# import torch # import numpy as np # import torch.nn.functional as F # from torch.autograd import Variable # from scipy.signal import get_window # from librosa.util import pad_center, tiny # from utilities import window_sumsquare # class STFT(torch.nn.Module): # """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft""" # def __init__(self, filter_length=800, hop_length=200, win_length=800, # window='hann'): # super(STFT, self).__init__() # self.filter_length = filter_length # self.hop_length = hop_length # self.win_length = win_length # self.window = window # self.forward_transform = None # scale = self.filter_length / self.hop_length # fourier_basis = np.fft.fft(np.eye(self.filter_length)) # cutoff = int((self.filter_length / 2 + 1)) # fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]), # np.imag(fourier_basis[:cutoff, :])]) # forward_basis = torch.FloatTensor(fourier_basis[:, None, :]) # inverse_basis = torch.FloatTensor( # np.linalg.pinv(scale * fourier_basis).T[:, None, :]) # if window is not None: # assert(filter_length >= win_length) # # get window and zero center pad it to filter_length # fft_window = get_window(window, win_length, fftbins=True) # fft_window = pad_center(fft_window, size = filter_length) # fft_window = torch.from_numpy(fft_window).float() # # window the bases # forward_basis *= fft_window # inverse_basis *= fft_window # self.register_buffer('forward_basis', forward_basis.float()) # self.register_buffer('inverse_basis', inverse_basis.float()) # def transform(self, input_data): # num_batches = input_data.size(0) # num_samples = input_data.size(1) # self.num_samples = num_samples # # similar to librosa, reflect-pad the input # input_data = input_data.view(num_batches, 1, num_samples) # input_data = F.pad( # input_data.unsqueeze(1), # (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0), # mode='reflect') # input_data = input_data.squeeze(1) # forward_transform = F.conv1d( # input_data, # Variable(self.forward_basis, requires_grad=False), # stride=self.hop_length, # padding=0) # cutoff = int((self.filter_length / 2) + 1) # real_part = forward_transform[:, :cutoff, :] # imag_part = forward_transform[:, cutoff:, :] # magnitude = torch.sqrt(real_part**2 + imag_part**2) # phase = torch.autograd.Variable( # torch.atan2(imag_part.data, real_part.data)) # return magnitude, phase # def inverse(self, magnitude, phase): # recombine_magnitude_phase = torch.cat( # [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1) # inverse_transform = F.conv_transpose1d( # recombine_magnitude_phase, # Variable(self.inverse_basis, requires_grad=False), # stride=self.hop_length, # padding=0) # if self.window is not None: # window_sum = window_sumsquare( # self.window, magnitude.size(-1), hop_length=self.hop_length, # win_length=self.win_length, n_fft=self.filter_length, # dtype=np.float32) # # remove modulation effects # approx_nonzero_indices = torch.from_numpy( # np.where(window_sum > tiny(window_sum))[0]) # window_sum = torch.autograd.Variable( # torch.from_numpy(window_sum), requires_grad=False) # window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum # inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices] # # scale by hop ratio # inverse_transform *= float(self.filter_length) / self.hop_length # inverse_transform = inverse_transform[:, :, int(self.filter_length/2):] # inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):] # return inverse_transform # def forward(self, input_data): # self.magnitude, self.phase = self.transform(input_data) # reconstruction = self.inverse(self.magnitude, self.phase) # return reconstruction