CocoRoF commited on
Commit
e59f285
·
verified ·
1 Parent(s): 63e8ae1

Training in progress, step 2000, checkpoint

Browse files
last-checkpoint/model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:74572018ac522fe8bf3b91fec5b2e11a917f01268eb7fa79d8c28e82716c3641
3
  size 735217848
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:784ba4d6b323f80b32bdeb7a699b9493ed33877eb1f5a4680739df590c874265
3
  size 735217848
last-checkpoint/optimizer.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aaf6e503e47ad9a45b9fb2dbb896936f1d179d52c20c550add65c77f44a8193c
3
  size 1470521978
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:463d10606216eaac5990abb66ecffc932b652d3d4835e35f52c38d3e543733ff
3
  size 1470521978
last-checkpoint/rng_state.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:5672d4a2bab2f5ec1b202aa86f336deecf9ade33ecc3e9f1ae101d08c2403c85
3
  size 14244
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0886b5e6b4eb6c54d008834760837138a75d96ac8156628b1654cc847af0e990
3
  size 14244
last-checkpoint/scheduler.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:8dfb306257217b253dcb010fa8e7db4904b5a105fb159cc7b2977c1d185fc223
3
  size 1000
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fd992b247e47b39b5cc00365846a4ed7e75fe3dd899b2263e283f44789d5c49b
3
  size 1000
last-checkpoint/trainer_state.json CHANGED
@@ -1,9 +1,9 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 0.7029053420805998,
5
  "eval_steps": 100,
6
- "global_step": 1500,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
@@ -1297,6 +1297,436 @@
1297
  "eval_spearman_manhattan": 0.8335300441487923,
1298
  "eval_steps_per_second": 15.221,
1299
  "step": 1500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1300
  }
1301
  ],
1302
  "logging_steps": 10,
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 0.9372071227741331,
5
  "eval_steps": 100,
6
+ "global_step": 2000,
7
  "is_hyper_param_search": false,
8
  "is_local_process_zero": true,
9
  "is_world_process_zero": true,
 
1297
  "eval_spearman_manhattan": 0.8335300441487923,
1298
  "eval_steps_per_second": 15.221,
1299
  "step": 1500
1300
+ },
1301
+ {
1302
+ "epoch": 0.7075913776944704,
1303
+ "grad_norm": 1.3322237730026245,
1304
+ "learning_rate": 4.5577553889409565e-05,
1305
+ "loss": 0.27,
1306
+ "step": 1510
1307
+ },
1308
+ {
1309
+ "epoch": 0.7122774133083412,
1310
+ "grad_norm": 1.707694172859192,
1311
+ "learning_rate": 4.5548266166822874e-05,
1312
+ "loss": 0.3249,
1313
+ "step": 1520
1314
+ },
1315
+ {
1316
+ "epoch": 0.7169634489222118,
1317
+ "grad_norm": 1.280220627784729,
1318
+ "learning_rate": 4.5518978444236176e-05,
1319
+ "loss": 0.3021,
1320
+ "step": 1530
1321
+ },
1322
+ {
1323
+ "epoch": 0.7216494845360825,
1324
+ "grad_norm": 1.2478505373001099,
1325
+ "learning_rate": 4.5489690721649484e-05,
1326
+ "loss": 0.3033,
1327
+ "step": 1540
1328
+ },
1329
+ {
1330
+ "epoch": 0.7263355201499532,
1331
+ "grad_norm": 1.5291355848312378,
1332
+ "learning_rate": 4.546040299906279e-05,
1333
+ "loss": 0.2789,
1334
+ "step": 1550
1335
+ },
1336
+ {
1337
+ "epoch": 0.7310215557638238,
1338
+ "grad_norm": 1.6631042957305908,
1339
+ "learning_rate": 4.543111527647611e-05,
1340
+ "loss": 0.3271,
1341
+ "step": 1560
1342
+ },
1343
+ {
1344
+ "epoch": 0.7357075913776945,
1345
+ "grad_norm": 1.5178686380386353,
1346
+ "learning_rate": 4.540182755388942e-05,
1347
+ "loss": 0.3092,
1348
+ "step": 1570
1349
+ },
1350
+ {
1351
+ "epoch": 0.7403936269915652,
1352
+ "grad_norm": 1.043636441230774,
1353
+ "learning_rate": 4.537253983130272e-05,
1354
+ "loss": 0.2863,
1355
+ "step": 1580
1356
+ },
1357
+ {
1358
+ "epoch": 0.7450796626054358,
1359
+ "grad_norm": 1.2474050521850586,
1360
+ "learning_rate": 4.534325210871603e-05,
1361
+ "loss": 0.3184,
1362
+ "step": 1590
1363
+ },
1364
+ {
1365
+ "epoch": 0.7497656982193065,
1366
+ "grad_norm": 1.5337306261062622,
1367
+ "learning_rate": 4.5313964386129336e-05,
1368
+ "loss": 0.3201,
1369
+ "step": 1600
1370
+ },
1371
+ {
1372
+ "epoch": 0.7497656982193065,
1373
+ "eval_loss": 0.04666765406727791,
1374
+ "eval_pearson_cosine": 0.8247560159233132,
1375
+ "eval_pearson_dot": 0.7799855816644161,
1376
+ "eval_pearson_euclidean": 0.8221947952436466,
1377
+ "eval_pearson_manhattan": 0.823206574209081,
1378
+ "eval_runtime": 6.3641,
1379
+ "eval_samples_per_second": 235.697,
1380
+ "eval_spearman_cosine": 0.8268195350952193,
1381
+ "eval_spearman_dot": 0.7772130800409067,
1382
+ "eval_spearman_euclidean": 0.8274185345815266,
1383
+ "eval_spearman_manhattan": 0.8282217123816773,
1384
+ "eval_steps_per_second": 14.77,
1385
+ "step": 1600
1386
+ },
1387
+ {
1388
+ "epoch": 0.7544517338331771,
1389
+ "grad_norm": 1.8070961236953735,
1390
+ "learning_rate": 4.5284676663542644e-05,
1391
+ "loss": 0.2939,
1392
+ "step": 1610
1393
+ },
1394
+ {
1395
+ "epoch": 0.7591377694470478,
1396
+ "grad_norm": 1.3418357372283936,
1397
+ "learning_rate": 4.525538894095596e-05,
1398
+ "loss": 0.3122,
1399
+ "step": 1620
1400
+ },
1401
+ {
1402
+ "epoch": 0.7638238050609185,
1403
+ "grad_norm": 1.4164036512374878,
1404
+ "learning_rate": 4.522610121836926e-05,
1405
+ "loss": 0.294,
1406
+ "step": 1630
1407
+ },
1408
+ {
1409
+ "epoch": 0.7685098406747891,
1410
+ "grad_norm": 1.4862034320831299,
1411
+ "learning_rate": 4.519681349578257e-05,
1412
+ "loss": 0.3087,
1413
+ "step": 1640
1414
+ },
1415
+ {
1416
+ "epoch": 0.7731958762886598,
1417
+ "grad_norm": 1.3497341871261597,
1418
+ "learning_rate": 4.516752577319588e-05,
1419
+ "loss": 0.3135,
1420
+ "step": 1650
1421
+ },
1422
+ {
1423
+ "epoch": 0.7778819119025304,
1424
+ "grad_norm": 1.4912623167037964,
1425
+ "learning_rate": 4.513823805060919e-05,
1426
+ "loss": 0.3556,
1427
+ "step": 1660
1428
+ },
1429
+ {
1430
+ "epoch": 0.7825679475164011,
1431
+ "grad_norm": 1.4625390768051147,
1432
+ "learning_rate": 4.5108950328022495e-05,
1433
+ "loss": 0.2913,
1434
+ "step": 1670
1435
+ },
1436
+ {
1437
+ "epoch": 0.7872539831302718,
1438
+ "grad_norm": 1.7304317951202393,
1439
+ "learning_rate": 4.5079662605435804e-05,
1440
+ "loss": 0.3139,
1441
+ "step": 1680
1442
+ },
1443
+ {
1444
+ "epoch": 0.7919400187441424,
1445
+ "grad_norm": 1.4902634620666504,
1446
+ "learning_rate": 4.505037488284911e-05,
1447
+ "loss": 0.3286,
1448
+ "step": 1690
1449
+ },
1450
+ {
1451
+ "epoch": 0.7966260543580131,
1452
+ "grad_norm": 1.2882981300354004,
1453
+ "learning_rate": 4.502108716026242e-05,
1454
+ "loss": 0.3199,
1455
+ "step": 1700
1456
+ },
1457
+ {
1458
+ "epoch": 0.7966260543580131,
1459
+ "eval_loss": 0.05109428986907005,
1460
+ "eval_pearson_cosine": 0.821506482740503,
1461
+ "eval_pearson_dot": 0.7701997371934368,
1462
+ "eval_pearson_euclidean": 0.8256940312734855,
1463
+ "eval_pearson_manhattan": 0.8266471352779732,
1464
+ "eval_runtime": 5.9909,
1465
+ "eval_samples_per_second": 250.381,
1466
+ "eval_spearman_cosine": 0.8238836226780246,
1467
+ "eval_spearman_dot": 0.7658343447023538,
1468
+ "eval_spearman_euclidean": 0.8307515392696511,
1469
+ "eval_spearman_manhattan": 0.8322184136990032,
1470
+ "eval_steps_per_second": 15.691,
1471
+ "step": 1700
1472
+ },
1473
+ {
1474
+ "epoch": 0.8013120899718837,
1475
+ "grad_norm": 1.4731862545013428,
1476
+ "learning_rate": 4.499179943767573e-05,
1477
+ "loss": 0.3262,
1478
+ "step": 1710
1479
+ },
1480
+ {
1481
+ "epoch": 0.8059981255857545,
1482
+ "grad_norm": 1.440738320350647,
1483
+ "learning_rate": 4.496251171508904e-05,
1484
+ "loss": 0.2911,
1485
+ "step": 1720
1486
+ },
1487
+ {
1488
+ "epoch": 0.8106841611996252,
1489
+ "grad_norm": 1.594072699546814,
1490
+ "learning_rate": 4.4933223992502347e-05,
1491
+ "loss": 0.3067,
1492
+ "step": 1730
1493
+ },
1494
+ {
1495
+ "epoch": 0.8153701968134958,
1496
+ "grad_norm": 1.2838362455368042,
1497
+ "learning_rate": 4.4903936269915655e-05,
1498
+ "loss": 0.2976,
1499
+ "step": 1740
1500
+ },
1501
+ {
1502
+ "epoch": 0.8200562324273665,
1503
+ "grad_norm": 1.3946473598480225,
1504
+ "learning_rate": 4.4874648547328964e-05,
1505
+ "loss": 0.2945,
1506
+ "step": 1750
1507
+ },
1508
+ {
1509
+ "epoch": 0.8247422680412371,
1510
+ "grad_norm": 1.5584791898727417,
1511
+ "learning_rate": 4.484536082474227e-05,
1512
+ "loss": 0.3196,
1513
+ "step": 1760
1514
+ },
1515
+ {
1516
+ "epoch": 0.8294283036551078,
1517
+ "grad_norm": 1.5150123834609985,
1518
+ "learning_rate": 4.481607310215558e-05,
1519
+ "loss": 0.2792,
1520
+ "step": 1770
1521
+ },
1522
+ {
1523
+ "epoch": 0.8341143392689785,
1524
+ "grad_norm": 1.5679230690002441,
1525
+ "learning_rate": 4.478678537956888e-05,
1526
+ "loss": 0.289,
1527
+ "step": 1780
1528
+ },
1529
+ {
1530
+ "epoch": 0.8388003748828491,
1531
+ "grad_norm": 1.100917100906372,
1532
+ "learning_rate": 4.47574976569822e-05,
1533
+ "loss": 0.3021,
1534
+ "step": 1790
1535
+ },
1536
+ {
1537
+ "epoch": 0.8434864104967198,
1538
+ "grad_norm": 1.6804919242858887,
1539
+ "learning_rate": 4.4728209934395506e-05,
1540
+ "loss": 0.2431,
1541
+ "step": 1800
1542
+ },
1543
+ {
1544
+ "epoch": 0.8434864104967198,
1545
+ "eval_loss": 0.04816513508558273,
1546
+ "eval_pearson_cosine": 0.8270891703367056,
1547
+ "eval_pearson_dot": 0.7790513762200462,
1548
+ "eval_pearson_euclidean": 0.8276507097787587,
1549
+ "eval_pearson_manhattan": 0.8282151299272726,
1550
+ "eval_runtime": 6.0115,
1551
+ "eval_samples_per_second": 249.523,
1552
+ "eval_spearman_cosine": 0.8286758008396278,
1553
+ "eval_spearman_dot": 0.7748761234075037,
1554
+ "eval_spearman_euclidean": 0.8326421047981132,
1555
+ "eval_spearman_manhattan": 0.8332581593954519,
1556
+ "eval_steps_per_second": 15.637,
1557
+ "step": 1800
1558
+ },
1559
+ {
1560
+ "epoch": 0.8481724461105904,
1561
+ "grad_norm": 1.3295296430587769,
1562
+ "learning_rate": 4.4698922211808815e-05,
1563
+ "loss": 0.2877,
1564
+ "step": 1810
1565
+ },
1566
+ {
1567
+ "epoch": 0.8528584817244611,
1568
+ "grad_norm": 1.3233381509780884,
1569
+ "learning_rate": 4.466963448922212e-05,
1570
+ "loss": 0.2982,
1571
+ "step": 1820
1572
+ },
1573
+ {
1574
+ "epoch": 0.8575445173383318,
1575
+ "grad_norm": 1.5737247467041016,
1576
+ "learning_rate": 4.4640346766635425e-05,
1577
+ "loss": 0.2939,
1578
+ "step": 1830
1579
+ },
1580
+ {
1581
+ "epoch": 0.8622305529522024,
1582
+ "grad_norm": 1.4237866401672363,
1583
+ "learning_rate": 4.4611059044048734e-05,
1584
+ "loss": 0.3154,
1585
+ "step": 1840
1586
+ },
1587
+ {
1588
+ "epoch": 0.8669165885660731,
1589
+ "grad_norm": 1.4213505983352661,
1590
+ "learning_rate": 4.458177132146205e-05,
1591
+ "loss": 0.3085,
1592
+ "step": 1850
1593
+ },
1594
+ {
1595
+ "epoch": 0.8716026241799437,
1596
+ "grad_norm": 1.4691981077194214,
1597
+ "learning_rate": 4.455248359887536e-05,
1598
+ "loss": 0.3141,
1599
+ "step": 1860
1600
+ },
1601
+ {
1602
+ "epoch": 0.8762886597938144,
1603
+ "grad_norm": 1.2567983865737915,
1604
+ "learning_rate": 4.452319587628866e-05,
1605
+ "loss": 0.2998,
1606
+ "step": 1870
1607
+ },
1608
+ {
1609
+ "epoch": 0.8809746954076851,
1610
+ "grad_norm": 1.359161615371704,
1611
+ "learning_rate": 4.449390815370197e-05,
1612
+ "loss": 0.2891,
1613
+ "step": 1880
1614
+ },
1615
+ {
1616
+ "epoch": 0.8856607310215557,
1617
+ "grad_norm": 1.4557381868362427,
1618
+ "learning_rate": 4.4464620431115277e-05,
1619
+ "loss": 0.3068,
1620
+ "step": 1890
1621
+ },
1622
+ {
1623
+ "epoch": 0.8903467666354264,
1624
+ "grad_norm": 1.2976425886154175,
1625
+ "learning_rate": 4.4435332708528585e-05,
1626
+ "loss": 0.3051,
1627
+ "step": 1900
1628
+ },
1629
+ {
1630
+ "epoch": 0.8903467666354264,
1631
+ "eval_loss": 0.04645664617419243,
1632
+ "eval_pearson_cosine": 0.8277422687657179,
1633
+ "eval_pearson_dot": 0.7813512072475213,
1634
+ "eval_pearson_euclidean": 0.8249433703124964,
1635
+ "eval_pearson_manhattan": 0.8257048412620271,
1636
+ "eval_runtime": 6.5216,
1637
+ "eval_samples_per_second": 230.006,
1638
+ "eval_spearman_cosine": 0.829450894301767,
1639
+ "eval_spearman_dot": 0.778239364994612,
1640
+ "eval_spearman_euclidean": 0.8318708700161123,
1641
+ "eval_spearman_manhattan": 0.8323977739737524,
1642
+ "eval_steps_per_second": 14.414,
1643
+ "step": 1900
1644
+ },
1645
+ {
1646
+ "epoch": 0.895032802249297,
1647
+ "grad_norm": 2.003398895263672,
1648
+ "learning_rate": 4.44060449859419e-05,
1649
+ "loss": 0.3261,
1650
+ "step": 1910
1651
+ },
1652
+ {
1653
+ "epoch": 0.8997188378631678,
1654
+ "grad_norm": 1.5879777669906616,
1655
+ "learning_rate": 4.43767572633552e-05,
1656
+ "loss": 0.2905,
1657
+ "step": 1920
1658
+ },
1659
+ {
1660
+ "epoch": 0.9044048734770385,
1661
+ "grad_norm": 1.239495873451233,
1662
+ "learning_rate": 4.434746954076851e-05,
1663
+ "loss": 0.3005,
1664
+ "step": 1930
1665
+ },
1666
+ {
1667
+ "epoch": 0.9090909090909091,
1668
+ "grad_norm": 1.643388271331787,
1669
+ "learning_rate": 4.431818181818182e-05,
1670
+ "loss": 0.2901,
1671
+ "step": 1940
1672
+ },
1673
+ {
1674
+ "epoch": 0.9137769447047798,
1675
+ "grad_norm": 1.5589861869812012,
1676
+ "learning_rate": 4.428889409559513e-05,
1677
+ "loss": 0.269,
1678
+ "step": 1950
1679
+ },
1680
+ {
1681
+ "epoch": 0.9184629803186504,
1682
+ "grad_norm": 1.9895987510681152,
1683
+ "learning_rate": 4.4259606373008436e-05,
1684
+ "loss": 0.3354,
1685
+ "step": 1960
1686
+ },
1687
+ {
1688
+ "epoch": 0.9231490159325211,
1689
+ "grad_norm": 1.5158389806747437,
1690
+ "learning_rate": 4.4230318650421745e-05,
1691
+ "loss": 0.2987,
1692
+ "step": 1970
1693
+ },
1694
+ {
1695
+ "epoch": 0.9278350515463918,
1696
+ "grad_norm": 1.498703956604004,
1697
+ "learning_rate": 4.4201030927835053e-05,
1698
+ "loss": 0.2703,
1699
+ "step": 1980
1700
+ },
1701
+ {
1702
+ "epoch": 0.9325210871602624,
1703
+ "grad_norm": 1.609595537185669,
1704
+ "learning_rate": 4.417174320524836e-05,
1705
+ "loss": 0.3511,
1706
+ "step": 1990
1707
+ },
1708
+ {
1709
+ "epoch": 0.9372071227741331,
1710
+ "grad_norm": 1.5775402784347534,
1711
+ "learning_rate": 4.414245548266167e-05,
1712
+ "loss": 0.3287,
1713
+ "step": 2000
1714
+ },
1715
+ {
1716
+ "epoch": 0.9372071227741331,
1717
+ "eval_loss": 0.05509389936923981,
1718
+ "eval_pearson_cosine": 0.8207199970543648,
1719
+ "eval_pearson_dot": 0.7620359249952955,
1720
+ "eval_pearson_euclidean": 0.8229490445973937,
1721
+ "eval_pearson_manhattan": 0.8238150410767417,
1722
+ "eval_runtime": 6.0216,
1723
+ "eval_samples_per_second": 249.103,
1724
+ "eval_spearman_cosine": 0.8243786401215701,
1725
+ "eval_spearman_dot": 0.7569267777069086,
1726
+ "eval_spearman_euclidean": 0.8286694906125902,
1727
+ "eval_spearman_manhattan": 0.8295593456330026,
1728
+ "eval_steps_per_second": 15.61,
1729
+ "step": 2000
1730
  }
1731
  ],
1732
  "logging_steps": 10,