": 2.
|
| 916 |
"learning_rate": 9.373242736644799e-05,
|
| 917 |
-
"loss": 0.
|
| 918 |
"step": 1070
|
| 919 |
},
|
| 920 |
{
|
| 921 |
"epoch": 0.5060918462980318,
|
| 922 |
-
"grad_norm": 2.
|
| 923 |
"learning_rate": 9.36738519212746e-05,
|
| 924 |
-
"loss": 0.
|
| 925 |
"step": 1080
|
| 926 |
},
|
| 927 |
{
|
| 928 |
"epoch": 0.5107778819119025,
|
| 929 |
-
"grad_norm": 2.
|
| 930 |
"learning_rate": 9.361527647610123e-05,
|
| 931 |
-
"loss": 0.
|
| 932 |
"step": 1090
|
| 933 |
},
|
| 934 |
{
|
| 935 |
"epoch": 0.5154639175257731,
|
| 936 |
-
"grad_norm": 2.
|
| 937 |
"learning_rate": 9.355670103092784e-05,
|
| 938 |
-
"loss": 0.
|
| 939 |
"step": 1100
|
| 940 |
},
|
| 941 |
{
|
| 942 |
"epoch": 0.5154639175257731,
|
| 943 |
-
"eval_loss": 0.
|
| 944 |
-
"eval_pearson_cosine": 0.
|
| 945 |
-
"eval_pearson_dot": 0.
|
| 946 |
-
"eval_pearson_euclidean": 0.
|
| 947 |
-
"eval_pearson_manhattan": 0.
|
| 948 |
-
"eval_runtime": 4.
|
| 949 |
-
"eval_samples_per_second":
|
| 950 |
-
"eval_spearman_cosine": 0.
|
| 951 |
-
"eval_spearman_dot": 0.
|
| 952 |
-
"eval_spearman_euclidean": 0.
|
| 953 |
-
"eval_spearman_manhattan": 0.
|
| 954 |
-
"eval_steps_per_second": 19.
|
| 955 |
"step": 1100
|
| 956 |
},
|
| 957 |
{
|
| 958 |
"epoch": 0.5201499531396439,
|
| 959 |
-
"grad_norm": 2.
|
| 960 |
"learning_rate": 9.349812558575446e-05,
|
| 961 |
-
"loss": 0.
|
| 962 |
"step": 1110
|
| 963 |
},
|
| 964 |
{
|
| 965 |
"epoch": 0.5248359887535146,
|
| 966 |
-
"grad_norm": 1.
|
| 967 |
"learning_rate": 9.343955014058108e-05,
|
| 968 |
-
"loss": 0.
|
| 969 |
"step": 1120
|
| 970 |
},
|
| 971 |
{
|
| 972 |
"epoch": 0.5295220243673852,
|
| 973 |
-
"grad_norm": 2.
|
| 974 |
"learning_rate": 9.338097469540768e-05,
|
| 975 |
-
"loss": 0.
|
| 976 |
"step": 1130
|
| 977 |
},
|
| 978 |
{
|
| 979 |
"epoch": 0.5342080599812559,
|
| 980 |
-
"grad_norm": 2.
|
| 981 |
"learning_rate": 9.33223992502343e-05,
|
| 982 |
-
"loss": 0.
|
| 983 |
"step": 1140
|
| 984 |
},
|
| 985 |
{
|
| 986 |
"epoch": 0.5388940955951266,
|
| 987 |
-
"grad_norm": 1.
|
| 988 |
"learning_rate": 9.326382380506093e-05,
|
| 989 |
-
"loss": 0.
|
| 990 |
"step": 1150
|
| 991 |
},
|
| 992 |
{
|
| 993 |
"epoch": 0.5435801312089972,
|
| 994 |
-
"grad_norm": 2.
|
| 995 |
"learning_rate": 9.320524835988755e-05,
|
| 996 |
-
"loss": 0.
|
| 997 |
"step": 1160
|
| 998 |
},
|
| 999 |
{
|
| 1000 |
"epoch": 0.5482661668228679,
|
| 1001 |
-
"grad_norm": 2.
|
| 1002 |
"learning_rate": 9.314667291471416e-05,
|
| 1003 |
-
"loss": 0.
|
| 1004 |
"step": 1170
|
| 1005 |
},
|
| 1006 |
{
|
| 1007 |
"epoch": 0.5529522024367385,
|
| 1008 |
-
"grad_norm": 1.
|
| 1009 |
"learning_rate": 9.308809746954077e-05,
|
| 1010 |
-
"loss": 0.
|
| 1011 |
"step": 1180
|
| 1012 |
},
|
| 1013 |
{
|
| 1014 |
"epoch": 0.5576382380506092,
|
| 1015 |
-
"grad_norm": 2.
|
| 1016 |
"learning_rate": 9.302952202436738e-05,
|
| 1017 |
-
"loss": 0.
|
| 1018 |
"step": 1190
|
| 1019 |
},
|
| 1020 |
{
|
| 1021 |
"epoch": 0.5623242736644799,
|
| 1022 |
-
"grad_norm": 2.
|
| 1023 |
"learning_rate": 9.2970946579194e-05,
|
| 1024 |
-
"loss": 0.
|
| 1025 |
"step": 1200
|
| 1026 |
},
|
| 1027 |
{
|
| 1028 |
"epoch": 0.5623242736644799,
|
| 1029 |
-
"eval_loss": 0.
|
| 1030 |
-
"eval_pearson_cosine": 0.
|
| 1031 |
-
"eval_pearson_dot": 0.
|
| 1032 |
-
"eval_pearson_euclidean": 0.
|
| 1033 |
-
"eval_pearson_manhattan": 0.
|
| 1034 |
-
"eval_runtime": 4.
|
| 1035 |
-
"eval_samples_per_second":
|
| 1036 |
-
"eval_spearman_cosine": 0.
|
| 1037 |
-
"eval_spearman_dot": 0.
|
| 1038 |
-
"eval_spearman_euclidean": 0.
|
| 1039 |
-
"eval_spearman_manhattan": 0.
|
| 1040 |
-
"eval_steps_per_second":
|
| 1041 |
"step": 1200
|
| 1042 |
},
|
| 1043 |
{
|
| 1044 |
"epoch": 0.5670103092783505,
|
| 1045 |
-
"grad_norm": 1.
|
| 1046 |
"learning_rate": 9.291237113402063e-05,
|
| 1047 |
-
"loss": 0.
|
| 1048 |
"step": 1210
|
| 1049 |
},
|
| 1050 |
{
|
| 1051 |
"epoch": 0.5716963448922212,
|
| 1052 |
-
"grad_norm": 1.
|
| 1053 |
"learning_rate": 9.285379568884725e-05,
|
| 1054 |
-
"loss": 0.
|
| 1055 |
"step": 1220
|
| 1056 |
},
|
| 1057 |
{
|
| 1058 |
"epoch": 0.5763823805060918,
|
| 1059 |
-
"grad_norm":
|
| 1060 |
"learning_rate": 9.279522024367385e-05,
|
| 1061 |
-
"loss": 0.
|
| 1062 |
"step": 1230
|
| 1063 |
},
|
| 1064 |
{
|
| 1065 |
"epoch": 0.5810684161199625,
|
| 1066 |
-
"grad_norm":
|
| 1067 |
"learning_rate": 9.273664479850047e-05,
|
| 1068 |
-
"loss": 0.
|
| 1069 |
"step": 1240
|
| 1070 |
},
|
| 1071 |
{
|
| 1072 |
"epoch": 0.5857544517338332,
|
| 1073 |
-
"grad_norm":
|
| 1074 |
"learning_rate": 9.267806935332709e-05,
|
| 1075 |
-
"loss": 0.
|
| 1076 |
"step": 1250
|
| 1077 |
},
|
| 1078 |
{
|
| 1079 |
"epoch": 0.5904404873477038,
|
| 1080 |
-
"grad_norm": 2.
|
| 1081 |
"learning_rate": 9.26194939081537e-05,
|
| 1082 |
-
"loss": 0.
|
| 1083 |
"step": 1260
|
| 1084 |
},
|
| 1085 |
{
|
| 1086 |
"epoch": 0.5951265229615745,
|
| 1087 |
-
"grad_norm":
|
| 1088 |
"learning_rate": 9.256091846298033e-05,
|
| 1089 |
-
"loss": 0.
|
| 1090 |
"step": 1270
|
| 1091 |
},
|
| 1092 |
{
|
| 1093 |
"epoch": 0.5998125585754451,
|
| 1094 |
-
"grad_norm": 2.
|
| 1095 |
"learning_rate": 9.250234301780694e-05,
|
| 1096 |
-
"loss": 0.
|
| 1097 |
"step": 1280
|
| 1098 |
},
|
| 1099 |
{
|
| 1100 |
"epoch": 0.6044985941893158,
|
| 1101 |
-
"grad_norm": 1.
|
| 1102 |
"learning_rate": 9.244376757263355e-05,
|
| 1103 |
-
"loss": 0.
|
| 1104 |
"step": 1290
|
| 1105 |
},
|
| 1106 |
{
|
| 1107 |
"epoch": 0.6091846298031866,
|
| 1108 |
-
"grad_norm":
|
| 1109 |
"learning_rate": 9.238519212746017e-05,
|
| 1110 |
-
"loss": 0.
|
| 1111 |
"step": 1300
|
| 1112 |
},
|
| 1113 |
{
|
| 1114 |
"epoch": 0.6091846298031866,
|
| 1115 |
-
"eval_loss": 0.
|
| 1116 |
-
"eval_pearson_cosine": 0.
|
| 1117 |
-
"eval_pearson_dot": 0.
|
| 1118 |
-
"eval_pearson_euclidean": 0.
|
| 1119 |
-
"eval_pearson_manhattan": 0.
|
| 1120 |
-
"eval_runtime":
|
| 1121 |
-
"eval_samples_per_second":
|
| 1122 |
-
"eval_spearman_cosine": 0.
|
| 1123 |
-
"eval_spearman_dot": 0.
|
| 1124 |
-
"eval_spearman_euclidean": 0.
|
| 1125 |
-
"eval_spearman_manhattan": 0.
|
| 1126 |
-
"eval_steps_per_second":
|
| 1127 |
"step": 1300
|
| 1128 |
},
|
| 1129 |
{
|
| 1130 |
"epoch": 0.6138706654170571,
|
| 1131 |
-
"grad_norm": 1.
|
| 1132 |
"learning_rate": 9.232661668228679e-05,
|
| 1133 |
-
"loss": 0.
|
| 1134 |
"step": 1310
|
| 1135 |
},
|
| 1136 |
{
|
| 1137 |
"epoch": 0.6185567010309279,
|
| 1138 |
-
"grad_norm": 2.
|
| 1139 |
"learning_rate": 9.22680412371134e-05,
|
| 1140 |
-
"loss": 0.
|
| 1141 |
"step": 1320
|
| 1142 |
},
|
| 1143 |
{
|
| 1144 |
"epoch": 0.6232427366447985,
|
| 1145 |
-
"grad_norm": 1.
|
| 1146 |
"learning_rate": 9.220946579194002e-05,
|
| 1147 |
-
"loss": 0.
|
| 1148 |
"step": 1330
|
| 1149 |
},
|
| 1150 |
{
|
| 1151 |
"epoch": 0.6279287722586692,
|
| 1152 |
-
"grad_norm":
|
| 1153 |
"learning_rate": 9.215089034676664e-05,
|
| 1154 |
-
"loss": 0.
|
| 1155 |
"step": 1340
|
| 1156 |
},
|
| 1157 |
{
|
| 1158 |
"epoch": 0.6326148078725399,
|
| 1159 |
-
"grad_norm": 2.
|
| 1160 |
"learning_rate": 9.209231490159326e-05,
|
| 1161 |
-
"loss": 0.
|
| 1162 |
"step": 1350
|
| 1163 |
},
|
| 1164 |
{
|
| 1165 |
"epoch": 0.6373008434864105,
|
| 1166 |
-
"grad_norm": 1.
|
| 1167 |
"learning_rate": 9.203373945641987e-05,
|
| 1168 |
-
"loss": 0.
|
| 1169 |
"step": 1360
|
| 1170 |
},
|
| 1171 |
{
|
| 1172 |
"epoch": 0.6419868791002812,
|
| 1173 |
-
"grad_norm": 2.
|
| 1174 |
"learning_rate": 9.197516401124649e-05,
|
| 1175 |
-
"loss": 0.
|
| 1176 |
"step": 1370
|
| 1177 |
},
|
| 1178 |
{
|
| 1179 |
"epoch": 0.6466729147141518,
|
| 1180 |
-
"grad_norm":
|
| 1181 |
"learning_rate": 9.191658856607311e-05,
|
| 1182 |
-
"loss": 0.
|
| 1183 |
"step": 1380
|
| 1184 |
},
|
| 1185 |
{
|
| 1186 |
"epoch": 0.6513589503280225,
|
| 1187 |
-
"grad_norm": 2.
|
| 1188 |
"learning_rate": 9.185801312089973e-05,
|
| 1189 |
-
"loss": 0.
|
| 1190 |
"step": 1390
|
| 1191 |
},
|
| 1192 |
{
|
| 1193 |
"epoch": 0.6560449859418932,
|
| 1194 |
-
"grad_norm":
|
| 1195 |
"learning_rate": 9.179943767572634e-05,
|
| 1196 |
-
"loss": 0.
|
| 1197 |
"step": 1400
|
| 1198 |
},
|
| 1199 |
{
|
| 1200 |
"epoch": 0.6560449859418932,
|
| 1201 |
-
"eval_loss": 0.
|
| 1202 |
-
"eval_pearson_cosine": 0.
|
| 1203 |
-
"eval_pearson_dot": 0.
|
| 1204 |
-
"eval_pearson_euclidean": 0.
|
| 1205 |
-
"eval_pearson_manhattan": 0.
|
| 1206 |
-
"eval_runtime":
|
| 1207 |
-
"eval_samples_per_second":
|
| 1208 |
-
"eval_spearman_cosine": 0.
|
| 1209 |
-
"eval_spearman_dot": 0.
|
| 1210 |
-
"eval_spearman_euclidean": 0.
|
| 1211 |
-
"eval_spearman_manhattan": 0.
|
| 1212 |
-
"eval_steps_per_second":
|
| 1213 |
"step": 1400
|
| 1214 |
},
|
| 1215 |
{
|
| 1216 |
"epoch": 0.6607310215557638,
|
| 1217 |
-
"grad_norm": 1.
|
| 1218 |
"learning_rate": 9.174086223055296e-05,
|
| 1219 |
-
"loss": 0.
|
| 1220 |
"step": 1410
|
| 1221 |
},
|
| 1222 |
{
|
| 1223 |
"epoch": 0.6654170571696345,
|
| 1224 |
-
"grad_norm": 1.
|
| 1225 |
"learning_rate": 9.168228678537958e-05,
|
| 1226 |
-
"loss": 0.
|
| 1227 |
"step": 1420
|
| 1228 |
},
|
| 1229 |
{
|
| 1230 |
"epoch": 0.6701030927835051,
|
| 1231 |
-
"grad_norm": 1.
|
| 1232 |
"learning_rate": 9.162371134020618e-05,
|
| 1233 |
-
"loss": 0.
|
| 1234 |
"step": 1430
|
| 1235 |
},
|
| 1236 |
{
|
| 1237 |
"epoch": 0.6747891283973758,
|
| 1238 |
-
"grad_norm": 2.
|
| 1239 |
"learning_rate": 9.156513589503281e-05,
|
| 1240 |
-
"loss": 0.
|
| 1241 |
"step": 1440
|
| 1242 |
},
|
| 1243 |
{
|
| 1244 |
"epoch": 0.6794751640112465,
|
| 1245 |
-
"grad_norm": 1.
|
| 1246 |
"learning_rate": 9.150656044985943e-05,
|
| 1247 |
-
"loss": 0.
|
| 1248 |
"step": 1450
|
| 1249 |
},
|
| 1250 |
{
|
| 1251 |
"epoch": 0.6841611996251171,
|
| 1252 |
-
"grad_norm": 1.
|
| 1253 |
"learning_rate": 9.144798500468605e-05,
|
| 1254 |
-
"loss": 0.
|
| 1255 |
"step": 1460
|
| 1256 |
},
|
| 1257 |
{
|
| 1258 |
"epoch": 0.6888472352389878,
|
| 1259 |
-
"grad_norm": 2.
|
| 1260 |
"learning_rate": 9.138940955951266e-05,
|
| 1261 |
-
"loss": 0.
|
| 1262 |
"step": 1470
|
| 1263 |
},
|
| 1264 |
{
|
| 1265 |
"epoch": 0.6935332708528584,
|
| 1266 |
-
"grad_norm": 2.
|
| 1267 |
"learning_rate": 9.133083411433927e-05,
|
| 1268 |
-
"loss": 0.
|
| 1269 |
"step": 1480
|
| 1270 |
},
|
| 1271 |
{
|
| 1272 |
"epoch": 0.6982193064667291,
|
| 1273 |
-
"grad_norm": 1.
|
| 1274 |
"learning_rate": 9.127225866916588e-05,
|
| 1275 |
-
"loss": 0.
|
| 1276 |
"step": 1490
|
| 1277 |
},
|
| 1278 |
{
|
| 1279 |
"epoch": 0.7029053420805998,
|
| 1280 |
-
"grad_norm": 2.
|
| 1281 |
"learning_rate": 9.121368322399251e-05,
|
| 1282 |
-
"loss": 0.
|
| 1283 |
"step": 1500
|
| 1284 |
},
|
| 1285 |
{
|
| 1286 |
"epoch": 0.7029053420805998,
|
| 1287 |
-
"eval_loss": 0.
|
| 1288 |
-
"eval_pearson_cosine": 0.
|
| 1289 |
-
"eval_pearson_dot": 0.
|
| 1290 |
-
"eval_pearson_euclidean": 0.
|
| 1291 |
-
"eval_pearson_manhattan": 0.
|
| 1292 |
-
"eval_runtime":
|
| 1293 |
-
"eval_samples_per_second":
|
| 1294 |
-
"eval_spearman_cosine": 0.
|
| 1295 |
-
"eval_spearman_dot": 0.
|
| 1296 |
-
"eval_spearman_euclidean": 0.
|
| 1297 |
-
"eval_spearman_manhattan": 0.
|
| 1298 |
-
"eval_steps_per_second":
|
| 1299 |
"step": 1500
|
| 1300 |
},
|
| 1301 |
{
|
| 1302 |
"epoch": 0.7075913776944704,
|
| 1303 |
-
"grad_norm": 1.
|
| 1304 |
"learning_rate": 9.115510777881913e-05,
|
| 1305 |
-
"loss": 0.
|
| 1306 |
"step": 1510
|
| 1307 |
},
|
| 1308 |
{
|
| 1309 |
"epoch": 0.7122774133083412,
|
| 1310 |
-
"grad_norm": 1.
|
| 1311 |
"learning_rate": 9.109653233364575e-05,
|
| 1312 |
-
"loss": 0.
|
| 1313 |
"step": 1520
|
| 1314 |
},
|
| 1315 |
{
|
| 1316 |
"epoch": 0.7169634489222118,
|
| 1317 |
-
"grad_norm":
|
| 1318 |
"learning_rate": 9.103795688847235e-05,
|
| 1319 |
-
"loss": 0.
|
| 1320 |
"step": 1530
|
| 1321 |
},
|
| 1322 |
{
|
| 1323 |
"epoch": 0.7216494845360825,
|
| 1324 |
-
"grad_norm": 1.
|
| 1325 |
"learning_rate": 9.097938144329897e-05,
|
| 1326 |
-
"loss": 0.
|
| 1327 |
"step": 1540
|
| 1328 |
},
|
| 1329 |
{
|
| 1330 |
"epoch": 0.7263355201499532,
|
| 1331 |
-
"grad_norm": 1.
|
| 1332 |
"learning_rate": 9.092080599812559e-05,
|
| 1333 |
-
"loss": 0.
|
| 1334 |
"step": 1550
|
| 1335 |
},
|
| 1336 |
{
|
| 1337 |
"epoch": 0.7310215557638238,
|
| 1338 |
-
"grad_norm": 1.
|
| 1339 |
"learning_rate": 9.086223055295222e-05,
|
| 1340 |
-
"loss": 0.
|
| 1341 |
"step": 1560
|
| 1342 |
},
|
| 1343 |
{
|
| 1344 |
"epoch": 0.7357075913776945,
|
| 1345 |
-
"grad_norm": 2.
|
| 1346 |
"learning_rate": 9.080365510777883e-05,
|
| 1347 |
-
"loss": 0.
|
| 1348 |
"step": 1570
|
| 1349 |
},
|
| 1350 |
{
|
| 1351 |
"epoch": 0.7403936269915652,
|
| 1352 |
-
"grad_norm": 1.
|
| 1353 |
"learning_rate": 9.074507966260544e-05,
|
| 1354 |
-
"loss": 0.
|
| 1355 |
"step": 1580
|
| 1356 |
},
|
| 1357 |
{
|
| 1358 |
"epoch": 0.7450796626054358,
|
| 1359 |
-
"grad_norm": 1.
|
| 1360 |
"learning_rate": 9.068650421743205e-05,
|
| 1361 |
-
"loss": 0.
|
| 1362 |
"step": 1590
|
| 1363 |
},
|
| 1364 |
{
|
| 1365 |
"epoch": 0.7497656982193065,
|
| 1366 |
-
"grad_norm": 2.
|
| 1367 |
"learning_rate": 9.062792877225867e-05,
|
| 1368 |
-
"loss": 0.
|
| 1369 |
"step": 1600
|
| 1370 |
},
|
| 1371 |
{
|
| 1372 |
"epoch": 0.7497656982193065,
|
| 1373 |
-
"eval_loss": 0.
|
| 1374 |
-
"eval_pearson_cosine": 0.
|
| 1375 |
-
"eval_pearson_dot": 0.
|
| 1376 |
-
"eval_pearson_euclidean": 0.
|
| 1377 |
-
"eval_pearson_manhattan": 0.
|
| 1378 |
-
"eval_runtime":
|
| 1379 |
-
"eval_samples_per_second":
|
| 1380 |
-
"eval_spearman_cosine": 0.
|
| 1381 |
-
"eval_spearman_dot": 0.
|
| 1382 |
-
"eval_spearman_euclidean": 0.
|
| 1383 |
-
"eval_spearman_manhattan": 0.
|
| 1384 |
-
"eval_steps_per_second":
|
| 1385 |
"step": 1600
|
| 1386 |
},
|
| 1387 |
{
|
| 1388 |
"epoch": 0.7544517338331771,
|
| 1389 |
-
"grad_norm": 2.
|
| 1390 |
"learning_rate": 9.056935332708529e-05,
|
| 1391 |
-
"loss": 0.
|
| 1392 |
"step": 1610
|
| 1393 |
},
|
| 1394 |
{
|
| 1395 |
"epoch": 0.7591377694470478,
|
| 1396 |
-
"grad_norm": 1.
|
| 1397 |
"learning_rate": 9.051077788191192e-05,
|
| 1398 |
-
"loss": 0.
|
| 1399 |
"step": 1620
|
| 1400 |
},
|
| 1401 |
{
|
| 1402 |
"epoch": 0.7638238050609185,
|
| 1403 |
-
"grad_norm":
|
| 1404 |
"learning_rate": 9.045220243673852e-05,
|
| 1405 |
-
"loss": 0.
|
| 1406 |
"step": 1630
|
| 1407 |
},
|
| 1408 |
{
|
| 1409 |
"epoch": 0.7685098406747891,
|
| 1410 |
-
"grad_norm":
|
| 1411 |
"learning_rate": 9.039362699156514e-05,
|
| 1412 |
-
"loss": 0.
|
| 1413 |
"step": 1640
|
| 1414 |
},
|
| 1415 |
{
|
| 1416 |
"epoch": 0.7731958762886598,
|
| 1417 |
-
"grad_norm": 1.
|
| 1418 |
"learning_rate": 9.033505154639176e-05,
|
| 1419 |
-
"loss": 0.
|
| 1420 |
"step": 1650
|
| 1421 |
},
|
| 1422 |
{
|
| 1423 |
"epoch": 0.7778819119025304,
|
| 1424 |
-
"grad_norm": 1.
|
| 1425 |
"learning_rate": 9.027647610121837e-05,
|
| 1426 |
-
"loss": 0.
|
| 1427 |
"step": 1660
|
| 1428 |
},
|
| 1429 |
{
|
| 1430 |
"epoch": 0.7825679475164011,
|
| 1431 |
-
"grad_norm": 2.
|
| 1432 |
"learning_rate": 9.021790065604499e-05,
|
| 1433 |
-
"loss": 0.
|
| 1434 |
"step": 1670
|
| 1435 |
},
|
| 1436 |
{
|
| 1437 |
"epoch": 0.7872539831302718,
|
| 1438 |
-
"grad_norm":
|
| 1439 |
"learning_rate": 9.015932521087161e-05,
|
| 1440 |
-
"loss": 0.
|
| 1441 |
"step": 1680
|
| 1442 |
},
|
| 1443 |
{
|
| 1444 |
"epoch": 0.7919400187441424,
|
| 1445 |
-
"grad_norm": 1.
|
| 1446 |
"learning_rate": 9.010074976569822e-05,
|
| 1447 |
-
"loss": 0.
|
| 1448 |
"step": 1690
|
| 1449 |
},
|
| 1450 |
{
|
| 1451 |
"epoch": 0.7966260543580131,
|
| 1452 |
-
"grad_norm":
|
| 1453 |
"learning_rate": 9.004217432052484e-05,
|
| 1454 |
-
"loss": 0.
|
| 1455 |
"step": 1700
|
| 1456 |
},
|
| 1457 |
{
|
| 1458 |
"epoch": 0.7966260543580131,
|
| 1459 |
-
"eval_loss": 0.
|
| 1460 |
-
"eval_pearson_cosine": 0.
|
| 1461 |
-
"eval_pearson_dot": 0.
|
| 1462 |
-
"eval_pearson_euclidean": 0.
|
| 1463 |
-
"eval_pearson_manhattan": 0.
|
| 1464 |
-
"eval_runtime":
|
| 1465 |
-
"eval_samples_per_second":
|
| 1466 |
-
"eval_spearman_cosine": 0.
|
| 1467 |
-
"eval_spearman_dot": 0.
|
| 1468 |
-
"eval_spearman_euclidean": 0.
|
| 1469 |
-
"eval_spearman_manhattan": 0.
|
| 1470 |
-
"eval_steps_per_second":
|
| 1471 |
"step": 1700
|
| 1472 |
},
|
| 1473 |
{
|
| 1474 |
"epoch": 0.8013120899718837,
|
| 1475 |
-
"grad_norm": 1.
|
| 1476 |
"learning_rate": 8.998359887535146e-05,
|
| 1477 |
-
"loss": 0.
|
| 1478 |
"step": 1710
|
| 1479 |
},
|
| 1480 |
{
|
| 1481 |
"epoch": 0.8059981255857545,
|
| 1482 |
-
"grad_norm": 2.
|
| 1483 |
"learning_rate": 8.992502343017808e-05,
|
| 1484 |
-
"loss": 0.
|
| 1485 |
"step": 1720
|
| 1486 |
},
|
| 1487 |
{
|
| 1488 |
"epoch": 0.8106841611996252,
|
| 1489 |
-
"grad_norm":
|
| 1490 |
"learning_rate": 8.986644798500469e-05,
|
| 1491 |
-
"loss": 0.
|
| 1492 |
"step": 1730
|
| 1493 |
},
|
| 1494 |
{
|
| 1495 |
"epoch": 0.8153701968134958,
|
| 1496 |
-
"grad_norm": 1.
|
| 1497 |
"learning_rate": 8.980787253983131e-05,
|
| 1498 |
-
"loss": 0.
|
| 1499 |
"step": 1740
|
| 1500 |
},
|
| 1501 |
{
|
| 1502 |
"epoch": 0.8200562324273665,
|
| 1503 |
-
"grad_norm": 1.
|
| 1504 |
"learning_rate": 8.974929709465793e-05,
|
| 1505 |
-
"loss": 0.
|
| 1506 |
"step": 1750
|
| 1507 |
},
|
| 1508 |
{
|
| 1509 |
"epoch": 0.8247422680412371,
|
| 1510 |
-
"grad_norm": 2.
|
| 1511 |
"learning_rate": 8.969072164948454e-05,
|
| 1512 |
-
"loss": 0.
|
| 1513 |
"step": 1760
|
| 1514 |
},
|
| 1515 |
{
|
| 1516 |
"epoch": 0.8294283036551078,
|
| 1517 |
-
"grad_norm":
|
| 1518 |
"learning_rate": 8.963214620431116e-05,
|
| 1519 |
-
"loss": 0.
|
| 1520 |
"step": 1770
|
| 1521 |
},
|
| 1522 |
{
|
| 1523 |
"epoch": 0.8341143392689785,
|
| 1524 |
-
"grad_norm": 1.
|
| 1525 |
"learning_rate": 8.957357075913777e-05,
|
| 1526 |
-
"loss": 0.
|
| 1527 |
"step": 1780
|
| 1528 |
},
|
| 1529 |
{
|
| 1530 |
"epoch": 0.8388003748828491,
|
| 1531 |
-
"grad_norm": 1.
|
| 1532 |
"learning_rate": 8.95149953139644e-05,
|
| 1533 |
-
"loss": 0.
|
| 1534 |
"step": 1790
|
| 1535 |
},
|
| 1536 |
{
|
| 1537 |
"epoch": 0.8434864104967198,
|
| 1538 |
-
"grad_norm":
|
| 1539 |
"learning_rate": 8.945641986879101e-05,
|
| 1540 |
-
"loss": 0.
|
| 1541 |
"step": 1800
|
| 1542 |
},
|
| 1543 |
{
|
| 1544 |
"epoch": 0.8434864104967198,
|
| 1545 |
-
"eval_loss": 0.
|
| 1546 |
-
"eval_pearson_cosine": 0.
|
| 1547 |
-
"eval_pearson_dot": 0.
|
| 1548 |
-
"eval_pearson_euclidean": 0.
|
| 1549 |
-
"eval_pearson_manhattan": 0.
|
| 1550 |
-
"eval_runtime":
|
| 1551 |
-
"eval_samples_per_second":
|
| 1552 |
-
"eval_spearman_cosine": 0.
|
| 1553 |
-
"eval_spearman_dot": 0.
|
| 1554 |
-
"eval_spearman_euclidean": 0.
|
| 1555 |
-
"eval_spearman_manhattan": 0.
|
| 1556 |
-
"eval_steps_per_second":
|
| 1557 |
"step": 1800
|
| 1558 |
},
|
| 1559 |
{
|
| 1560 |
"epoch": 0.8481724461105904,
|
| 1561 |
-
"grad_norm":
|
| 1562 |
"learning_rate": 8.939784442361763e-05,
|
| 1563 |
-
"loss": 0.
|
| 1564 |
"step": 1810
|
| 1565 |
},
|
| 1566 |
{
|
| 1567 |
"epoch": 0.8528584817244611,
|
| 1568 |
-
"grad_norm":
|
| 1569 |
"learning_rate": 8.933926897844423e-05,
|
| 1570 |
-
"loss": 0.
|
| 1571 |
"step": 1820
|
| 1572 |
},
|
| 1573 |
{
|
| 1574 |
"epoch": 0.8575445173383318,
|
| 1575 |
-
"grad_norm": 1.
|
| 1576 |
"learning_rate": 8.928069353327085e-05,
|
| 1577 |
-
"loss": 0.
|
| 1578 |
"step": 1830
|
| 1579 |
},
|
| 1580 |
{
|
| 1581 |
"epoch": 0.8622305529522024,
|
| 1582 |
-
"grad_norm": 1.
|
| 1583 |
"learning_rate": 8.922211808809747e-05,
|
| 1584 |
-
"loss": 0.
|
| 1585 |
"step": 1840
|
| 1586 |
},
|
| 1587 |
{
|
| 1588 |
"epoch": 0.8669165885660731,
|
| 1589 |
-
"grad_norm": 1.
|
| 1590 |
"learning_rate": 8.91635426429241e-05,
|
| 1591 |
-
"loss": 0.
|
| 1592 |
"step": 1850
|
| 1593 |
},
|
| 1594 |
{
|
| 1595 |
"epoch": 0.8716026241799437,
|
| 1596 |
-
"grad_norm": 1.
|
| 1597 |
"learning_rate": 8.910496719775072e-05,
|
| 1598 |
-
"loss": 0.
|
| 1599 |
"step": 1860
|
| 1600 |
},
|
| 1601 |
{
|
| 1602 |
"epoch": 0.8762886597938144,
|
| 1603 |
-
"grad_norm": 1.
|
| 1604 |
"learning_rate": 8.904639175257732e-05,
|
| 1605 |
-
"loss": 0.
|
| 1606 |
"step": 1870
|
| 1607 |
},
|
| 1608 |
{
|
| 1609 |
"epoch": 0.8809746954076851,
|
| 1610 |
-
"grad_norm": 1.
|
| 1611 |
"learning_rate": 8.898781630740394e-05,
|
| 1612 |
-
"loss": 0.
|
| 1613 |
"step": 1880
|
| 1614 |
},
|
| 1615 |
{
|
| 1616 |
"epoch": 0.8856607310215557,
|
| 1617 |
-
"grad_norm": 2.
|
| 1618 |
"learning_rate": 8.892924086223055e-05,
|
| 1619 |
-
"loss": 0.
|
| 1620 |
"step": 1890
|
| 1621 |
},
|
| 1622 |
{
|
| 1623 |
"epoch": 0.8903467666354264,
|
| 1624 |
-
"grad_norm":
|
| 1625 |
"learning_rate": 8.887066541705717e-05,
|
| 1626 |
-
"loss": 0.
|
| 1627 |
"step": 1900
|
| 1628 |
},
|
| 1629 |
{
|
| 1630 |
"epoch": 0.8903467666354264,
|
| 1631 |
-
"eval_loss": 0.
|
| 1632 |
-
"eval_pearson_cosine": 0.
|
| 1633 |
-
"eval_pearson_dot": 0.
|
| 1634 |
-
"eval_pearson_euclidean": 0.
|
| 1635 |
-
"eval_pearson_manhattan": 0.
|
| 1636 |
-
"eval_runtime":
|
| 1637 |
-
"eval_samples_per_second":
|
| 1638 |
-
"eval_spearman_cosine": 0.
|
| 1639 |
-
"eval_spearman_dot": 0.
|
| 1640 |
-
"eval_spearman_euclidean": 0.
|
| 1641 |
-
"eval_spearman_manhattan": 0.
|
| 1642 |
-
"eval_steps_per_second":
|
| 1643 |
"step": 1900
|
| 1644 |
},
|
| 1645 |
{
|
| 1646 |
"epoch": 0.895032802249297,
|
| 1647 |
-
"grad_norm": 2.
|
| 1648 |
"learning_rate": 8.88120899718838e-05,
|
| 1649 |
-
"loss": 0.
|
| 1650 |
"step": 1910
|
| 1651 |
},
|
| 1652 |
{
|
| 1653 |
"epoch": 0.8997188378631678,
|
| 1654 |
-
"grad_norm": 2.
|
| 1655 |
"learning_rate": 8.87535145267104e-05,
|
| 1656 |
-
"loss": 0.
|
| 1657 |
"step": 1920
|
| 1658 |
},
|
| 1659 |
{
|
| 1660 |
"epoch": 0.9044048734770385,
|
| 1661 |
-
"grad_norm": 1.
|
| 1662 |
"learning_rate": 8.869493908153702e-05,
|
| 1663 |
-
"loss": 0.
|
| 1664 |
"step": 1930
|
| 1665 |
},
|
| 1666 |
{
|
| 1667 |
"epoch": 0.9090909090909091,
|
| 1668 |
-
"grad_norm": 2.
|
| 1669 |
"learning_rate": 8.863636363636364e-05,
|
| 1670 |
"loss": 0.2862,
|
| 1671 |
"step": 1940
|
| 1672 |
},
|
| 1673 |
{
|
| 1674 |
"epoch": 0.9137769447047798,
|
| 1675 |
-
"grad_norm": 2.
|
| 1676 |
"learning_rate": 8.857778819119026e-05,
|
| 1677 |
-
"loss": 0.
|
| 1678 |
"step": 1950
|
| 1679 |
},
|
| 1680 |
{
|
| 1681 |
"epoch": 0.9184629803186504,
|
| 1682 |
-
"grad_norm": 2.
|
| 1683 |
"learning_rate": 8.851921274601687e-05,
|
| 1684 |
-
"loss": 0.
|
| 1685 |
"step": 1960
|
| 1686 |
},
|
| 1687 |
{
|
| 1688 |
"epoch": 0.9231490159325211,
|
| 1689 |
-
"grad_norm": 2.
|
| 1690 |
"learning_rate": 8.846063730084349e-05,
|
| 1691 |
-
"loss": 0.
|
| 1692 |
"step": 1970
|
| 1693 |
},
|
| 1694 |
{
|
| 1695 |
"epoch": 0.9278350515463918,
|
| 1696 |
-
"grad_norm": 2.
|
| 1697 |
"learning_rate": 8.840206185567011e-05,
|
| 1698 |
-
"loss": 0.
|
| 1699 |
"step": 1980
|
| 1700 |
},
|
| 1701 |
{
|
| 1702 |
"epoch": 0.9325210871602624,
|
| 1703 |
-
"grad_norm": 1.
|
| 1704 |
"learning_rate": 8.834348641049672e-05,
|
| 1705 |
-
"loss": 0.
|
| 1706 |
"step": 1990
|
| 1707 |
},
|
| 1708 |
{
|
| 1709 |
"epoch": 0.9372071227741331,
|
| 1710 |
-
"grad_norm":
|
| 1711 |
"learning_rate": 8.828491096532334e-05,
|
| 1712 |
-
"loss": 0.
|
| 1713 |
"step": 2000
|
| 1714 |
},
|
| 1715 |
{
|
| 1716 |
"epoch": 0.9372071227741331,
|
| 1717 |
-
"eval_loss": 0.
|
| 1718 |
-
"eval_pearson_cosine": 0.
|
| 1719 |
-
"eval_pearson_dot": 0.
|
| 1720 |
-
"eval_pearson_euclidean": 0.
|
| 1721 |
-
"eval_pearson_manhattan": 0.
|
| 1722 |
-
"eval_runtime":
|
| 1723 |
-
"eval_samples_per_second":
|
| 1724 |
-
"eval_spearman_cosine": 0.
|
| 1725 |
-
"eval_spearman_dot": 0.
|
| 1726 |
-
"eval_spearman_euclidean": 0.
|
| 1727 |
-
"eval_spearman_manhattan": 0.
|
| 1728 |
-
"eval_steps_per_second":
|
| 1729 |
"step": 2000
|
| 1730 |
},
|
| 1731 |
{
|
| 1732 |
"epoch": 0.9418931583880038,
|
| 1733 |
-
"grad_norm": 1.
|
| 1734 |
"learning_rate": 8.822633552014996e-05,
|
| 1735 |
-
"loss": 0.
|
| 1736 |
"step": 2010
|
| 1737 |
},
|
| 1738 |
{
|
| 1739 |
"epoch": 0.9465791940018744,
|
| 1740 |
-
"grad_norm": 2.
|
| 1741 |
"learning_rate": 8.816776007497658e-05,
|
| 1742 |
-
"loss": 0.
|
| 1743 |
"step": 2020
|
| 1744 |
},
|
| 1745 |
{
|
| 1746 |
"epoch": 0.9512652296157451,
|
| 1747 |
-
"grad_norm": 1.
|
| 1748 |
"learning_rate": 8.810918462980319e-05,
|
| 1749 |
-
"loss": 0.
|
| 1750 |
"step": 2030
|
| 1751 |
},
|
| 1752 |
{
|
| 1753 |
"epoch": 0.9559512652296157,
|
| 1754 |
-
"grad_norm": 1.
|
| 1755 |
"learning_rate": 8.805060918462981e-05,
|
| 1756 |
-
"loss": 0.
|
| 1757 |
"step": 2040
|
| 1758 |
},
|
| 1759 |
{
|
| 1760 |
"epoch": 0.9606373008434864,
|
| 1761 |
-
"grad_norm": 2.
|
| 1762 |
"learning_rate": 8.799203373945643e-05,
|
| 1763 |
-
"loss": 0.
|
| 1764 |
"step": 2050
|
| 1765 |
},
|
| 1766 |
{
|
| 1767 |
"epoch": 0.9653233364573571,
|
| 1768 |
-
"grad_norm": 2.
|
| 1769 |
"learning_rate": 8.793345829428304e-05,
|
| 1770 |
-
"loss": 0.
|
| 1771 |
"step": 2060
|
| 1772 |
},
|
| 1773 |
{
|
| 1774 |
"epoch": 0.9700093720712277,
|
| 1775 |
-
"grad_norm": 1.
|
| 1776 |
"learning_rate": 8.787488284910965e-05,
|
| 1777 |
-
"loss": 0.
|
| 1778 |
"step": 2070
|
| 1779 |
},
|
| 1780 |
{
|
| 1781 |
"epoch": 0.9746954076850984,
|
| 1782 |
-
"grad_norm":
|
| 1783 |
"learning_rate": 8.781630740393628e-05,
|
| 1784 |
-
"loss": 0.
|
| 1785 |
"step": 2080
|
| 1786 |
},
|
| 1787 |
{
|
| 1788 |
"epoch": 0.979381443298969,
|
| 1789 |
-
"grad_norm": 1.
|
| 1790 |
"learning_rate": 8.77577319587629e-05,
|
| 1791 |
-
"loss": 0.
|
| 1792 |
"step": 2090
|
| 1793 |
},
|
| 1794 |
{
|
| 1795 |
"epoch": 0.9840674789128397,
|
| 1796 |
-
"grad_norm": 1.
|
| 1797 |
"learning_rate": 8.769915651358951e-05,
|
| 1798 |
-
"loss": 0.
|
| 1799 |
"step": 2100
|
| 1800 |
},
|
| 1801 |
{
|
| 1802 |
"epoch": 0.9840674789128397,
|
| 1803 |
-
"eval_loss": 0.
|
| 1804 |
-
"eval_pearson_cosine": 0.
|
| 1805 |
-
"eval_pearson_dot": 0.
|
| 1806 |
-
"eval_pearson_euclidean": 0.
|
| 1807 |
-
"eval_pearson_manhattan": 0.
|
| 1808 |
-
"eval_runtime":
|
| 1809 |
-
"eval_samples_per_second":
|
| 1810 |
-
"eval_spearman_cosine": 0.
|
| 1811 |
-
"eval_spearman_dot": 0.
|
| 1812 |
-
"eval_spearman_euclidean": 0.
|
| 1813 |
-
"eval_spearman_manhattan": 0.
|
| 1814 |
-
"eval_steps_per_second":
|
| 1815 |
"step": 2100
|
| 1816 |
},
|
| 1817 |
{
|
| 1818 |
"epoch": 0.9887535145267105,
|
| 1819 |
-
"grad_norm": 2.
|
| 1820 |
"learning_rate": 8.764058106841613e-05,
|
| 1821 |
-
"loss": 0.
|
| 1822 |
"step": 2110
|
| 1823 |
},
|
| 1824 |
{
|
| 1825 |
"epoch": 0.993439550140581,
|
| 1826 |
-
"grad_norm": 1.
|
| 1827 |
"learning_rate": 8.758200562324273e-05,
|
| 1828 |
-
"loss": 0.
|
| 1829 |
"step": 2120
|
| 1830 |
},
|
| 1831 |
{
|
| 1832 |
"epoch": 0.9981255857544518,
|
| 1833 |
-
"grad_norm": 2.
|
| 1834 |
"learning_rate": 8.752343017806935e-05,
|
| 1835 |
-
"loss": 0.
|
| 1836 |
"step": 2130
|
| 1837 |
}
|
| 1838 |
],
|
|
|
|
| 10 |
"log_history": [
|
| 11 |
{
|
| 12 |
"epoch": 0.004686035613870665,
|
| 13 |
+
"grad_norm": 12.236315727233887,
|
| 14 |
"learning_rate": 9.994142455482662e-05,
|
| 15 |
+
"loss": 1.5156,
|
| 16 |
"step": 10
|
| 17 |
},
|
| 18 |
{
|
| 19 |
"epoch": 0.00937207122774133,
|
| 20 |
+
"grad_norm": 7.22237491607666,
|
| 21 |
"learning_rate": 9.988284910965324e-05,
|
| 22 |
+
"loss": 0.9095,
|
| 23 |
"step": 20
|
| 24 |
},
|
| 25 |
{
|
| 26 |
"epoch": 0.014058106841611996,
|
| 27 |
+
"grad_norm": 6.729518890380859,
|
| 28 |
"learning_rate": 9.982427366447986e-05,
|
| 29 |
+
"loss": 0.8282,
|
| 30 |
"step": 30
|
| 31 |
},
|
| 32 |
{
|
| 33 |
"epoch": 0.01874414245548266,
|
| 34 |
+
"grad_norm": 5.495608329772949,
|
| 35 |
"learning_rate": 9.976569821930647e-05,
|
| 36 |
+
"loss": 0.6827,
|
| 37 |
"step": 40
|
| 38 |
},
|
| 39 |
{
|
| 40 |
"epoch": 0.023430178069353328,
|
| 41 |
+
"grad_norm": 5.464115142822266,
|
| 42 |
"learning_rate": 9.970712277413309e-05,
|
| 43 |
+
"loss": 0.699,
|
| 44 |
"step": 50
|
| 45 |
},
|
| 46 |
{
|
| 47 |
"epoch": 0.028116213683223992,
|
| 48 |
+
"grad_norm": 6.352676868438721,
|
| 49 |
"learning_rate": 9.964854732895971e-05,
|
| 50 |
+
"loss": 0.6191,
|
| 51 |
"step": 60
|
| 52 |
},
|
| 53 |
{
|
| 54 |
"epoch": 0.03280224929709466,
|
| 55 |
+
"grad_norm": 6.076754570007324,
|
| 56 |
"learning_rate": 9.958997188378632e-05,
|
| 57 |
+
"loss": 0.574,
|
| 58 |
"step": 70
|
| 59 |
},
|
| 60 |
{
|
| 61 |
"epoch": 0.03748828491096532,
|
| 62 |
+
"grad_norm": 4.699342250823975,
|
| 63 |
"learning_rate": 9.953139643861293e-05,
|
| 64 |
+
"loss": 0.6077,
|
| 65 |
"step": 80
|
| 66 |
},
|
| 67 |
{
|
| 68 |
"epoch": 0.04217432052483599,
|
| 69 |
+
"grad_norm": 4.326422214508057,
|
| 70 |
"learning_rate": 9.947282099343956e-05,
|
| 71 |
+
"loss": 0.5481,
|
| 72 |
"step": 90
|
| 73 |
},
|
| 74 |
{
|
| 75 |
"epoch": 0.046860356138706656,
|
| 76 |
+
"grad_norm": 4.6638078689575195,
|
| 77 |
"learning_rate": 9.941424554826618e-05,
|
| 78 |
+
"loss": 0.6155,
|
| 79 |
"step": 100
|
| 80 |
},
|
| 81 |
{
|
| 82 |
"epoch": 0.046860356138706656,
|
| 83 |
+
"eval_loss": 0.08715534955263138,
|
| 84 |
+
"eval_pearson_cosine": 0.7868586661747727,
|
| 85 |
+
"eval_pearson_dot": 0.7575333730744234,
|
| 86 |
+
"eval_pearson_euclidean": 0.7895270519850293,
|
| 87 |
+
"eval_pearson_manhattan": 0.7883817170623928,
|
| 88 |
+
"eval_runtime": 4.8232,
|
| 89 |
+
"eval_samples_per_second": 310.995,
|
| 90 |
+
"eval_spearman_cosine": 0.7900534456476194,
|
| 91 |
+
"eval_spearman_dot": 0.7544776204268622,
|
| 92 |
+
"eval_spearman_euclidean": 0.7914128821733017,
|
| 93 |
+
"eval_spearman_manhattan": 0.7903422305815181,
|
| 94 |
+
"eval_steps_per_second": 19.489,
|
| 95 |
"step": 100
|
| 96 |
},
|
| 97 |
{
|
| 98 |
"epoch": 0.05154639175257732,
|
| 99 |
+
"grad_norm": 3.8049023151397705,
|
| 100 |
"learning_rate": 9.935567010309279e-05,
|
| 101 |
+
"loss": 0.5402,
|
| 102 |
"step": 110
|
| 103 |
},
|
| 104 |
{
|
| 105 |
"epoch": 0.056232427366447985,
|
| 106 |
+
"grad_norm": 3.812105655670166,
|
| 107 |
"learning_rate": 9.929709465791941e-05,
|
| 108 |
+
"loss": 0.4821,
|
| 109 |
"step": 120
|
| 110 |
},
|
| 111 |
{
|
| 112 |
"epoch": 0.06091846298031865,
|
| 113 |
+
"grad_norm": 4.27888822555542,
|
| 114 |
"learning_rate": 9.923851921274601e-05,
|
| 115 |
+
"loss": 0.5086,
|
| 116 |
"step": 130
|
| 117 |
},
|
| 118 |
{
|
| 119 |
"epoch": 0.06560449859418932,
|
| 120 |
+
"grad_norm": 3.5396862030029297,
|
| 121 |
"learning_rate": 9.917994376757263e-05,
|
| 122 |
+
"loss": 0.4709,
|
| 123 |
"step": 140
|
| 124 |
},
|
| 125 |
{
|
| 126 |
"epoch": 0.07029053420805999,
|
| 127 |
+
"grad_norm": 2.9794766902923584,
|
| 128 |
"learning_rate": 9.912136832239926e-05,
|
| 129 |
+
"loss": 0.5376,
|
| 130 |
"step": 150
|
| 131 |
},
|
| 132 |
{
|
| 133 |
"epoch": 0.07497656982193064,
|
| 134 |
+
"grad_norm": 4.1056413650512695,
|
| 135 |
"learning_rate": 9.906279287722588e-05,
|
| 136 |
+
"loss": 0.5403,
|
| 137 |
"step": 160
|
| 138 |
},
|
| 139 |
{
|
| 140 |
"epoch": 0.07966260543580131,
|
| 141 |
+
"grad_norm": 3.5660178661346436,
|
| 142 |
"learning_rate": 9.90042174320525e-05,
|
| 143 |
+
"loss": 0.5095,
|
| 144 |
"step": 170
|
| 145 |
},
|
| 146 |
{
|
| 147 |
"epoch": 0.08434864104967198,
|
| 148 |
+
"grad_norm": 3.226407527923584,
|
| 149 |
"learning_rate": 9.89456419868791e-05,
|
| 150 |
+
"loss": 0.4684,
|
| 151 |
"step": 180
|
| 152 |
},
|
| 153 |
{
|
| 154 |
"epoch": 0.08903467666354264,
|
| 155 |
+
"grad_norm": 3.224576950073242,
|
| 156 |
"learning_rate": 9.888706654170572e-05,
|
| 157 |
+
"loss": 0.5005,
|
| 158 |
"step": 190
|
| 159 |
},
|
| 160 |
{
|
| 161 |
"epoch": 0.09372071227741331,
|
| 162 |
+
"grad_norm": 2.986266851425171,
|
| 163 |
"learning_rate": 9.882849109653233e-05,
|
| 164 |
+
"loss": 0.4415,
|
| 165 |
"step": 200
|
| 166 |
},
|
| 167 |
{
|
| 168 |
"epoch": 0.09372071227741331,
|
| 169 |
+
"eval_loss": 0.05990051105618477,
|
| 170 |
+
"eval_pearson_cosine": 0.8037077163940438,
|
| 171 |
+
"eval_pearson_dot": 0.7711149700928424,
|
| 172 |
+
"eval_pearson_euclidean": 0.8065472278987844,
|
| 173 |
+
"eval_pearson_manhattan": 0.8064149560284655,
|
| 174 |
+
"eval_runtime": 4.6772,
|
| 175 |
+
"eval_samples_per_second": 320.707,
|
| 176 |
+
"eval_spearman_cosine": 0.8062807649835092,
|
| 177 |
+
"eval_spearman_dot": 0.7710757773956901,
|
| 178 |
+
"eval_spearman_euclidean": 0.8127702338196209,
|
| 179 |
+
"eval_spearman_manhattan": 0.8128386190479225,
|
| 180 |
+
"eval_steps_per_second": 20.098,
|
| 181 |
"step": 200
|
| 182 |
},
|
| 183 |
{
|
| 184 |
"epoch": 0.09840674789128398,
|
| 185 |
+
"grad_norm": 3.6775708198547363,
|
| 186 |
"learning_rate": 9.876991565135896e-05,
|
| 187 |
+
"loss": 0.5227,
|
| 188 |
"step": 210
|
| 189 |
},
|
| 190 |
{
|
| 191 |
"epoch": 0.10309278350515463,
|
| 192 |
+
"grad_norm": 2.6270956993103027,
|
| 193 |
"learning_rate": 9.871134020618558e-05,
|
| 194 |
+
"loss": 0.4477,
|
| 195 |
"step": 220
|
| 196 |
},
|
| 197 |
{
|
| 198 |
"epoch": 0.1077788191190253,
|
| 199 |
+
"grad_norm": 3.687191963195801,
|
| 200 |
"learning_rate": 9.865276476101218e-05,
|
| 201 |
+
"loss": 0.4674,
|
| 202 |
"step": 230
|
| 203 |
},
|
| 204 |
{
|
| 205 |
"epoch": 0.11246485473289597,
|
| 206 |
+
"grad_norm": 2.5306522846221924,
|
| 207 |
"learning_rate": 9.85941893158388e-05,
|
| 208 |
+
"loss": 0.4539,
|
| 209 |
"step": 240
|
| 210 |
},
|
| 211 |
{
|
| 212 |
"epoch": 0.11715089034676664,
|
| 213 |
+
"grad_norm": 2.426499366760254,
|
| 214 |
"learning_rate": 9.853561387066542e-05,
|
| 215 |
+
"loss": 0.4485,
|
| 216 |
"step": 250
|
| 217 |
},
|
| 218 |
{
|
| 219 |
"epoch": 0.1218369259606373,
|
| 220 |
+
"grad_norm": 2.7819628715515137,
|
| 221 |
"learning_rate": 9.847703842549204e-05,
|
| 222 |
+
"loss": 0.4653,
|
| 223 |
"step": 260
|
| 224 |
},
|
| 225 |
{
|
| 226 |
"epoch": 0.12652296157450796,
|
| 227 |
+
"grad_norm": 4.526126384735107,
|
| 228 |
"learning_rate": 9.841846298031867e-05,
|
| 229 |
+
"loss": 0.3939,
|
| 230 |
"step": 270
|
| 231 |
},
|
| 232 |
{
|
| 233 |
"epoch": 0.13120899718837864,
|
| 234 |
+
"grad_norm": 2.6432578563690186,
|
| 235 |
"learning_rate": 9.835988753514527e-05,
|
| 236 |
+
"loss": 0.4241,
|
| 237 |
"step": 280
|
| 238 |
},
|
| 239 |
{
|
| 240 |
"epoch": 0.1358950328022493,
|
| 241 |
+
"grad_norm": 3.9447426795959473,
|
| 242 |
"learning_rate": 9.830131208997189e-05,
|
| 243 |
+
"loss": 0.459,
|
| 244 |
"step": 290
|
| 245 |
},
|
| 246 |
{
|
| 247 |
"epoch": 0.14058106841611998,
|
| 248 |
+
"grad_norm": 3.0471863746643066,
|
| 249 |
"learning_rate": 9.82427366447985e-05,
|
| 250 |
+
"loss": 0.4497,
|
| 251 |
"step": 300
|
| 252 |
},
|
| 253 |
{
|
| 254 |
"epoch": 0.14058106841611998,
|
| 255 |
+
"eval_loss": 0.06257154792547226,
|
| 256 |
+
"eval_pearson_cosine": 0.8157783815016391,
|
| 257 |
+
"eval_pearson_dot": 0.7943799683165018,
|
| 258 |
+
"eval_pearson_euclidean": 0.8109480529101205,
|
| 259 |
+
"eval_pearson_manhattan": 0.8107189557075429,
|
| 260 |
+
"eval_runtime": 4.6882,
|
| 261 |
+
"eval_samples_per_second": 319.95,
|
| 262 |
+
"eval_spearman_cosine": 0.8164514602392956,
|
| 263 |
+
"eval_spearman_dot": 0.793312162219592,
|
| 264 |
+
"eval_spearman_euclidean": 0.818050705442233,
|
| 265 |
+
"eval_spearman_manhattan": 0.8178521574840566,
|
| 266 |
+
"eval_steps_per_second": 20.05,
|
| 267 |
"step": 300
|
| 268 |
},
|
| 269 |
{
|
| 270 |
"epoch": 0.14526710402999063,
|
| 271 |
+
"grad_norm": 3.6450355052948,
|
| 272 |
"learning_rate": 9.818416119962512e-05,
|
| 273 |
+
"loss": 0.4274,
|
| 274 |
"step": 310
|
| 275 |
},
|
| 276 |
{
|
| 277 |
"epoch": 0.14995313964386128,
|
| 278 |
+
"grad_norm": 2.9165449142456055,
|
| 279 |
"learning_rate": 9.812558575445174e-05,
|
| 280 |
+
"loss": 0.4263,
|
| 281 |
"step": 320
|
| 282 |
},
|
| 283 |
{
|
| 284 |
"epoch": 0.15463917525773196,
|
| 285 |
+
"grad_norm": 2.6363539695739746,
|
| 286 |
"learning_rate": 9.806701030927836e-05,
|
| 287 |
+
"loss": 0.5083,
|
| 288 |
"step": 330
|
| 289 |
},
|
| 290 |
{
|
| 291 |
"epoch": 0.15932521087160262,
|
| 292 |
+
"grad_norm": 2.2315175533294678,
|
| 293 |
"learning_rate": 9.800843486410497e-05,
|
| 294 |
+
"loss": 0.4517,
|
| 295 |
"step": 340
|
| 296 |
},
|
| 297 |
{
|
| 298 |
"epoch": 0.1640112464854733,
|
| 299 |
+
"grad_norm": 2.2491111755371094,
|
| 300 |
"learning_rate": 9.794985941893159e-05,
|
| 301 |
+
"loss": 0.4797,
|
| 302 |
"step": 350
|
| 303 |
},
|
| 304 |
{
|
| 305 |
"epoch": 0.16869728209934395,
|
| 306 |
+
"grad_norm": 3.327615976333618,
|
| 307 |
"learning_rate": 9.78912839737582e-05,
|
| 308 |
+
"loss": 0.4437,
|
| 309 |
"step": 360
|
| 310 |
},
|
| 311 |
{
|
| 312 |
"epoch": 0.1733833177132146,
|
| 313 |
+
"grad_norm": 2.88334321975708,
|
| 314 |
"learning_rate": 9.783270852858482e-05,
|
| 315 |
+
"loss": 0.4006,
|
| 316 |
"step": 370
|
| 317 |
},
|
| 318 |
{
|
| 319 |
"epoch": 0.1780693533270853,
|
| 320 |
+
"grad_norm": 2.7329928874969482,
|
| 321 |
"learning_rate": 9.777413308341144e-05,
|
| 322 |
+
"loss": 0.4184,
|
| 323 |
"step": 380
|
| 324 |
},
|
| 325 |
{
|
| 326 |
"epoch": 0.18275538894095594,
|
| 327 |
+
"grad_norm": 3.280235767364502,
|
| 328 |
"learning_rate": 9.771555763823806e-05,
|
| 329 |
+
"loss": 0.4022,
|
| 330 |
"step": 390
|
| 331 |
},
|
| 332 |
{
|
| 333 |
"epoch": 0.18744142455482662,
|
| 334 |
+
"grad_norm": 2.5065557956695557,
|
| 335 |
"learning_rate": 9.765698219306467e-05,
|
| 336 |
+
"loss": 0.4479,
|
| 337 |
"step": 400
|
| 338 |
},
|
| 339 |
{
|
| 340 |
"epoch": 0.18744142455482662,
|
| 341 |
+
"eval_loss": 0.0645737424492836,
|
| 342 |
+
"eval_pearson_cosine": 0.8129588336284996,
|
| 343 |
+
"eval_pearson_dot": 0.7848457662394352,
|
| 344 |
+
"eval_pearson_euclidean": 0.813348529089879,
|
| 345 |
+
"eval_pearson_manhattan": 0.8134040940780514,
|
| 346 |
+
"eval_runtime": 4.6989,
|
| 347 |
+
"eval_samples_per_second": 319.226,
|
| 348 |
+
"eval_spearman_cosine": 0.8152062220540486,
|
| 349 |
+
"eval_spearman_dot": 0.7852216128574532,
|
| 350 |
+
"eval_spearman_euclidean": 0.8209486088575746,
|
| 351 |
+
"eval_spearman_manhattan": 0.8208551347463181,
|
| 352 |
+
"eval_steps_per_second": 20.005,
|
| 353 |
"step": 400
|
| 354 |
},
|
| 355 |
{
|
| 356 |
"epoch": 0.19212746016869728,
|
| 357 |
+
"grad_norm": 3.4038398265838623,
|
| 358 |
"learning_rate": 9.759840674789129e-05,
|
| 359 |
+
"loss": 0.4605,
|
| 360 |
"step": 410
|
| 361 |
},
|
| 362 |
{
|
| 363 |
"epoch": 0.19681349578256796,
|
| 364 |
+
"grad_norm": 2.5624849796295166,
|
| 365 |
"learning_rate": 9.753983130271791e-05,
|
| 366 |
+
"loss": 0.4283,
|
| 367 |
"step": 420
|
| 368 |
},
|
| 369 |
{
|
| 370 |
"epoch": 0.2014995313964386,
|
| 371 |
+
"grad_norm": 4.289618015289307,
|
| 372 |
"learning_rate": 9.748125585754451e-05,
|
| 373 |
+
"loss": 0.451,
|
| 374 |
"step": 430
|
| 375 |
},
|
| 376 |
{
|
| 377 |
"epoch": 0.20618556701030927,
|
| 378 |
+
"grad_norm": 2.115318536758423,
|
| 379 |
"learning_rate": 9.742268041237114e-05,
|
| 380 |
+
"loss": 0.4354,
|
| 381 |
"step": 440
|
| 382 |
},
|
| 383 |
{
|
| 384 |
"epoch": 0.21087160262417995,
|
| 385 |
+
"grad_norm": 3.031923770904541,
|
| 386 |
"learning_rate": 9.736410496719776e-05,
|
| 387 |
+
"loss": 0.3964,
|
| 388 |
"step": 450
|
| 389 |
},
|
| 390 |
{
|
| 391 |
"epoch": 0.2155576382380506,
|
| 392 |
+
"grad_norm": 3.1766481399536133,
|
| 393 |
"learning_rate": 9.730552952202438e-05,
|
| 394 |
+
"loss": 0.4381,
|
| 395 |
"step": 460
|
| 396 |
},
|
| 397 |
{
|
| 398 |
"epoch": 0.22024367385192128,
|
| 399 |
+
"grad_norm": 2.5575857162475586,
|
| 400 |
"learning_rate": 9.7246954076851e-05,
|
| 401 |
+
"loss": 0.3923,
|
| 402 |
"step": 470
|
| 403 |
},
|
| 404 |
{
|
| 405 |
"epoch": 0.22492970946579194,
|
| 406 |
+
"grad_norm": 2.7524373531341553,
|
| 407 |
"learning_rate": 9.71883786316776e-05,
|
| 408 |
+
"loss": 0.3636,
|
| 409 |
"step": 480
|
| 410 |
},
|
| 411 |
{
|
| 412 |
"epoch": 0.2296157450796626,
|
| 413 |
+
"grad_norm": 2.397308111190796,
|
| 414 |
"learning_rate": 9.712980318650421e-05,
|
| 415 |
+
"loss": 0.4024,
|
| 416 |
"step": 490
|
| 417 |
},
|
| 418 |
{
|
| 419 |
"epoch": 0.23430178069353327,
|
| 420 |
+
"grad_norm": 2.7153968811035156,
|
| 421 |
"learning_rate": 9.707122774133085e-05,
|
| 422 |
+
"loss": 0.4284,
|
| 423 |
"step": 500
|
| 424 |
},
|
| 425 |
{
|
| 426 |
"epoch": 0.23430178069353327,
|
| 427 |
+
"eval_loss": 0.06505414098501205,
|
| 428 |
+
"eval_pearson_cosine": 0.8050664803014342,
|
| 429 |
+
"eval_pearson_dot": 0.7819900690459463,
|
| 430 |
+
"eval_pearson_euclidean": 0.8067253667157352,
|
| 431 |
+
"eval_pearson_manhattan": 0.8066066749239482,
|
| 432 |
+
"eval_runtime": 4.7695,
|
| 433 |
+
"eval_samples_per_second": 314.5,
|
| 434 |
+
"eval_spearman_cosine": 0.8089450551178121,
|
| 435 |
+
"eval_spearman_dot": 0.7819509905282449,
|
| 436 |
+
"eval_spearman_euclidean": 0.813757984849266,
|
| 437 |
+
"eval_spearman_manhattan": 0.813378975698625,
|
| 438 |
+
"eval_steps_per_second": 19.709,
|
| 439 |
"step": 500
|
| 440 |
},
|
| 441 |
{
|
| 442 |
"epoch": 0.23898781630740393,
|
| 443 |
+
"grad_norm": 2.5172924995422363,
|
| 444 |
"learning_rate": 9.701265229615746e-05,
|
| 445 |
+
"loss": 0.4338,
|
| 446 |
"step": 510
|
| 447 |
},
|
| 448 |
{
|
| 449 |
"epoch": 0.2436738519212746,
|
| 450 |
+
"grad_norm": 3.0745673179626465,
|
| 451 |
"learning_rate": 9.695407685098408e-05,
|
| 452 |
+
"loss": 0.4411,
|
| 453 |
"step": 520
|
| 454 |
},
|
| 455 |
{
|
| 456 |
"epoch": 0.24835988753514526,
|
| 457 |
+
"grad_norm": 2.51690411567688,
|
| 458 |
"learning_rate": 9.689550140581068e-05,
|
| 459 |
+
"loss": 0.3888,
|
| 460 |
"step": 530
|
| 461 |
},
|
| 462 |
{
|
| 463 |
"epoch": 0.2530459231490159,
|
| 464 |
+
"grad_norm": 2.5043115615844727,
|
| 465 |
"learning_rate": 9.68369259606373e-05,
|
| 466 |
+
"loss": 0.3946,
|
| 467 |
"step": 540
|
| 468 |
},
|
| 469 |
{
|
| 470 |
"epoch": 0.25773195876288657,
|
| 471 |
+
"grad_norm": 1.931721806526184,
|
| 472 |
"learning_rate": 9.677835051546392e-05,
|
| 473 |
+
"loss": 0.3734,
|
| 474 |
"step": 550
|
| 475 |
},
|
| 476 |
{
|
| 477 |
"epoch": 0.2624179943767573,
|
| 478 |
+
"grad_norm": 2.396235704421997,
|
| 479 |
"learning_rate": 9.671977507029055e-05,
|
| 480 |
+
"loss": 0.3781,
|
| 481 |
"step": 560
|
| 482 |
},
|
| 483 |
{
|
| 484 |
"epoch": 0.26710402999062793,
|
| 485 |
+
"grad_norm": 1.8347618579864502,
|
| 486 |
"learning_rate": 9.666119962511717e-05,
|
| 487 |
+
"loss": 0.4067,
|
| 488 |
"step": 570
|
| 489 |
},
|
| 490 |
{
|
| 491 |
"epoch": 0.2717900656044986,
|
| 492 |
+
"grad_norm": 2.65472412109375,
|
| 493 |
"learning_rate": 9.660262417994377e-05,
|
| 494 |
+
"loss": 0.3646,
|
| 495 |
"step": 580
|
| 496 |
},
|
| 497 |
{
|
| 498 |
"epoch": 0.27647610121836924,
|
| 499 |
+
"grad_norm": 2.131566047668457,
|
| 500 |
"learning_rate": 9.654404873477039e-05,
|
| 501 |
+
"loss": 0.4212,
|
| 502 |
"step": 590
|
| 503 |
},
|
| 504 |
{
|
| 505 |
"epoch": 0.28116213683223995,
|
| 506 |
+
"grad_norm": 2.4860639572143555,
|
| 507 |
"learning_rate": 9.6485473289597e-05,
|
| 508 |
+
"loss": 0.3853,
|
| 509 |
"step": 600
|
| 510 |
},
|
| 511 |
{
|
| 512 |
"epoch": 0.28116213683223995,
|
| 513 |
+
"eval_loss": 0.05714314430952072,
|
| 514 |
+
"eval_pearson_cosine": 0.8037633908878945,
|
| 515 |
+
"eval_pearson_dot": 0.7922442881383063,
|
| 516 |
+
"eval_pearson_euclidean": 0.8033561562960063,
|
| 517 |
+
"eval_pearson_manhattan": 0.8035567720397765,
|
| 518 |
+
"eval_runtime": 4.8432,
|
| 519 |
+
"eval_samples_per_second": 309.711,
|
| 520 |
+
"eval_spearman_cosine": 0.8084109915495988,
|
| 521 |
+
"eval_spearman_dot": 0.7948649982391062,
|
| 522 |
+
"eval_spearman_euclidean": 0.8103898218799952,
|
| 523 |
+
"eval_spearman_manhattan": 0.8106767456523252,
|
| 524 |
+
"eval_steps_per_second": 19.409,
|
| 525 |
"step": 600
|
| 526 |
},
|
| 527 |
{
|
| 528 |
"epoch": 0.2858481724461106,
|
| 529 |
+
"grad_norm": 2.178133249282837,
|
| 530 |
"learning_rate": 9.642689784442362e-05,
|
| 531 |
+
"loss": 0.4,
|
| 532 |
"step": 610
|
| 533 |
},
|
| 534 |
{
|
| 535 |
"epoch": 0.29053420805998126,
|
| 536 |
+
"grad_norm": 2.625169038772583,
|
| 537 |
"learning_rate": 9.636832239925024e-05,
|
| 538 |
+
"loss": 0.3901,
|
| 539 |
"step": 620
|
| 540 |
},
|
| 541 |
{
|
| 542 |
"epoch": 0.2952202436738519,
|
| 543 |
+
"grad_norm": 2.9042716026306152,
|
| 544 |
"learning_rate": 9.630974695407685e-05,
|
| 545 |
+
"loss": 0.3999,
|
| 546 |
"step": 630
|
| 547 |
},
|
| 548 |
{
|
| 549 |
"epoch": 0.29990627928772257,
|
| 550 |
+
"grad_norm": 1.7897489070892334,
|
| 551 |
"learning_rate": 9.625117150890347e-05,
|
| 552 |
+
"loss": 0.3519,
|
| 553 |
"step": 640
|
| 554 |
},
|
| 555 |
{
|
| 556 |
"epoch": 0.3045923149015933,
|
| 557 |
+
"grad_norm": 2.162492513656616,
|
| 558 |
"learning_rate": 9.619259606373009e-05,
|
| 559 |
+
"loss": 0.3609,
|
| 560 |
"step": 650
|
| 561 |
},
|
| 562 |
{
|
| 563 |
"epoch": 0.30927835051546393,
|
| 564 |
+
"grad_norm": 2.502537727355957,
|
| 565 |
"learning_rate": 9.61340206185567e-05,
|
| 566 |
+
"loss": 0.3664,
|
| 567 |
"step": 660
|
| 568 |
},
|
| 569 |
{
|
| 570 |
"epoch": 0.3139643861293346,
|
| 571 |
+
"grad_norm": 2.679335594177246,
|
| 572 |
"learning_rate": 9.607544517338332e-05,
|
| 573 |
+
"loss": 0.4041,
|
| 574 |
"step": 670
|
| 575 |
},
|
| 576 |
{
|
| 577 |
"epoch": 0.31865042174320524,
|
| 578 |
+
"grad_norm": 2.2340409755706787,
|
| 579 |
"learning_rate": 9.601686972820994e-05,
|
| 580 |
+
"loss": 0.3847,
|
| 581 |
"step": 680
|
| 582 |
},
|
| 583 |
{
|
| 584 |
"epoch": 0.3233364573570759,
|
| 585 |
+
"grad_norm": 3.3209805488586426,
|
| 586 |
"learning_rate": 9.595829428303656e-05,
|
| 587 |
+
"loss": 0.4274,
|
| 588 |
"step": 690
|
| 589 |
},
|
| 590 |
{
|
| 591 |
"epoch": 0.3280224929709466,
|
| 592 |
+
"grad_norm": 1.8717986345291138,
|
| 593 |
"learning_rate": 9.589971883786317e-05,
|
| 594 |
+
"loss": 0.3798,
|
| 595 |
"step": 700
|
| 596 |
},
|
| 597 |
{
|
| 598 |
"epoch": 0.3280224929709466,
|
| 599 |
+
"eval_loss": 0.06265808641910553,
|
| 600 |
+
"eval_pearson_cosine": 0.7997962383626067,
|
| 601 |
+
"eval_pearson_dot": 0.782403525826652,
|
| 602 |
+
"eval_pearson_euclidean": 0.7963005835260759,
|
| 603 |
+
"eval_pearson_manhattan": 0.7967635425851256,
|
| 604 |
+
"eval_runtime": 4.6788,
|
| 605 |
+
"eval_samples_per_second": 320.593,
|
| 606 |
+
"eval_spearman_cosine": 0.8040677308135645,
|
| 607 |
+
"eval_spearman_dot": 0.7846759313363996,
|
| 608 |
+
"eval_spearman_euclidean": 0.8039856887485184,
|
| 609 |
+
"eval_spearman_manhattan": 0.8042998695210408,
|
| 610 |
+
"eval_steps_per_second": 20.09,
|
| 611 |
"step": 700
|
| 612 |
},
|
| 613 |
{
|
| 614 |
"epoch": 0.33270852858481725,
|
| 615 |
+
"grad_norm": 2.667065382003784,
|
| 616 |
"learning_rate": 9.584114339268979e-05,
|
| 617 |
+
"loss": 0.3517,
|
| 618 |
"step": 710
|
| 619 |
},
|
| 620 |
{
|
| 621 |
"epoch": 0.3373945641986879,
|
| 622 |
+
"grad_norm": 2.4856221675872803,
|
| 623 |
"learning_rate": 9.578256794751641e-05,
|
| 624 |
+
"loss": 0.4113,
|
| 625 |
"step": 720
|
| 626 |
},
|
| 627 |
{
|
| 628 |
"epoch": 0.34208059981255856,
|
| 629 |
+
"grad_norm": 2.3127479553222656,
|
| 630 |
"learning_rate": 9.572399250234303e-05,
|
| 631 |
+
"loss": 0.3333,
|
| 632 |
"step": 730
|
| 633 |
},
|
| 634 |
{
|
| 635 |
"epoch": 0.3467666354264292,
|
| 636 |
+
"grad_norm": 1.7665061950683594,
|
| 637 |
"learning_rate": 9.566541705716964e-05,
|
| 638 |
+
"loss": 0.4113,
|
| 639 |
"step": 740
|
| 640 |
},
|
| 641 |
{
|
| 642 |
"epoch": 0.3514526710402999,
|
| 643 |
+
"grad_norm": 1.8380166292190552,
|
| 644 |
"learning_rate": 9.560684161199626e-05,
|
| 645 |
+
"loss": 0.3634,
|
| 646 |
"step": 750
|
| 647 |
},
|
| 648 |
{
|
| 649 |
"epoch": 0.3561387066541706,
|
| 650 |
+
"grad_norm": 2.980945348739624,
|
| 651 |
"learning_rate": 9.554826616682288e-05,
|
| 652 |
+
"loss": 0.3486,
|
| 653 |
"step": 760
|
| 654 |
},
|
| 655 |
{
|
| 656 |
"epoch": 0.36082474226804123,
|
| 657 |
+
"grad_norm": 2.6140224933624268,
|
| 658 |
"learning_rate": 9.54896907216495e-05,
|
| 659 |
+
"loss": 0.389,
|
| 660 |
"step": 770
|
| 661 |
},
|
| 662 |
{
|
| 663 |
"epoch": 0.3655107778819119,
|
| 664 |
+
"grad_norm": 2.7822117805480957,
|
| 665 |
"learning_rate": 9.54311152764761e-05,
|
| 666 |
+
"loss": 0.3747,
|
| 667 |
"step": 780
|
| 668 |
},
|
| 669 |
{
|
| 670 |
"epoch": 0.3701968134957826,
|
| 671 |
+
"grad_norm": 1.884682059288025,
|
| 672 |
"learning_rate": 9.537253983130271e-05,
|
| 673 |
+
"loss": 0.3311,
|
| 674 |
"step": 790
|
| 675 |
},
|
| 676 |
{
|
| 677 |
"epoch": 0.37488284910965325,
|
| 678 |
+
"grad_norm": 1.9988900423049927,
|
| 679 |
"learning_rate": 9.531396438612934e-05,
|
| 680 |
+
"loss": 0.3615,
|
| 681 |
"step": 800
|
| 682 |
},
|
| 683 |
{
|
| 684 |
"epoch": 0.37488284910965325,
|
| 685 |
+
"eval_loss": 0.05634882301092148,
|
| 686 |
+
"eval_pearson_cosine": 0.8038418277696451,
|
| 687 |
+
"eval_pearson_dot": 0.7799485472675656,
|
| 688 |
+
"eval_pearson_euclidean": 0.8069547387629541,
|
| 689 |
+
"eval_pearson_manhattan": 0.8073835773742246,
|
| 690 |
+
"eval_runtime": 4.7355,
|
| 691 |
+
"eval_samples_per_second": 316.756,
|
| 692 |
+
"eval_spearman_cosine": 0.8046853584108842,
|
| 693 |
+
"eval_spearman_dot": 0.7772894170177264,
|
| 694 |
+
"eval_spearman_euclidean": 0.8106627528697075,
|
| 695 |
+
"eval_spearman_manhattan": 0.8113494849262057,
|
| 696 |
+
"eval_steps_per_second": 19.85,
|
| 697 |
"step": 800
|
| 698 |
},
|
| 699 |
{
|
| 700 |
"epoch": 0.3795688847235239,
|
| 701 |
+
"grad_norm": 2.149801015853882,
|
| 702 |
"learning_rate": 9.525538894095596e-05,
|
| 703 |
+
"loss": 0.4051,
|
| 704 |
"step": 810
|
| 705 |
},
|
| 706 |
{
|
| 707 |
"epoch": 0.38425492033739456,
|
| 708 |
+
"grad_norm": 2.5438592433929443,
|
| 709 |
"learning_rate": 9.519681349578258e-05,
|
| 710 |
+
"loss": 0.3536,
|
| 711 |
"step": 820
|
| 712 |
},
|
| 713 |
{
|
| 714 |
"epoch": 0.3889409559512652,
|
| 715 |
+
"grad_norm": 2.192567825317383,
|
| 716 |
"learning_rate": 9.513823805060918e-05,
|
| 717 |
+
"loss": 0.3437,
|
| 718 |
"step": 830
|
| 719 |
},
|
| 720 |
{
|
| 721 |
"epoch": 0.3936269915651359,
|
| 722 |
+
"grad_norm": 2.1283817291259766,
|
| 723 |
"learning_rate": 9.50796626054358e-05,
|
| 724 |
+
"loss": 0.406,
|
| 725 |
"step": 840
|
| 726 |
},
|
| 727 |
{
|
| 728 |
"epoch": 0.3983130271790066,
|
| 729 |
+
"grad_norm": 2.416581630706787,
|
| 730 |
"learning_rate": 9.502108716026242e-05,
|
| 731 |
+
"loss": 0.3383,
|
| 732 |
"step": 850
|
| 733 |
},
|
| 734 |
{
|
| 735 |
"epoch": 0.4029990627928772,
|
| 736 |
+
"grad_norm": 2.987426996231079,
|
| 737 |
"learning_rate": 9.496251171508905e-05,
|
| 738 |
+
"loss": 0.4024,
|
| 739 |
"step": 860
|
| 740 |
},
|
| 741 |
{
|
| 742 |
"epoch": 0.4076850984067479,
|
| 743 |
+
"grad_norm": 3.472496747970581,
|
| 744 |
"learning_rate": 9.490393626991566e-05,
|
| 745 |
+
"loss": 0.4088,
|
| 746 |
"step": 870
|
| 747 |
},
|
| 748 |
{
|
| 749 |
"epoch": 0.41237113402061853,
|
| 750 |
+
"grad_norm": 1.7949929237365723,
|
| 751 |
"learning_rate": 9.484536082474227e-05,
|
| 752 |
+
"loss": 0.3556,
|
| 753 |
"step": 880
|
| 754 |
},
|
| 755 |
{
|
| 756 |
"epoch": 0.41705716963448924,
|
| 757 |
+
"grad_norm": 2.5681650638580322,
|
| 758 |
"learning_rate": 9.478678537956888e-05,
|
| 759 |
+
"loss": 0.3488,
|
| 760 |
"step": 890
|
| 761 |
},
|
| 762 |
{
|
| 763 |
"epoch": 0.4217432052483599,
|
| 764 |
+
"grad_norm": 1.9793102741241455,
|
| 765 |
"learning_rate": 9.47282099343955e-05,
|
| 766 |
+
"loss": 0.3333,
|
| 767 |
"step": 900
|
| 768 |
},
|
| 769 |
{
|
| 770 |
"epoch": 0.4217432052483599,
|
| 771 |
+
"eval_loss": 0.0584479495882988,
|
| 772 |
+
"eval_pearson_cosine": 0.8053522096959256,
|
| 773 |
+
"eval_pearson_dot": 0.7824338806172406,
|
| 774 |
+
"eval_pearson_euclidean": 0.8050956474463948,
|
| 775 |
+
"eval_pearson_manhattan": 0.8050994959105964,
|
| 776 |
+
"eval_runtime": 4.7733,
|
| 777 |
+
"eval_samples_per_second": 314.248,
|
| 778 |
+
"eval_spearman_cosine": 0.8066755205383609,
|
| 779 |
+
"eval_spearman_dot": 0.7821157253633244,
|
| 780 |
+
"eval_spearman_euclidean": 0.8097694547473674,
|
| 781 |
+
"eval_spearman_manhattan": 0.8100692397448628,
|
| 782 |
+
"eval_steps_per_second": 19.693,
|
| 783 |
"step": 900
|
| 784 |
},
|
| 785 |
{
|
| 786 |
"epoch": 0.42642924086223055,
|
| 787 |
+
"grad_norm": 1.8367053270339966,
|
| 788 |
"learning_rate": 9.466963448922212e-05,
|
| 789 |
+
"loss": 0.2852,
|
| 790 |
"step": 910
|
| 791 |
},
|
| 792 |
{
|
| 793 |
"epoch": 0.4311152764761012,
|
| 794 |
+
"grad_norm": 2.7685294151306152,
|
| 795 |
"learning_rate": 9.461105904404875e-05,
|
| 796 |
+
"loss": 0.3903,
|
| 797 |
"step": 920
|
| 798 |
},
|
| 799 |
{
|
| 800 |
"epoch": 0.43580131208997186,
|
| 801 |
+
"grad_norm": 2.694925546646118,
|
| 802 |
"learning_rate": 9.455248359887535e-05,
|
| 803 |
+
"loss": 0.3556,
|
| 804 |
"step": 930
|
| 805 |
},
|
| 806 |
{
|
| 807 |
"epoch": 0.44048734770384257,
|
| 808 |
+
"grad_norm": 2.1870169639587402,
|
| 809 |
"learning_rate": 9.449390815370197e-05,
|
| 810 |
+
"loss": 0.3371,
|
| 811 |
"step": 940
|
| 812 |
},
|
| 813 |
{
|
| 814 |
"epoch": 0.4451733833177132,
|
| 815 |
+
"grad_norm": 2.213475465774536,
|
| 816 |
"learning_rate": 9.443533270852859e-05,
|
| 817 |
+
"loss": 0.3506,
|
| 818 |
"step": 950
|
| 819 |
},
|
| 820 |
{
|
| 821 |
"epoch": 0.4498594189315839,
|
| 822 |
+
"grad_norm": 2.083057165145874,
|
| 823 |
"learning_rate": 9.43767572633552e-05,
|
| 824 |
+
"loss": 0.3821,
|
| 825 |
"step": 960
|
| 826 |
},
|
| 827 |
{
|
| 828 |
"epoch": 0.45454545454545453,
|
| 829 |
+
"grad_norm": 2.3329579830169678,
|
| 830 |
"learning_rate": 9.431818181818182e-05,
|
| 831 |
+
"loss": 0.3715,
|
| 832 |
"step": 970
|
| 833 |
},
|
| 834 |
{
|
| 835 |
"epoch": 0.4592314901593252,
|
| 836 |
+
"grad_norm": 2.198944330215454,
|
| 837 |
"learning_rate": 9.425960637300844e-05,
|
| 838 |
+
"loss": 0.3549,
|
| 839 |
"step": 980
|
| 840 |
},
|
| 841 |
{
|
| 842 |
"epoch": 0.4639175257731959,
|
| 843 |
+
"grad_norm": 11.298641204833984,
|
| 844 |
"learning_rate": 9.420103092783506e-05,
|
| 845 |
+
"loss": 0.4068,
|
| 846 |
"step": 990
|
| 847 |
},
|
| 848 |
{
|
| 849 |
"epoch": 0.46860356138706655,
|
| 850 |
+
"grad_norm": 2.49027681350708,
|
| 851 |
"learning_rate": 9.414245548266167e-05,
|
| 852 |
+
"loss": 0.3693,
|
| 853 |
"step": 1000
|
| 854 |
},
|
| 855 |
{
|
| 856 |
"epoch": 0.46860356138706655,
|
| 857 |
+
"eval_loss": 0.05829383432865143,
|
| 858 |
+
"eval_pearson_cosine": 0.7877790961258597,
|
| 859 |
+
"eval_pearson_dot": 0.7795745583242422,
|
| 860 |
+
"eval_pearson_euclidean": 0.7679074299205411,
|
| 861 |
+
"eval_pearson_manhattan": 0.7685797828363299,
|
| 862 |
+
"eval_runtime": 4.7202,
|
| 863 |
+
"eval_samples_per_second": 317.781,
|
| 864 |
+
"eval_spearman_cosine": 0.7864141944499116,
|
| 865 |
+
"eval_spearman_dot": 0.7772556312389166,
|
| 866 |
+
"eval_spearman_euclidean": 0.7804453284579596,
|
| 867 |
+
"eval_spearman_manhattan": 0.7808739773322116,
|
| 868 |
+
"eval_steps_per_second": 19.914,
|
| 869 |
"step": 1000
|
| 870 |
},
|
| 871 |
{
|
| 872 |
"epoch": 0.4732895970009372,
|
| 873 |
+
"grad_norm": 2.1024911403656006,
|
| 874 |
"learning_rate": 9.408388003748829e-05,
|
| 875 |
+
"loss": 0.3561,
|
| 876 |
"step": 1010
|
| 877 |
},
|
| 878 |
{
|
| 879 |
"epoch": 0.47797563261480785,
|
| 880 |
+
"grad_norm": 1.8707431554794312,
|
| 881 |
"learning_rate": 9.402530459231491e-05,
|
| 882 |
+
"loss": 0.3774,
|
| 883 |
"step": 1020
|
| 884 |
},
|
| 885 |
{
|
| 886 |
"epoch": 0.48266166822867856,
|
| 887 |
+
"grad_norm": 1.9497177600860596,
|
| 888 |
"learning_rate": 9.396672914714152e-05,
|
| 889 |
+
"loss": 0.3473,
|
| 890 |
"step": 1030
|
| 891 |
},
|
| 892 |
{
|
| 893 |
"epoch": 0.4873477038425492,
|
| 894 |
+
"grad_norm": 2.7375972270965576,
|
| 895 |
"learning_rate": 9.390815370196814e-05,
|
| 896 |
+
"loss": 0.3697,
|
| 897 |
"step": 1040
|
| 898 |
},
|
| 899 |
{
|
| 900 |
"epoch": 0.49203373945641987,
|
| 901 |
+
"grad_norm": 2.511812210083008,
|
| 902 |
"learning_rate": 9.384957825679476e-05,
|
| 903 |
+
"loss": 0.3686,
|
| 904 |
"step": 1050
|
| 905 |
},
|
| 906 |
{
|
| 907 |
"epoch": 0.4967197750702905,
|
| 908 |
+
"grad_norm": 2.1349568367004395,
|
| 909 |
"learning_rate": 9.379100281162138e-05,
|
| 910 |
+
"loss": 0.3496,
|
| 911 |
"step": 1060
|
| 912 |
},
|
| 913 |
{
|
| 914 |
"epoch": 0.5014058106841612,
|
| 915 |
+
"grad_norm": 2.2301406860351562,
|
| 916 |
"learning_rate": 9.373242736644799e-05,
|
| 917 |
+
"loss": 0.3654,
|
| 918 |
"step": 1070
|
| 919 |
},
|
| 920 |
{
|
| 921 |
"epoch": 0.5060918462980318,
|
| 922 |
+
"grad_norm": 2.1164608001708984,
|
| 923 |
"learning_rate": 9.36738519212746e-05,
|
| 924 |
+
"loss": 0.3638,
|
| 925 |
"step": 1080
|
| 926 |
},
|
| 927 |
{
|
| 928 |
"epoch": 0.5107778819119025,
|
| 929 |
+
"grad_norm": 2.4411444664001465,
|
| 930 |
"learning_rate": 9.361527647610123e-05,
|
| 931 |
+
"loss": 0.3587,
|
| 932 |
"step": 1090
|
| 933 |
},
|
| 934 |
{
|
| 935 |
"epoch": 0.5154639175257731,
|
| 936 |
+
"grad_norm": 2.258974313735962,
|
| 937 |
"learning_rate": 9.355670103092784e-05,
|
| 938 |
+
"loss": 0.3623,
|
| 939 |
"step": 1100
|
| 940 |
},
|
| 941 |
{
|
| 942 |
"epoch": 0.5154639175257731,
|
| 943 |
+
"eval_loss": 0.057412039488554,
|
| 944 |
+
"eval_pearson_cosine": 0.8054045239651941,
|
| 945 |
+
"eval_pearson_dot": 0.7882266367922739,
|
| 946 |
+
"eval_pearson_euclidean": 0.8054283430349685,
|
| 947 |
+
"eval_pearson_manhattan": 0.8054310326990333,
|
| 948 |
+
"eval_runtime": 4.884,
|
| 949 |
+
"eval_samples_per_second": 307.123,
|
| 950 |
+
"eval_spearman_cosine": 0.8089804612877154,
|
| 951 |
+
"eval_spearman_dot": 0.7907022600197556,
|
| 952 |
+
"eval_spearman_euclidean": 0.8116072764746199,
|
| 953 |
+
"eval_spearman_manhattan": 0.8115702025237405,
|
| 954 |
+
"eval_steps_per_second": 19.246,
|
| 955 |
"step": 1100
|
| 956 |
},
|
| 957 |
{
|
| 958 |
"epoch": 0.5201499531396439,
|
| 959 |
+
"grad_norm": 2.1118857860565186,
|
| 960 |
"learning_rate": 9.349812558575446e-05,
|
| 961 |
+
"loss": 0.3515,
|
| 962 |
"step": 1110
|
| 963 |
},
|
| 964 |
{
|
| 965 |
"epoch": 0.5248359887535146,
|
| 966 |
+
"grad_norm": 1.9648866653442383,
|
| 967 |
"learning_rate": 9.343955014058108e-05,
|
| 968 |
+
"loss": 0.3609,
|
| 969 |
"step": 1120
|
| 970 |
},
|
| 971 |
{
|
| 972 |
"epoch": 0.5295220243673852,
|
| 973 |
+
"grad_norm": 2.2861597537994385,
|
| 974 |
"learning_rate": 9.338097469540768e-05,
|
| 975 |
+
"loss": 0.4036,
|
| 976 |
"step": 1130
|
| 977 |
},
|
| 978 |
{
|
| 979 |
"epoch": 0.5342080599812559,
|
| 980 |
+
"grad_norm": 2.585618734359741,
|
| 981 |
"learning_rate": 9.33223992502343e-05,
|
| 982 |
+
"loss": 0.4082,
|
| 983 |
"step": 1140
|
| 984 |
},
|
| 985 |
{
|
| 986 |
"epoch": 0.5388940955951266,
|
| 987 |
+
"grad_norm": 1.9095607995986938,
|
| 988 |
"learning_rate": 9.326382380506093e-05,
|
| 989 |
+
"loss": 0.3412,
|
| 990 |
"step": 1150
|
| 991 |
},
|
| 992 |
{
|
| 993 |
"epoch": 0.5435801312089972,
|
| 994 |
+
"grad_norm": 2.4912240505218506,
|
| 995 |
"learning_rate": 9.320524835988755e-05,
|
| 996 |
+
"loss": 0.3241,
|
| 997 |
"step": 1160
|
| 998 |
},
|
| 999 |
{
|
| 1000 |
"epoch": 0.5482661668228679,
|
| 1001 |
+
"grad_norm": 2.18245530128479,
|
| 1002 |
"learning_rate": 9.314667291471416e-05,
|
| 1003 |
+
"loss": 0.3488,
|
| 1004 |
"step": 1170
|
| 1005 |
},
|
| 1006 |
{
|
| 1007 |
"epoch": 0.5529522024367385,
|
| 1008 |
+
"grad_norm": 1.8920319080352783,
|
| 1009 |
"learning_rate": 9.308809746954077e-05,
|
| 1010 |
+
"loss": 0.3681,
|
| 1011 |
"step": 1180
|
| 1012 |
},
|
| 1013 |
{
|
| 1014 |
"epoch": 0.5576382380506092,
|
| 1015 |
+
"grad_norm": 2.3703997135162354,
|
| 1016 |
"learning_rate": 9.302952202436738e-05,
|
| 1017 |
+
"loss": 0.3351,
|
| 1018 |
"step": 1190
|
| 1019 |
},
|
| 1020 |
{
|
| 1021 |
"epoch": 0.5623242736644799,
|
| 1022 |
+
"grad_norm": 2.7007317543029785,
|
| 1023 |
"learning_rate": 9.2970946579194e-05,
|
| 1024 |
+
"loss": 0.3795,
|
| 1025 |
"step": 1200
|
| 1026 |
},
|
| 1027 |
{
|
| 1028 |
"epoch": 0.5623242736644799,
|
| 1029 |
+
"eval_loss": 0.05915520712733269,
|
| 1030 |
+
"eval_pearson_cosine": 0.8027526360325794,
|
| 1031 |
+
"eval_pearson_dot": 0.7769488034596463,
|
| 1032 |
+
"eval_pearson_euclidean": 0.8068785294837539,
|
| 1033 |
+
"eval_pearson_manhattan": 0.8075156260399368,
|
| 1034 |
+
"eval_runtime": 4.746,
|
| 1035 |
+
"eval_samples_per_second": 316.058,
|
| 1036 |
+
"eval_spearman_cosine": 0.8065060357142443,
|
| 1037 |
+
"eval_spearman_dot": 0.7771498848133976,
|
| 1038 |
+
"eval_spearman_euclidean": 0.8122246926374114,
|
| 1039 |
+
"eval_spearman_manhattan": 0.8132591524706569,
|
| 1040 |
+
"eval_steps_per_second": 19.806,
|
| 1041 |
"step": 1200
|
| 1042 |
},
|
| 1043 |
{
|
| 1044 |
"epoch": 0.5670103092783505,
|
| 1045 |
+
"grad_norm": 1.776810646057129,
|
| 1046 |
"learning_rate": 9.291237113402063e-05,
|
| 1047 |
+
"loss": 0.3432,
|
| 1048 |
"step": 1210
|
| 1049 |
},
|
| 1050 |
{
|
| 1051 |
"epoch": 0.5716963448922212,
|
| 1052 |
+
"grad_norm": 1.6577345132827759,
|
| 1053 |
"learning_rate": 9.285379568884725e-05,
|
| 1054 |
+
"loss": 0.36,
|
| 1055 |
"step": 1220
|
| 1056 |
},
|
| 1057 |
{
|
| 1058 |
"epoch": 0.5763823805060918,
|
| 1059 |
+
"grad_norm": 2.0708200931549072,
|
| 1060 |
"learning_rate": 9.279522024367385e-05,
|
| 1061 |
+
"loss": 0.3591,
|
| 1062 |
"step": 1230
|
| 1063 |
},
|
| 1064 |
{
|
| 1065 |
"epoch": 0.5810684161199625,
|
| 1066 |
+
"grad_norm": 2.041905403137207,
|
| 1067 |
"learning_rate": 9.273664479850047e-05,
|
| 1068 |
+
"loss": 0.3246,
|
| 1069 |
"step": 1240
|
| 1070 |
},
|
| 1071 |
{
|
| 1072 |
"epoch": 0.5857544517338332,
|
| 1073 |
+
"grad_norm": 2.0132291316986084,
|
| 1074 |
"learning_rate": 9.267806935332709e-05,
|
| 1075 |
+
"loss": 0.3307,
|
| 1076 |
"step": 1250
|
| 1077 |
},
|
| 1078 |
{
|
| 1079 |
"epoch": 0.5904404873477038,
|
| 1080 |
+
"grad_norm": 2.6334540843963623,
|
| 1081 |
"learning_rate": 9.26194939081537e-05,
|
| 1082 |
+
"loss": 0.3801,
|
| 1083 |
"step": 1260
|
| 1084 |
},
|
| 1085 |
{
|
| 1086 |
"epoch": 0.5951265229615745,
|
| 1087 |
+
"grad_norm": 2.337106227874756,
|
| 1088 |
"learning_rate": 9.256091846298033e-05,
|
| 1089 |
+
"loss": 0.3392,
|
| 1090 |
"step": 1270
|
| 1091 |
},
|
| 1092 |
{
|
| 1093 |
"epoch": 0.5998125585754451,
|
| 1094 |
+
"grad_norm": 2.2226593494415283,
|
| 1095 |
"learning_rate": 9.250234301780694e-05,
|
| 1096 |
+
"loss": 0.3418,
|
| 1097 |
"step": 1280
|
| 1098 |
},
|
| 1099 |
{
|
| 1100 |
"epoch": 0.6044985941893158,
|
| 1101 |
+
"grad_norm": 1.7794549465179443,
|
| 1102 |
"learning_rate": 9.244376757263355e-05,
|
| 1103 |
+
"loss": 0.314,
|
| 1104 |
"step": 1290
|
| 1105 |
},
|
| 1106 |
{
|
| 1107 |
"epoch": 0.6091846298031866,
|
| 1108 |
+
"grad_norm": 1.9184062480926514,
|
| 1109 |
"learning_rate": 9.238519212746017e-05,
|
| 1110 |
+
"loss": 0.3053,
|
| 1111 |
"step": 1300
|
| 1112 |
},
|
| 1113 |
{
|
| 1114 |
"epoch": 0.6091846298031866,
|
| 1115 |
+
"eval_loss": 0.045989640057086945,
|
| 1116 |
+
"eval_pearson_cosine": 0.820789253991002,
|
| 1117 |
+
"eval_pearson_dot": 0.8058718276562473,
|
| 1118 |
+
"eval_pearson_euclidean": 0.8166045784832683,
|
| 1119 |
+
"eval_pearson_manhattan": 0.8162631376424372,
|
| 1120 |
+
"eval_runtime": 5.0529,
|
| 1121 |
+
"eval_samples_per_second": 296.861,
|
| 1122 |
+
"eval_spearman_cosine": 0.8220198254899076,
|
| 1123 |
+
"eval_spearman_dot": 0.8055773386238695,
|
| 1124 |
+
"eval_spearman_euclidean": 0.8240178580854226,
|
| 1125 |
+
"eval_spearman_manhattan": 0.8238001131690327,
|
| 1126 |
+
"eval_steps_per_second": 18.603,
|
| 1127 |
"step": 1300
|
| 1128 |
},
|
| 1129 |
{
|
| 1130 |
"epoch": 0.6138706654170571,
|
| 1131 |
+
"grad_norm": 1.4235422611236572,
|
| 1132 |
"learning_rate": 9.232661668228679e-05,
|
| 1133 |
+
"loss": 0.3753,
|
| 1134 |
"step": 1310
|
| 1135 |
},
|
| 1136 |
{
|
| 1137 |
"epoch": 0.6185567010309279,
|
| 1138 |
+
"grad_norm": 2.533778190612793,
|
| 1139 |
"learning_rate": 9.22680412371134e-05,
|
| 1140 |
+
"loss": 0.3428,
|
| 1141 |
"step": 1320
|
| 1142 |
},
|
| 1143 |
{
|
| 1144 |
"epoch": 0.6232427366447985,
|
| 1145 |
+
"grad_norm": 1.4714725017547607,
|
| 1146 |
"learning_rate": 9.220946579194002e-05,
|
| 1147 |
+
"loss": 0.3234,
|
| 1148 |
"step": 1330
|
| 1149 |
},
|
| 1150 |
{
|
| 1151 |
"epoch": 0.6279287722586692,
|
| 1152 |
+
"grad_norm": 2.222369432449341,
|
| 1153 |
"learning_rate": 9.215089034676664e-05,
|
| 1154 |
+
"loss": 0.3245,
|
| 1155 |
"step": 1340
|
| 1156 |
},
|
| 1157 |
{
|
| 1158 |
"epoch": 0.6326148078725399,
|
| 1159 |
+
"grad_norm": 2.2116310596466064,
|
| 1160 |
"learning_rate": 9.209231490159326e-05,
|
| 1161 |
+
"loss": 0.3559,
|
| 1162 |
"step": 1350
|
| 1163 |
},
|
| 1164 |
{
|
| 1165 |
"epoch": 0.6373008434864105,
|
| 1166 |
+
"grad_norm": 1.7387092113494873,
|
| 1167 |
"learning_rate": 9.203373945641987e-05,
|
| 1168 |
+
"loss": 0.3136,
|
| 1169 |
"step": 1360
|
| 1170 |
},
|
| 1171 |
{
|
| 1172 |
"epoch": 0.6419868791002812,
|
| 1173 |
+
"grad_norm": 2.0696067810058594,
|
| 1174 |
"learning_rate": 9.197516401124649e-05,
|
| 1175 |
+
"loss": 0.3445,
|
| 1176 |
"step": 1370
|
| 1177 |
},
|
| 1178 |
{
|
| 1179 |
"epoch": 0.6466729147141518,
|
| 1180 |
+
"grad_norm": 1.9684154987335205,
|
| 1181 |
"learning_rate": 9.191658856607311e-05,
|
| 1182 |
+
"loss": 0.3642,
|
| 1183 |
"step": 1380
|
| 1184 |
},
|
| 1185 |
{
|
| 1186 |
"epoch": 0.6513589503280225,
|
| 1187 |
+
"grad_norm": 2.100874662399292,
|
| 1188 |
"learning_rate": 9.185801312089973e-05,
|
| 1189 |
+
"loss": 0.3503,
|
| 1190 |
"step": 1390
|
| 1191 |
},
|
| 1192 |
{
|
| 1193 |
"epoch": 0.6560449859418932,
|
| 1194 |
+
"grad_norm": 2.0006463527679443,
|
| 1195 |
"learning_rate": 9.179943767572634e-05,
|
| 1196 |
+
"loss": 0.3254,
|
| 1197 |
"step": 1400
|
| 1198 |
},
|
| 1199 |
{
|
| 1200 |
"epoch": 0.6560449859418932,
|
| 1201 |
+
"eval_loss": 0.05193132907152176,
|
| 1202 |
+
"eval_pearson_cosine": 0.8103823201459353,
|
| 1203 |
+
"eval_pearson_dot": 0.7882454399014449,
|
| 1204 |
+
"eval_pearson_euclidean": 0.811911388094785,
|
| 1205 |
+
"eval_pearson_manhattan": 0.8115250997508099,
|
| 1206 |
+
"eval_runtime": 5.1172,
|
| 1207 |
+
"eval_samples_per_second": 293.129,
|
| 1208 |
+
"eval_spearman_cosine": 0.8131502946747682,
|
| 1209 |
+
"eval_spearman_dot": 0.7891548472904836,
|
| 1210 |
+
"eval_spearman_euclidean": 0.8194175695170715,
|
| 1211 |
+
"eval_spearman_manhattan": 0.8189330381324939,
|
| 1212 |
+
"eval_steps_per_second": 18.369,
|
| 1213 |
"step": 1400
|
| 1214 |
},
|
| 1215 |
{
|
| 1216 |
"epoch": 0.6607310215557638,
|
| 1217 |
+
"grad_norm": 1.919021487236023,
|
| 1218 |
"learning_rate": 9.174086223055296e-05,
|
| 1219 |
+
"loss": 0.3202,
|
| 1220 |
"step": 1410
|
| 1221 |
},
|
| 1222 |
{
|
| 1223 |
"epoch": 0.6654170571696345,
|
| 1224 |
+
"grad_norm": 1.8564157485961914,
|
| 1225 |
"learning_rate": 9.168228678537958e-05,
|
| 1226 |
+
"loss": 0.3096,
|
| 1227 |
"step": 1420
|
| 1228 |
},
|
| 1229 |
{
|
| 1230 |
"epoch": 0.6701030927835051,
|
| 1231 |
+
"grad_norm": 1.6826527118682861,
|
| 1232 |
"learning_rate": 9.162371134020618e-05,
|
| 1233 |
+
"loss": 0.3406,
|
| 1234 |
"step": 1430
|
| 1235 |
},
|
| 1236 |
{
|
| 1237 |
"epoch": 0.6747891283973758,
|
| 1238 |
+
"grad_norm": 2.024946689605713,
|
| 1239 |
"learning_rate": 9.156513589503281e-05,
|
| 1240 |
+
"loss": 0.3516,
|
| 1241 |
"step": 1440
|
| 1242 |
},
|
| 1243 |
{
|
| 1244 |
"epoch": 0.6794751640112465,
|
| 1245 |
+
"grad_norm": 1.8498772382736206,
|
| 1246 |
"learning_rate": 9.150656044985943e-05,
|
| 1247 |
+
"loss": 0.3091,
|
| 1248 |
"step": 1450
|
| 1249 |
},
|
| 1250 |
{
|
| 1251 |
"epoch": 0.6841611996251171,
|
| 1252 |
+
"grad_norm": 1.799222469329834,
|
| 1253 |
"learning_rate": 9.144798500468605e-05,
|
| 1254 |
+
"loss": 0.3191,
|
| 1255 |
"step": 1460
|
| 1256 |
},
|
| 1257 |
{
|
| 1258 |
"epoch": 0.6888472352389878,
|
| 1259 |
+
"grad_norm": 2.3396248817443848,
|
| 1260 |
"learning_rate": 9.138940955951266e-05,
|
| 1261 |
+
"loss": 0.3233,
|
| 1262 |
"step": 1470
|
| 1263 |
},
|
| 1264 |
{
|
| 1265 |
"epoch": 0.6935332708528584,
|
| 1266 |
+
"grad_norm": 2.101897716522217,
|
| 1267 |
"learning_rate": 9.133083411433927e-05,
|
| 1268 |
+
"loss": 0.3432,
|
| 1269 |
"step": 1480
|
| 1270 |
},
|
| 1271 |
{
|
| 1272 |
"epoch": 0.6982193064667291,
|
| 1273 |
+
"grad_norm": 1.8764758110046387,
|
| 1274 |
"learning_rate": 9.127225866916588e-05,
|
| 1275 |
+
"loss": 0.2991,
|
| 1276 |
"step": 1490
|
| 1277 |
},
|
| 1278 |
{
|
| 1279 |
"epoch": 0.7029053420805998,
|
| 1280 |
+
"grad_norm": 2.519561767578125,
|
| 1281 |
"learning_rate": 9.121368322399251e-05,
|
| 1282 |
+
"loss": 0.3399,
|
| 1283 |
"step": 1500
|
| 1284 |
},
|
| 1285 |
{
|
| 1286 |
"epoch": 0.7029053420805998,
|
| 1287 |
+
"eval_loss": 0.0482293963432312,
|
| 1288 |
+
"eval_pearson_cosine": 0.8191894627160892,
|
| 1289 |
+
"eval_pearson_dot": 0.8010005297958998,
|
| 1290 |
+
"eval_pearson_euclidean": 0.8162180404574002,
|
| 1291 |
+
"eval_pearson_manhattan": 0.8162308024373885,
|
| 1292 |
+
"eval_runtime": 8.1047,
|
| 1293 |
+
"eval_samples_per_second": 185.079,
|
| 1294 |
+
"eval_spearman_cosine": 0.8200045044762955,
|
| 1295 |
+
"eval_spearman_dot": 0.8002723589197207,
|
| 1296 |
+
"eval_spearman_euclidean": 0.8238380749416172,
|
| 1297 |
+
"eval_spearman_manhattan": 0.8242054788884601,
|
| 1298 |
+
"eval_steps_per_second": 11.598,
|
| 1299 |
"step": 1500
|
| 1300 |
},
|
| 1301 |
{
|
| 1302 |
"epoch": 0.7075913776944704,
|
| 1303 |
+
"grad_norm": 1.77321457862854,
|
| 1304 |
"learning_rate": 9.115510777881913e-05,
|
| 1305 |
+
"loss": 0.2938,
|
| 1306 |
"step": 1510
|
| 1307 |
},
|
| 1308 |
{
|
| 1309 |
"epoch": 0.7122774133083412,
|
| 1310 |
+
"grad_norm": 1.7782044410705566,
|
| 1311 |
"learning_rate": 9.109653233364575e-05,
|
| 1312 |
+
"loss": 0.3371,
|
| 1313 |
"step": 1520
|
| 1314 |
},
|
| 1315 |
{
|
| 1316 |
"epoch": 0.7169634489222118,
|
| 1317 |
+
"grad_norm": 2.416205883026123,
|
| 1318 |
"learning_rate": 9.103795688847235e-05,
|
| 1319 |
+
"loss": 0.3222,
|
| 1320 |
"step": 1530
|
| 1321 |
},
|
| 1322 |
{
|
| 1323 |
"epoch": 0.7216494845360825,
|
| 1324 |
+
"grad_norm": 1.8090990781784058,
|
| 1325 |
"learning_rate": 9.097938144329897e-05,
|
| 1326 |
+
"loss": 0.3139,
|
| 1327 |
"step": 1540
|
| 1328 |
},
|
| 1329 |
{
|
| 1330 |
"epoch": 0.7263355201499532,
|
| 1331 |
+
"grad_norm": 1.3428120613098145,
|
| 1332 |
"learning_rate": 9.092080599812559e-05,
|
| 1333 |
+
"loss": 0.2989,
|
| 1334 |
"step": 1550
|
| 1335 |
},
|
| 1336 |
{
|
| 1337 |
"epoch": 0.7310215557638238,
|
| 1338 |
+
"grad_norm": 1.667705774307251,
|
| 1339 |
"learning_rate": 9.086223055295222e-05,
|
| 1340 |
+
"loss": 0.3242,
|
| 1341 |
"step": 1560
|
| 1342 |
},
|
| 1343 |
{
|
| 1344 |
"epoch": 0.7357075913776945,
|
| 1345 |
+
"grad_norm": 2.157198905944824,
|
| 1346 |
"learning_rate": 9.080365510777883e-05,
|
| 1347 |
+
"loss": 0.3402,
|
| 1348 |
"step": 1570
|
| 1349 |
},
|
| 1350 |
{
|
| 1351 |
"epoch": 0.7403936269915652,
|
| 1352 |
+
"grad_norm": 1.7279380559921265,
|
| 1353 |
"learning_rate": 9.074507966260544e-05,
|
| 1354 |
+
"loss": 0.3095,
|
| 1355 |
"step": 1580
|
| 1356 |
},
|
| 1357 |
{
|
| 1358 |
"epoch": 0.7450796626054358,
|
| 1359 |
+
"grad_norm": 1.914881706237793,
|
| 1360 |
"learning_rate": 9.068650421743205e-05,
|
| 1361 |
+
"loss": 0.3367,
|
| 1362 |
"step": 1590
|
| 1363 |
},
|
| 1364 |
{
|
| 1365 |
"epoch": 0.7497656982193065,
|
| 1366 |
+
"grad_norm": 2.0836734771728516,
|
| 1367 |
"learning_rate": 9.062792877225867e-05,
|
| 1368 |
+
"loss": 0.3418,
|
| 1369 |
"step": 1600
|
| 1370 |
},
|
| 1371 |
{
|
| 1372 |
"epoch": 0.7497656982193065,
|
| 1373 |
+
"eval_loss": 0.05068698152899742,
|
| 1374 |
+
"eval_pearson_cosine": 0.8195360561590519,
|
| 1375 |
+
"eval_pearson_dot": 0.7972572526105068,
|
| 1376 |
+
"eval_pearson_euclidean": 0.8191033648513582,
|
| 1377 |
+
"eval_pearson_manhattan": 0.8185097560985408,
|
| 1378 |
+
"eval_runtime": 7.465,
|
| 1379 |
+
"eval_samples_per_second": 200.937,
|
| 1380 |
+
"eval_spearman_cosine": 0.8226781085038538,
|
| 1381 |
+
"eval_spearman_dot": 0.7978348943334088,
|
| 1382 |
+
"eval_spearman_euclidean": 0.8252181755470007,
|
| 1383 |
+
"eval_spearman_manhattan": 0.824758318207313,
|
| 1384 |
+
"eval_steps_per_second": 12.592,
|
| 1385 |
"step": 1600
|
| 1386 |
},
|
| 1387 |
{
|
| 1388 |
"epoch": 0.7544517338331771,
|
| 1389 |
+
"grad_norm": 2.3218607902526855,
|
| 1390 |
"learning_rate": 9.056935332708529e-05,
|
| 1391 |
+
"loss": 0.3163,
|
| 1392 |
"step": 1610
|
| 1393 |
},
|
| 1394 |
{
|
| 1395 |
"epoch": 0.7591377694470478,
|
| 1396 |
+
"grad_norm": 1.7433195114135742,
|
| 1397 |
"learning_rate": 9.051077788191192e-05,
|
| 1398 |
+
"loss": 0.3435,
|
| 1399 |
"step": 1620
|
| 1400 |
},
|
| 1401 |
{
|
| 1402 |
"epoch": 0.7638238050609185,
|
| 1403 |
+
"grad_norm": 2.307793140411377,
|
| 1404 |
"learning_rate": 9.045220243673852e-05,
|
| 1405 |
+
"loss": 0.3101,
|
| 1406 |
"step": 1630
|
| 1407 |
},
|
| 1408 |
{
|
| 1409 |
"epoch": 0.7685098406747891,
|
| 1410 |
+
"grad_norm": 2.072714328765869,
|
| 1411 |
"learning_rate": 9.039362699156514e-05,
|
| 1412 |
+
"loss": 0.3343,
|
| 1413 |
"step": 1640
|
| 1414 |
},
|
| 1415 |
{
|
| 1416 |
"epoch": 0.7731958762886598,
|
| 1417 |
+
"grad_norm": 1.672747015953064,
|
| 1418 |
"learning_rate": 9.033505154639176e-05,
|
| 1419 |
+
"loss": 0.3475,
|
| 1420 |
"step": 1650
|
| 1421 |
},
|
| 1422 |
{
|
| 1423 |
"epoch": 0.7778819119025304,
|
| 1424 |
+
"grad_norm": 1.9799168109893799,
|
| 1425 |
"learning_rate": 9.027647610121837e-05,
|
| 1426 |
+
"loss": 0.3658,
|
| 1427 |
"step": 1660
|
| 1428 |
},
|
| 1429 |
{
|
| 1430 |
"epoch": 0.7825679475164011,
|
| 1431 |
+
"grad_norm": 2.181130886077881,
|
| 1432 |
"learning_rate": 9.021790065604499e-05,
|
| 1433 |
+
"loss": 0.2987,
|
| 1434 |
"step": 1670
|
| 1435 |
},
|
| 1436 |
{
|
| 1437 |
"epoch": 0.7872539831302718,
|
| 1438 |
+
"grad_norm": 1.9070302248001099,
|
| 1439 |
"learning_rate": 9.015932521087161e-05,
|
| 1440 |
+
"loss": 0.3301,
|
| 1441 |
"step": 1680
|
| 1442 |
},
|
| 1443 |
{
|
| 1444 |
"epoch": 0.7919400187441424,
|
| 1445 |
+
"grad_norm": 1.7219617366790771,
|
| 1446 |
"learning_rate": 9.010074976569822e-05,
|
| 1447 |
+
"loss": 0.3414,
|
| 1448 |
"step": 1690
|
| 1449 |
},
|
| 1450 |
{
|
| 1451 |
"epoch": 0.7966260543580131,
|
| 1452 |
+
"grad_norm": 1.836569905281067,
|
| 1453 |
"learning_rate": 9.004217432052484e-05,
|
| 1454 |
+
"loss": 0.329,
|
| 1455 |
"step": 1700
|
| 1456 |
},
|
| 1457 |
{
|
| 1458 |
"epoch": 0.7966260543580131,
|
| 1459 |
+
"eval_loss": 0.048954952508211136,
|
| 1460 |
+
"eval_pearson_cosine": 0.806191191357641,
|
| 1461 |
+
"eval_pearson_dot": 0.7809211131919511,
|
| 1462 |
+
"eval_pearson_euclidean": 0.8070190601338894,
|
| 1463 |
+
"eval_pearson_manhattan": 0.8065529338804547,
|
| 1464 |
+
"eval_runtime": 8.988,
|
| 1465 |
+
"eval_samples_per_second": 166.888,
|
| 1466 |
+
"eval_spearman_cosine": 0.807531064838451,
|
| 1467 |
+
"eval_spearman_dot": 0.7785249437738705,
|
| 1468 |
+
"eval_spearman_euclidean": 0.8131489823225247,
|
| 1469 |
+
"eval_spearman_manhattan": 0.8125461186879448,
|
| 1470 |
+
"eval_steps_per_second": 10.458,
|
| 1471 |
"step": 1700
|
| 1472 |
},
|
| 1473 |
{
|
| 1474 |
"epoch": 0.8013120899718837,
|
| 1475 |
+
"grad_norm": 1.7277847528457642,
|
| 1476 |
"learning_rate": 8.998359887535146e-05,
|
| 1477 |
+
"loss": 0.3387,
|
| 1478 |
"step": 1710
|
| 1479 |
},
|
| 1480 |
{
|
| 1481 |
"epoch": 0.8059981255857545,
|
| 1482 |
+
"grad_norm": 2.1043872833251953,
|
| 1483 |
"learning_rate": 8.992502343017808e-05,
|
| 1484 |
+
"loss": 0.3209,
|
| 1485 |
"step": 1720
|
| 1486 |
},
|
| 1487 |
{
|
| 1488 |
"epoch": 0.8106841611996252,
|
| 1489 |
+
"grad_norm": 1.989742398262024,
|
| 1490 |
"learning_rate": 8.986644798500469e-05,
|
| 1491 |
+
"loss": 0.3244,
|
| 1492 |
"step": 1730
|
| 1493 |
},
|
| 1494 |
{
|
| 1495 |
"epoch": 0.8153701968134958,
|
| 1496 |
+
"grad_norm": 1.8288764953613281,
|
| 1497 |
"learning_rate": 8.980787253983131e-05,
|
| 1498 |
+
"loss": 0.3177,
|
| 1499 |
"step": 1740
|
| 1500 |
},
|
| 1501 |
{
|
| 1502 |
"epoch": 0.8200562324273665,
|
| 1503 |
+
"grad_norm": 1.7958714962005615,
|
| 1504 |
"learning_rate": 8.974929709465793e-05,
|
| 1505 |
+
"loss": 0.3055,
|
| 1506 |
"step": 1750
|
| 1507 |
},
|
| 1508 |
{
|
| 1509 |
"epoch": 0.8247422680412371,
|
| 1510 |
+
"grad_norm": 2.055933952331543,
|
| 1511 |
"learning_rate": 8.969072164948454e-05,
|
| 1512 |
+
"loss": 0.3535,
|
| 1513 |
"step": 1760
|
| 1514 |
},
|
| 1515 |
{
|
| 1516 |
"epoch": 0.8294283036551078,
|
| 1517 |
+
"grad_norm": 2.179781436920166,
|
| 1518 |
"learning_rate": 8.963214620431116e-05,
|
| 1519 |
+
"loss": 0.2989,
|
| 1520 |
"step": 1770
|
| 1521 |
},
|
| 1522 |
{
|
| 1523 |
"epoch": 0.8341143392689785,
|
| 1524 |
+
"grad_norm": 1.6793406009674072,
|
| 1525 |
"learning_rate": 8.957357075913777e-05,
|
| 1526 |
+
"loss": 0.3113,
|
| 1527 |
"step": 1780
|
| 1528 |
},
|
| 1529 |
{
|
| 1530 |
"epoch": 0.8388003748828491,
|
| 1531 |
+
"grad_norm": 1.4585118293762207,
|
| 1532 |
"learning_rate": 8.95149953139644e-05,
|
| 1533 |
+
"loss": 0.3185,
|
| 1534 |
"step": 1790
|
| 1535 |
},
|
| 1536 |
{
|
| 1537 |
"epoch": 0.8434864104967198,
|
| 1538 |
+
"grad_norm": 2.087599277496338,
|
| 1539 |
"learning_rate": 8.945641986879101e-05,
|
| 1540 |
+
"loss": 0.2774,
|
| 1541 |
"step": 1800
|
| 1542 |
},
|
| 1543 |
{
|
| 1544 |
"epoch": 0.8434864104967198,
|
| 1545 |
+
"eval_loss": 0.04364720731973648,
|
| 1546 |
+
"eval_pearson_cosine": 0.8131129034275588,
|
| 1547 |
+
"eval_pearson_dot": 0.781156666273711,
|
| 1548 |
+
"eval_pearson_euclidean": 0.812444188325955,
|
| 1549 |
+
"eval_pearson_manhattan": 0.8124379952641316,
|
| 1550 |
+
"eval_runtime": 8.1518,
|
| 1551 |
+
"eval_samples_per_second": 184.008,
|
| 1552 |
+
"eval_spearman_cosine": 0.8136297625669392,
|
| 1553 |
+
"eval_spearman_dot": 0.7793439007721238,
|
| 1554 |
+
"eval_spearman_euclidean": 0.8212822580110872,
|
| 1555 |
+
"eval_spearman_manhattan": 0.8211590955757442,
|
| 1556 |
+
"eval_steps_per_second": 11.531,
|
| 1557 |
"step": 1800
|
| 1558 |
},
|
| 1559 |
{
|
| 1560 |
"epoch": 0.8481724461105904,
|
| 1561 |
+
"grad_norm": 2.398632049560547,
|
| 1562 |
"learning_rate": 8.939784442361763e-05,
|
| 1563 |
+
"loss": 0.3166,
|
| 1564 |
"step": 1810
|
| 1565 |
},
|
| 1566 |
{
|
| 1567 |
"epoch": 0.8528584817244611,
|
| 1568 |
+
"grad_norm": 2.182029962539673,
|
| 1569 |
"learning_rate": 8.933926897844423e-05,
|
| 1570 |
+
"loss": 0.3131,
|
| 1571 |
"step": 1820
|
| 1572 |
},
|
| 1573 |
{
|
| 1574 |
"epoch": 0.8575445173383318,
|
| 1575 |
+
"grad_norm": 1.647484540939331,
|
| 1576 |
"learning_rate": 8.928069353327085e-05,
|
| 1577 |
+
"loss": 0.2974,
|
| 1578 |
"step": 1830
|
| 1579 |
},
|
| 1580 |
{
|
| 1581 |
"epoch": 0.8622305529522024,
|
| 1582 |
+
"grad_norm": 1.591589331626892,
|
| 1583 |
"learning_rate": 8.922211808809747e-05,
|
| 1584 |
+
"loss": 0.3261,
|
| 1585 |
"step": 1840
|
| 1586 |
},
|
| 1587 |
{
|
| 1588 |
"epoch": 0.8669165885660731,
|
| 1589 |
+
"grad_norm": 1.9286956787109375,
|
| 1590 |
"learning_rate": 8.91635426429241e-05,
|
| 1591 |
+
"loss": 0.3333,
|
| 1592 |
"step": 1850
|
| 1593 |
},
|
| 1594 |
{
|
| 1595 |
"epoch": 0.8716026241799437,
|
| 1596 |
+
"grad_norm": 1.7909513711929321,
|
| 1597 |
"learning_rate": 8.910496719775072e-05,
|
| 1598 |
+
"loss": 0.3419,
|
| 1599 |
"step": 1860
|
| 1600 |
},
|
| 1601 |
{
|
| 1602 |
"epoch": 0.8762886597938144,
|
| 1603 |
+
"grad_norm": 1.7410364151000977,
|
| 1604 |
"learning_rate": 8.904639175257732e-05,
|
| 1605 |
+
"loss": 0.3146,
|
| 1606 |
"step": 1870
|
| 1607 |
},
|
| 1608 |
{
|
| 1609 |
"epoch": 0.8809746954076851,
|
| 1610 |
+
"grad_norm": 1.7161133289337158,
|
| 1611 |
"learning_rate": 8.898781630740394e-05,
|
| 1612 |
+
"loss": 0.3005,
|
| 1613 |
"step": 1880
|
| 1614 |
},
|
| 1615 |
{
|
| 1616 |
"epoch": 0.8856607310215557,
|
| 1617 |
+
"grad_norm": 2.411195755004883,
|
| 1618 |
"learning_rate": 8.892924086223055e-05,
|
| 1619 |
+
"loss": 0.3334,
|
| 1620 |
"step": 1890
|
| 1621 |
},
|
| 1622 |
{
|
| 1623 |
"epoch": 0.8903467666354264,
|
| 1624 |
+
"grad_norm": 2.475139617919922,
|
| 1625 |
"learning_rate": 8.887066541705717e-05,
|
| 1626 |
+
"loss": 0.3113,
|
| 1627 |
"step": 1900
|
| 1628 |
},
|
| 1629 |
{
|
| 1630 |
"epoch": 0.8903467666354264,
|
| 1631 |
+
"eval_loss": 0.05027003958821297,
|
| 1632 |
+
"eval_pearson_cosine": 0.8191568367121675,
|
| 1633 |
+
"eval_pearson_dot": 0.7944326448061823,
|
| 1634 |
+
"eval_pearson_euclidean": 0.8190699446663956,
|
| 1635 |
+
"eval_pearson_manhattan": 0.8186706917312714,
|
| 1636 |
+
"eval_runtime": 8.5204,
|
| 1637 |
+
"eval_samples_per_second": 176.048,
|
| 1638 |
+
"eval_spearman_cosine": 0.8218975251970799,
|
| 1639 |
+
"eval_spearman_dot": 0.7945150952501927,
|
| 1640 |
+
"eval_spearman_euclidean": 0.8259739792538716,
|
| 1641 |
+
"eval_spearman_manhattan": 0.8255935921333749,
|
| 1642 |
+
"eval_steps_per_second": 11.032,
|
| 1643 |
"step": 1900
|
| 1644 |
},
|
| 1645 |
{
|
| 1646 |
"epoch": 0.895032802249297,
|
| 1647 |
+
"grad_norm": 2.144102096557617,
|
| 1648 |
"learning_rate": 8.88120899718838e-05,
|
| 1649 |
+
"loss": 0.3513,
|
| 1650 |
"step": 1910
|
| 1651 |
},
|
| 1652 |
{
|
| 1653 |
"epoch": 0.8997188378631678,
|
| 1654 |
+
"grad_norm": 2.026171922683716,
|
| 1655 |
"learning_rate": 8.87535145267104e-05,
|
| 1656 |
+
"loss": 0.3079,
|
| 1657 |
"step": 1920
|
| 1658 |
},
|
| 1659 |
{
|
| 1660 |
"epoch": 0.9044048734770385,
|
| 1661 |
+
"grad_norm": 1.6299704313278198,
|
| 1662 |
"learning_rate": 8.869493908153702e-05,
|
| 1663 |
+
"loss": 0.3211,
|
| 1664 |
"step": 1930
|
| 1665 |
},
|
| 1666 |
{
|
| 1667 |
"epoch": 0.9090909090909091,
|
| 1668 |
+
"grad_norm": 2.224339485168457,
|
| 1669 |
"learning_rate": 8.863636363636364e-05,
|
| 1670 |
"loss": 0.2862,
|
| 1671 |
"step": 1940
|
| 1672 |
},
|
| 1673 |
{
|
| 1674 |
"epoch": 0.9137769447047798,
|
| 1675 |
+
"grad_norm": 2.2343602180480957,
|
| 1676 |
"learning_rate": 8.857778819119026e-05,
|
| 1677 |
+
"loss": 0.3254,
|
| 1678 |
"step": 1950
|
| 1679 |
},
|
| 1680 |
{
|
| 1681 |
"epoch": 0.9184629803186504,
|
| 1682 |
+
"grad_norm": 2.2561750411987305,
|
| 1683 |
"learning_rate": 8.851921274601687e-05,
|
| 1684 |
+
"loss": 0.3543,
|
| 1685 |
"step": 1960
|
| 1686 |
},
|
| 1687 |
{
|
| 1688 |
"epoch": 0.9231490159325211,
|
| 1689 |
+
"grad_norm": 2.290877342224121,
|
| 1690 |
"learning_rate": 8.846063730084349e-05,
|
| 1691 |
+
"loss": 0.3441,
|
| 1692 |
"step": 1970
|
| 1693 |
},
|
| 1694 |
{
|
| 1695 |
"epoch": 0.9278350515463918,
|
| 1696 |
+
"grad_norm": 2.0177667140960693,
|
| 1697 |
"learning_rate": 8.840206185567011e-05,
|
| 1698 |
+
"loss": 0.294,
|
| 1699 |
"step": 1980
|
| 1700 |
},
|
| 1701 |
{
|
| 1702 |
"epoch": 0.9325210871602624,
|
| 1703 |
+
"grad_norm": 1.5551223754882812,
|
| 1704 |
"learning_rate": 8.834348641049672e-05,
|
| 1705 |
+
"loss": 0.3575,
|
| 1706 |
"step": 1990
|
| 1707 |
},
|
| 1708 |
{
|
| 1709 |
"epoch": 0.9372071227741331,
|
| 1710 |
+
"grad_norm": 2.153193235397339,
|
| 1711 |
"learning_rate": 8.828491096532334e-05,
|
| 1712 |
+
"loss": 0.3495,
|
| 1713 |
"step": 2000
|
| 1714 |
},
|
| 1715 |
{
|
| 1716 |
"epoch": 0.9372071227741331,
|
| 1717 |
+
"eval_loss": 0.0519048236310482,
|
| 1718 |
+
"eval_pearson_cosine": 0.8078889701459957,
|
| 1719 |
+
"eval_pearson_dot": 0.7809871272349067,
|
| 1720 |
+
"eval_pearson_euclidean": 0.8121397338443259,
|
| 1721 |
+
"eval_pearson_manhattan": 0.8123168684391544,
|
| 1722 |
+
"eval_runtime": 7.7437,
|
| 1723 |
+
"eval_samples_per_second": 193.706,
|
| 1724 |
+
"eval_spearman_cosine": 0.8110291834886367,
|
| 1725 |
+
"eval_spearman_dot": 0.7809741520898368,
|
| 1726 |
+
"eval_spearman_euclidean": 0.8183453813795359,
|
| 1727 |
+
"eval_spearman_manhattan": 0.8184355582057805,
|
| 1728 |
+
"eval_steps_per_second": 12.139,
|
| 1729 |
"step": 2000
|
| 1730 |
},
|
| 1731 |
{
|
| 1732 |
"epoch": 0.9418931583880038,
|
| 1733 |
+
"grad_norm": 1.2223283052444458,
|
| 1734 |
"learning_rate": 8.822633552014996e-05,
|
| 1735 |
+
"loss": 0.2682,
|
| 1736 |
"step": 2010
|
| 1737 |
},
|
| 1738 |
{
|
| 1739 |
"epoch": 0.9465791940018744,
|
| 1740 |
+
"grad_norm": 2.9590303897857666,
|
| 1741 |
"learning_rate": 8.816776007497658e-05,
|
| 1742 |
+
"loss": 0.3167,
|
| 1743 |
"step": 2020
|
| 1744 |
},
|
| 1745 |
{
|
| 1746 |
"epoch": 0.9512652296157451,
|
| 1747 |
+
"grad_norm": 1.9395133256912231,
|
| 1748 |
"learning_rate": 8.810918462980319e-05,
|
| 1749 |
+
"loss": 0.2964,
|
| 1750 |
"step": 2030
|
| 1751 |
},
|
| 1752 |
{
|
| 1753 |
"epoch": 0.9559512652296157,
|
| 1754 |
+
"grad_norm": 1.6027612686157227,
|
| 1755 |
"learning_rate": 8.805060918462981e-05,
|
| 1756 |
+
"loss": 0.2914,
|
| 1757 |
"step": 2040
|
| 1758 |
},
|
| 1759 |
{
|
| 1760 |
"epoch": 0.9606373008434864,
|
| 1761 |
+
"grad_norm": 2.282153606414795,
|
| 1762 |
"learning_rate": 8.799203373945643e-05,
|
| 1763 |
+
"loss": 0.3169,
|
| 1764 |
"step": 2050
|
| 1765 |
},
|
| 1766 |
{
|
| 1767 |
"epoch": 0.9653233364573571,
|
| 1768 |
+
"grad_norm": 2.311307668685913,
|
| 1769 |
"learning_rate": 8.793345829428304e-05,
|
| 1770 |
+
"loss": 0.3217,
|
| 1771 |
"step": 2060
|
| 1772 |
},
|
| 1773 |
{
|
| 1774 |
"epoch": 0.9700093720712277,
|
| 1775 |
+
"grad_norm": 1.5998715162277222,
|
| 1776 |
"learning_rate": 8.787488284910965e-05,
|
| 1777 |
+
"loss": 0.3168,
|
| 1778 |
"step": 2070
|
| 1779 |
},
|
| 1780 |
{
|
| 1781 |
"epoch": 0.9746954076850984,
|
| 1782 |
+
"grad_norm": 2.0307867527008057,
|
| 1783 |
"learning_rate": 8.781630740393628e-05,
|
| 1784 |
+
"loss": 0.3251,
|
| 1785 |
"step": 2080
|
| 1786 |
},
|
| 1787 |
{
|
| 1788 |
"epoch": 0.979381443298969,
|
| 1789 |
+
"grad_norm": 1.5513020753860474,
|
| 1790 |
"learning_rate": 8.77577319587629e-05,
|
| 1791 |
+
"loss": 0.322,
|
| 1792 |
"step": 2090
|
| 1793 |
},
|
| 1794 |
{
|
| 1795 |
"epoch": 0.9840674789128397,
|
| 1796 |
+
"grad_norm": 1.8426481485366821,
|
| 1797 |
"learning_rate": 8.769915651358951e-05,
|
| 1798 |
+
"loss": 0.3015,
|
| 1799 |
"step": 2100
|
| 1800 |
},
|
| 1801 |
{
|
| 1802 |
"epoch": 0.9840674789128397,
|
| 1803 |
+
"eval_loss": 0.04664711281657219,
|
| 1804 |
+
"eval_pearson_cosine": 0.8138371307223906,
|
| 1805 |
+
"eval_pearson_dot": 0.7830982581720178,
|
| 1806 |
+
"eval_pearson_euclidean": 0.815901838580178,
|
| 1807 |
+
"eval_pearson_manhattan": 0.8155626928902295,
|
| 1808 |
+
"eval_runtime": 5.703,
|
| 1809 |
+
"eval_samples_per_second": 263.019,
|
| 1810 |
+
"eval_spearman_cosine": 0.8154952876855104,
|
| 1811 |
+
"eval_spearman_dot": 0.7815036030773422,
|
| 1812 |
+
"eval_spearman_euclidean": 0.8247759821039686,
|
| 1813 |
+
"eval_spearman_manhattan": 0.824388025102129,
|
| 1814 |
+
"eval_steps_per_second": 16.483,
|
| 1815 |
"step": 2100
|
| 1816 |
},
|
| 1817 |
{
|
| 1818 |
"epoch": 0.9887535145267105,
|
| 1819 |
+
"grad_norm": 2.0757949352264404,
|
| 1820 |
"learning_rate": 8.764058106841613e-05,
|
| 1821 |
+
"loss": 0.3508,
|
| 1822 |
"step": 2110
|
| 1823 |
},
|
| 1824 |
{
|
| 1825 |
"epoch": 0.993439550140581,
|
| 1826 |
+
"grad_norm": 1.5524593591690063,
|
| 1827 |
"learning_rate": 8.758200562324273e-05,
|
| 1828 |
+
"loss": 0.2877,
|
| 1829 |
"step": 2120
|
| 1830 |
},
|
| 1831 |
{
|
| 1832 |
"epoch": 0.9981255857544518,
|
| 1833 |
+
"grad_norm": 2.00026273727417,
|
| 1834 |
"learning_rate": 8.752343017806935e-05,
|
| 1835 |
+
"loss": 0.3261,
|
| 1836 |
"step": 2130
|
| 1837 |
}
|
| 1838 |
],
|