File size: 15,210 Bytes
712dbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
.. _custom_metal_kernels:

Custom Metal Kernels
====================

MLX supports writing custom Metal kernels through the Python and C++ APIs.

Simple Example
--------------

.. currentmodule:: mlx.core

Let's write a custom kernel that computes ``exp`` elementwise:

.. code-block:: python

  source = """
      uint elem = thread_position_in_grid.x;
      T tmp = inp[elem];
      out[elem] = metal::exp(tmp);
  """

  kernel = mx.fast.metal_kernel(
      name="myexp",
      input_names=["inp"],
      output_names=["out"],
      source=source,
  )

  def exp_elementwise(a: mx.array):
      outputs = kernel(
          inputs=[a],
          template=[("T", mx.float32)],
          grid=(a.size, 1, 1),
          threadgroup=(256, 1, 1),
          output_shapes=[a.shape],
          output_dtypes=[a.dtype],
      )
      return outputs[0]

  a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
  b = exp_elementwise(a)
  assert mx.allclose(b, mx.exp(a))

Every time you make a kernel, a new Metal library is created and possibly
JIT compiled. To reduce the overhead from that, build the kernel once with
:func:`fast.metal_kernel` and then use it many times.

.. note::
   Only pass the body of the Metal kernel in ``source``. The function
   signature is generated automatically.

The full function signature will be generated using:

* The shapes/dtypes of ``inputs``
    In the above, ``a`` is an ``mx.array`` of type ``mx.float16`` and we pass it with the key ``inp``
    so we will add ``const device float16_t* inp`` to the signature.
    ``inp_shape``, ``inp_strides`` and ``inp_ndim`` are also added for convenience if they are present
    in ``source``.
* The list of ``output_dtypes``
    In the above, ``out`` is an ``mx.array`` of type ``mx.float16``
    so we add ``device float16_t* out``.
* Template parameters passed using ``template``
    In the above, ``template=[("T", mx.float32)]`` adds a template of ``template <typename T>`` to the function
    and instantiates the template with ``custom_kernel_myexp_float<float>``.
    Template parameters can be ``mx.core.Dtype``, ``int`` or ``bool``.
* Metal attributes used in ``source`` such as ``[[thread_position_in_grid]]``
    These will be added as function arguments.
    All the attributes defined in Table 5.8 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ are supported.

Putting this all together, the generated function signature for ``myexp`` is as follows:

.. code-block:: cpp

  template <typename T>
  [[kernel]] void custom_kernel_myexp_float(
    const device float16_t* inp [[buffer(0)]],
    device float16_t* out [[buffer(1)]],
    uint3 thread_position_in_grid [[thread_position_in_grid]]) {

          uint elem = thread_position_in_grid.x;
          T tmp = inp[elem];
          out[elem] = metal::exp(tmp);

  }

  template [[host_name("custom_kernel_myexp_float")]] [[kernel]] decltype(custom_kernel_myexp_float<float>) custom_kernel_myexp_float<float>;

Note: ``grid`` and ``threadgroup`` are parameters to the Metal `dispatchThreads
<https://developer.apple.com/documentation/metal/mtlcomputecommandencoder/2866532-dispatchthreads>`_
function. This means we will launch ``mx.prod(grid)`` threads, subdivided into
``threadgroup`` size threadgroups.  For optimal performance, each thread group
dimension should be less than or equal to the corresponding grid dimension.

Passing ``verbose=True`` to :func:`ast.metal_kernel.__call__` will print the
generated code for debugging purposes.

Using Shape/Strides
-------------------

:func:`fast.metal_kernel` supports an argument ``ensure_row_contiguous`` which
is ``True`` by default. This will copy the array inputs if needed
before the kernel is launched to ensure that the memory layout is row
contiguous.  Generally this makes writing the kernel easier, since we don't
have to worry about gaps or the ordering of the dims when indexing.

If we want to avoid this copy, :func:`fast.metal_kernel` automatically passes
``a_shape``, ``a_strides`` and ``a_ndim`` for each input array ``a`` if any are
present in ``source``. We can then use MLX's built in indexing utils to fetch
the right elements for each thread.

Let's convert ``myexp`` above to support arbitrarily strided arrays without
relying on a copy from ``ensure_row_contiguous``:

.. code-block:: python
   
  source = """
      uint elem = thread_position_in_grid.x;
      // Utils from `mlx/backend/metal/kernels/utils.h` are automatically included
      uint loc = elem_to_loc(elem, inp_shape, inp_strides, inp_ndim);
      T tmp = inp[loc];
      // Output arrays are always row contiguous
      out[elem] = metal::exp(tmp);
  """

  kernel = mx.fast.metal_kernel(
      name="myexp_strided",
      input_names=["inp"],
      output_names=["out"],
      source=source,
      ensure_row_contiguous=False,
  )

  def exp_elementwise(a: mx.array):
      outputs = kernel(
          inputs=[a],
          template=[("T", mx.float32)],
          grid=(a.size, 1, 1),
          threadgroup=(256, 1, 1),
          output_shapes=[a.shape],
          output_dtypes=[a.dtype],
      )
      return outputs[0]

  a = mx.random.normal(shape=(4, 16)).astype(mx.float16)
  # make non-contiguous
  a = a[::2]
  b = exp_elementwise(a)
  assert mx.allclose(b, mx.exp(a))

Complex Example
-----------------------------

Let's implement a more complex example: ``grid_sample`` in ``"bilinear"`` mode.

We'll start with the following MLX implementation using standard ops:

.. code-block:: python

  def grid_sample_ref(x, grid):
      N, H_in, W_in, _ = x.shape
      ix = ((grid[..., 0] + 1) * W_in - 1) / 2
      iy = ((grid[..., 1] + 1) * H_in - 1) / 2

      ix_nw = mx.floor(ix).astype(mx.int32)
      iy_nw = mx.floor(iy).astype(mx.int32)

      ix_ne = ix_nw + 1
      iy_ne = iy_nw

      ix_sw = ix_nw
      iy_sw = iy_nw + 1

      ix_se = ix_nw + 1
      iy_se = iy_nw + 1

      nw = (ix_se - ix)    * (iy_se - iy)
      ne = (ix    - ix_sw) * (iy_sw - iy)
      sw = (ix_ne - ix)    * (iy    - iy_ne)
      se = (ix    - ix_nw) * (iy    - iy_nw)

      I_nw = x[mx.arange(N)[:, None, None], iy_nw, ix_nw, :]
      I_ne = x[mx.arange(N)[:, None, None], iy_ne, ix_ne, :]
      I_sw = x[mx.arange(N)[:, None, None], iy_sw, ix_sw, :]
      I_se = x[mx.arange(N)[:, None, None], iy_se, ix_se, :]

      mask_nw = (iy_nw >= 0) & (iy_nw <= H_in - 1) & (ix_nw >= 0) & (ix_nw <= W_in - 1)
      mask_ne = (iy_ne >= 0) & (iy_ne <= H_in - 1) & (ix_ne >= 0) & (ix_ne <= W_in - 1)
      mask_sw = (iy_sw >= 0) & (iy_sw <= H_in - 1) & (ix_sw >= 0) & (ix_sw <= W_in - 1)
      mask_se = (iy_se >= 0) & (iy_se <= H_in - 1) & (ix_se >= 0) & (ix_se <= W_in - 1)

      I_nw *= mask_nw[..., None]
      I_ne *= mask_ne[..., None]
      I_sw *= mask_sw[..., None]
      I_se *= mask_se[..., None]

      output = nw[..., None] * I_nw + ne[..., None] * I_ne + sw[..., None] * I_sw + se[..., None] * I_se

      return output

Now let's use :func:`custom_function` together with :func:`fast.metal_kernel`
to write a fast GPU kernel for both the forward and backward passes.

First we'll implement the forward pass as a fused kernel:

.. code-block:: python

  source = """
      uint elem = thread_position_in_grid.x;
      int H = x_shape[1];
      int W = x_shape[2];
      int C = x_shape[3];
      int gH = grid_shape[1];
      int gW = grid_shape[2];

      int w_stride = C;
      int h_stride = W * w_stride;
      int b_stride = H * h_stride;

      uint grid_idx = elem / C * 2;
      float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
      float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;

      int ix_nw = floor(ix);
      int iy_nw = floor(iy);

      int ix_ne = ix_nw + 1;
      int iy_ne = iy_nw;

      int ix_sw = ix_nw;
      int iy_sw = iy_nw + 1;

      int ix_se = ix_nw + 1;
      int iy_se = iy_nw + 1;

      T nw = (ix_se - ix)    * (iy_se - iy);
      T ne = (ix    - ix_sw) * (iy_sw - iy);
      T sw = (ix_ne - ix)    * (iy    - iy_ne);
      T se = (ix    - ix_nw) * (iy    - iy_nw);

      int batch_idx = elem / C / gH / gW * b_stride;
      int channel_idx = elem % C;
      int base_idx = batch_idx + channel_idx;

      T I_nw = x[base_idx + iy_nw * h_stride + ix_nw * w_stride];
      T I_ne = x[base_idx + iy_ne * h_stride + ix_ne * w_stride];
      T I_sw = x[base_idx + iy_sw * h_stride + ix_sw * w_stride];
      T I_se = x[base_idx + iy_se * h_stride + ix_se * w_stride];

      I_nw = iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1 ? I_nw : 0;
      I_ne = iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1 ? I_ne : 0;
      I_sw = iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1 ? I_sw : 0;
      I_se = iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1 ? I_se : 0;

      out[elem] = nw * I_nw + ne * I_ne + sw * I_sw + se * I_se;
  """

  kernel = mx.fast.metal_kernel(
      name="grid_sample",
      input_names=["x", "grid"],
      output_names=["out"],
      source=source,
  )

  @mx.custom_function
  def grid_sample(x, grid):

      assert x.ndim == 4, "`x` must be 4D."
      assert grid.ndim == 4, "`grid` must be 4D."

      B, _, _, C = x.shape
      _, gN, gM, D = grid.shape
      out_shape = (B, gN, gM, C)

      assert D == 2, "Last dim of `grid` must be size 2."

      outputs = kernel(
          inputs=[x, grid],
          template=[("T", x.dtype)],
          output_shapes=[out_shape],
          output_dtypes=[x.dtype],
          grid=(np.prod(out_shape), 1, 1),
          threadgroup=(256, 1, 1),
      )
      return outputs[0]

For a reasonably sized input such as:

.. code-block:: python

  x.shape = (8, 1024, 1024, 64)
  grid.shape = (8, 256, 256, 2)

On an M1 Max, we see a big performance improvement:

``55.7ms -> 6.7ms => 8x speed up``

Grid Sample VJP
---------------

Since we decorated ``grid_sample`` with :func:`custom_function`, we can now
define its custom vjp transform so MLX can differentiate it.

The backwards pass requires atomically updating ``x_grad``/``grid_grad`` and so
requires a few extra :func:`fast.metal_kernel` features:

* ``init_value=0``
    Initialize all of the kernel's outputs to this value before it runs. This allows us to update only part of the output arrays with the kernel.

* ``atomic_outputs=True``
    Designate all of the kernel outputs as ``atomic`` in the function signature. 
    This means we can use Metal's ``atomic`` features to simultaneously update the ``x_grad`` and ``grid_grad`` arrays from multiple threadgroups. 
    See section 6.15 of the `Metal Shading Language Specification <https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf>`_ for more details.

We can then implement the backwards pass as follows:

.. code-block:: python

  source = """
      uint elem = thread_position_in_grid.x;
      int H = x_shape[1];
      int W = x_shape[2];
      int C = x_shape[3];
      // Pad C to the nearest larger simdgroup size multiple
      int C_padded = ceildiv(C, threads_per_simdgroup) * threads_per_simdgroup;

      int gH = grid_shape[1];
      int gW = grid_shape[2];

      int w_stride = C;
      int h_stride = W * w_stride;
      int b_stride = H * h_stride;

      uint grid_idx = elem / C_padded * 2;
      float ix = ((grid[grid_idx] + 1) * W - 1) / 2;
      float iy = ((grid[grid_idx + 1] + 1) * H - 1) / 2;

      int ix_nw = floor(ix);
      int iy_nw = floor(iy);

      int ix_ne = ix_nw + 1;
      int iy_ne = iy_nw;

      int ix_sw = ix_nw;
      int iy_sw = iy_nw + 1;

      int ix_se = ix_nw + 1;
      int iy_se = iy_nw + 1;

      T nw = (ix_se - ix)    * (iy_se - iy);
      T ne = (ix    - ix_sw) * (iy_sw - iy);
      T sw = (ix_ne - ix)    * (iy    - iy_ne);
      T se = (ix    - ix_nw) * (iy    - iy_nw);

      int batch_idx = elem / C_padded / gH / gW * b_stride;
      int channel_idx = elem % C_padded;
      int base_idx = batch_idx + channel_idx;

      T gix = T(0);
      T giy = T(0);
      if (channel_idx < C) {
          int cot_index = elem / C_padded * C + channel_idx;
          T cot = cotangent[cot_index];
          if (iy_nw >= 0 && iy_nw <= H - 1 && ix_nw >= 0 && ix_nw <= W - 1) {
              int offset = base_idx + iy_nw * h_stride + ix_nw * w_stride;
              atomic_fetch_add_explicit(&x_grad[offset], nw * cot, memory_order_relaxed);

              T I_nw = x[offset];
              gix -= I_nw * (iy_se - iy) * cot;
              giy -= I_nw * (ix_se - ix) * cot;
          }
          if (iy_ne >= 0 && iy_ne <= H - 1 && ix_ne >= 0 && ix_ne <= W - 1) {
              int offset = base_idx + iy_ne * h_stride + ix_ne * w_stride;
              atomic_fetch_add_explicit(&x_grad[offset], ne * cot, memory_order_relaxed);

              T I_ne = x[offset];
              gix += I_ne * (iy_sw - iy) * cot;
              giy -= I_ne * (ix - ix_sw) * cot;
          }
          if (iy_sw >= 0 && iy_sw <= H - 1 && ix_sw >= 0 && ix_sw <= W - 1) {
              int offset = base_idx + iy_sw * h_stride + ix_sw * w_stride;
              atomic_fetch_add_explicit(&x_grad[offset], sw * cot, memory_order_relaxed);

              T I_sw = x[offset];
              gix -= I_sw * (iy - iy_ne) * cot;
              giy += I_sw * (ix_ne - ix) * cot;
          }
          if (iy_se >= 0 && iy_se <= H - 1 && ix_se >= 0 && ix_se <= W - 1) {
              int offset = base_idx + iy_se * h_stride + ix_se * w_stride;
              atomic_fetch_add_explicit(&x_grad[offset], se * cot, memory_order_relaxed);

              T I_se = x[offset];
              gix += I_se * (iy - iy_nw) * cot;
              giy += I_se * (ix - ix_nw) * cot;
          }
      }

      T gix_mult = W / 2;
      T giy_mult = H / 2;

      // Reduce across each simdgroup first.
      // This is much faster than relying purely on atomics.
      gix = simd_sum(gix);
      giy = simd_sum(giy);

      if (thread_index_in_simdgroup == 0) {
          atomic_fetch_add_explicit(&grid_grad[grid_idx], gix * gix_mult, memory_order_relaxed);
          atomic_fetch_add_explicit(&grid_grad[grid_idx + 1], giy * giy_mult, memory_order_relaxed);
      }
  """
  kernel = mx.fast.metal_kernel(
      name="grid_sample_grad",
      input_names=["x", "grid", "cotangent"],
      output_names=["x_grad", "grid_grad"],
      source=source,
      atomic_outputs=True,
  )

  @grid_sample.vjp
  def grid_sample_vjp(primals, cotangent, _):
      x, grid = primals
      B, _, _, C = x.shape
      _, gN, gM, D = grid.shape

      assert D == 2, "Last dim of `grid` must be size 2."

      # pad the output channels to simd group size
      # so that our `simd_sum`s don't overlap.
      simdgroup_size = 32
      C_padded = (C + simdgroup_size - 1) // simdgroup_size * simdgroup_size
      grid_size = B * gN * gM * C_padded
      outputs = kernel(
          inputs=[x, grid, cotangent],
          template=[("T", x.dtype)],
          output_shapes=[x.shape, grid.shape],
          output_dtypes=[x.dtype, x.dtype],
          grid=(grid_size, 1, 1),
          threadgroup=(256, 1, 1),
          init_value=0,
      )
      return outputs[0], outputs[1]

There's an even larger speed up for the vjp:

``676.4ms -> 16.7ms => 40x speed up``