File size: 28,186 Bytes
712dbf0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 |
Custom Extensions in MLX
========================
You can extend MLX with custom operations on the CPU or GPU. This guide
explains how to do that with a simple example.
Introducing the Example
-----------------------
Let's say you would like an operation that takes in two arrays, ``x`` and
``y``, scales them both by coefficients ``alpha`` and ``beta`` respectively,
and then adds them together to get the result ``z = alpha * x + beta * y``.
You can do that in MLX directly:
.. code-block:: python
import mlx.core as mx
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
return alpha * x + beta * y
This function performs that operation while leaving the implementation and
function transformations to MLX.
However, you may want to customize the underlying implementation, perhaps to
make it faster. In this tutorial we will go through adding custom extensions.
It will cover:
* The structure of the MLX library.
* Implementing a CPU operation.
* Implementing a GPU operation using metal.
* Adding the ``vjp`` and ``jvp`` function transformation.
* Building a custom extension and binding it to python.
Operations and Primitives
-------------------------
Operations in MLX build the computation graph. Primitives provide the rules for
evaluating and transforming the graph. Let's start by discussing operations in
more detail.
Operations
^^^^^^^^^^^
Operations are the front-end functions that operate on arrays. They are defined
in the C++ API (:ref:`cpp_ops`), and the Python API (:ref:`ops`) binds them.
We would like an operation :meth:`axpby` that takes in two arrays, ``x`` and
``y``, and two scalars, ``alpha`` and ``beta``. This is how to define it in
C++:
.. code-block:: C++
/**
* Scale and sum two vectors element-wise
* z = alpha * x + beta * y
*
* Use NumPy-style broadcasting between x and y
* Inputs are upcasted to floats if needed
**/
array axpby(
const array& x, // Input array x
const array& y, // Input array y
const float alpha, // Scaling factor for x
const float beta, // Scaling factor for y
StreamOrDevice s = {} // Stream on which to schedule the operation
);
The simplest way to implement this is with existing operations:
.. code-block:: C++
array axpby(
const array& x, // Input array x
const array& y, // Input array y
const float alpha, // Scaling factor for x
const float beta, // Scaling factor for y
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
) {
// Scale x and y on the provided stream
auto ax = multiply(array(alpha), x, s);
auto by = multiply(array(beta), y, s);
// Add and return
return add(ax, by, s);
}
The operations themselves do not contain the implementations that act on the
data, nor do they contain the rules of transformations. Rather, they are an
easy to use interface that use :class:`Primitive` building blocks.
Primitives
^^^^^^^^^^^
A :class:`Primitive` is part of the computation graph of an :class:`array`. It
defines how to create output arrays given input arrays. Further, a
:class:`Primitive` has methods to run on the CPU or GPU and for function
transformations such as ``vjp`` and ``jvp``. Let's go back to our example to be
more concrete:
.. code-block:: C++
class Axpby : public Primitive {
public:
explicit Axpby(Stream stream, float alpha, float beta)
: Primitive(stream), alpha_(alpha), beta_(beta){};
/**
* A primitive must know how to evaluate itself on the CPU/GPU
* for the given inputs and populate the output array.
*
* To avoid unnecessary allocations, the evaluation function
* is responsible for allocating space for the array.
*/
void eval_cpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) override;
void eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) override;
/** The Jacobian-vector product. */
std::vector<array> jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) override;
/** The vector-Jacobian product. */
std::vector<array> vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<array>& outputs) override;
/**
* The primitive must know how to vectorize itself across
* the given axes. The output is a pair containing the array
* representing the vectorized computation and the axis which
* corresponds to the output vectorized dimension.
*/
std::pair<std::vector<array>, std::vector<int>> vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) override;
/** The name of primitive. */
const char* name() const override {
return "Axpby";
}
/** Equivalence check **/
bool is_equivalent(const Primitive& other) const override;
private:
float alpha_;
float beta_;
};
The :class:`Axpby` class derives from the base :class:`Primitive` class. The
:class:`Axpby` treats ``alpha`` and ``beta`` as parameters. It then provides
implementations of how the output array is produced given the inputs through
:meth:`Axpby::eval_cpu` and :meth:`Axpby::eval_gpu`. It also provides rules
of transformations in :meth:`Axpby::jvp`, :meth:`Axpby::vjp`, and
:meth:`Axpby::vmap`.
Using the Primitive
^^^^^^^^^^^^^^^^^^^
Operations can use this :class:`Primitive` to add a new :class:`array` to the
computation graph. An :class:`array` can be constructed by providing its data
type, shape, the :class:`Primitive` that computes it, and the :class:`array`
inputs that are passed to the primitive.
Let's reimplement our operation now in terms of our :class:`Axpby` primitive.
.. code-block:: C++
array axpby(
const array& x, // Input array x
const array& y, // Input array y
const float alpha, // Scaling factor for x
const float beta, // Scaling factor for y
StreamOrDevice s /* = {} */ // Stream on which to schedule the operation
) {
// Promote dtypes between x and y as needed
auto promoted_dtype = promote_types(x.dtype(), y.dtype());
// Upcast to float32 for non-floating point inputs x and y
auto out_dtype = issubdtype(promoted_dtype, float32)
? promoted_dtype
: promote_types(promoted_dtype, float32);
// Cast x and y up to the determined dtype (on the same stream s)
auto x_casted = astype(x, out_dtype, s);
auto y_casted = astype(y, out_dtype, s);
// Broadcast the shapes of x and y (on the same stream s)
auto broadcasted_inputs = broadcast_arrays({x_casted, y_casted}, s);
auto out_shape = broadcasted_inputs[0].shape();
// Construct the array as the output of the Axpby primitive
// with the broadcasted and upcasted arrays as inputs
return array(
/* const std::vector<int>& shape = */ out_shape,
/* Dtype dtype = */ out_dtype,
/* std::unique_ptr<Primitive> primitive = */
std::make_shared<Axpby>(to_stream(s), alpha, beta),
/* const std::vector<array>& inputs = */ broadcasted_inputs);
}
This operation now handles the following:
#. Upcast inputs and resolve the output data type.
#. Broadcast the inputs and resolve the output shape.
#. Construct the primitive :class:`Axpby` using the given stream, ``alpha``, and ``beta``.
#. Construct the output :class:`array` using the primitive and the inputs.
Implementing the Primitive
--------------------------
No computation happens when we call the operation alone. The operation only
builds the computation graph. When we evaluate the output array, MLX schedules
the execution of the computation graph, and calls :meth:`Axpby::eval_cpu` or
:meth:`Axpby::eval_gpu` depending on the stream/device specified by the user.
.. warning::
When :meth:`Primitive::eval_cpu` or :meth:`Primitive::eval_gpu` are called,
no memory has been allocated for the output array. It falls on the implementation
of these functions to allocate memory as needed.
Implementing the CPU Back-end
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Let's start by implementing :meth:`Axpby::eval_cpu`.
The method will go over each element of the output array, find the
corresponding input elements of ``x`` and ``y`` and perform the operation
point-wise. This is captured in the templated function :meth:`axpby_impl`.
.. code-block:: C++
template <typename T>
void axpby_impl(
const mx::array& x,
const mx::array& y,
mx::array& out,
float alpha_,
float beta_,
mx::Stream stream) {
out.set_data(mx::allocator::malloc(out.nbytes()));
// Get the CPU command encoder and register input and output arrays
auto& encoder = mx::cpu::get_command_encoder(stream);
encoder.set_input_array(x);
encoder.set_input_array(y);
encoder.set_output_array(out);
// Launch the CPU kernel
encoder.dispatch([x_ptr = x.data<T>(),
y_ptr = y.data<T>(),
out_ptr = out.data<T>(),
size = out.size(),
shape = out.shape(),
x_strides = x.strides(),
y_strides = y.strides(),
alpha_,
beta_]() {
// Cast alpha and beta to the relevant types
T alpha = static_cast<T>(alpha_);
T beta = static_cast<T>(beta_);
// Do the element-wise operation for each output
for (size_t out_idx = 0; out_idx < size; out_idx++) {
// Map linear indices to offsets in x and y
auto x_offset = mx::elem_to_loc(out_idx, shape, x_strides);
auto y_offset = mx::elem_to_loc(out_idx, shape, y_strides);
// We allocate the output to be contiguous and regularly strided
// (defaults to row major) and hence it doesn't need additional mapping
out_ptr[out_idx] = alpha * x_ptr[x_offset] + beta * y_ptr[y_offset];
}
});
}
Our implementation should work for all incoming floating point arrays.
Accordingly, we add dispatches for ``float32``, ``float16``, ``bfloat16`` and
``complex64``. We throw an error if we encounter an unexpected type.
.. code-block:: C++
void Axpby::eval_cpu(
const std::vector<mx::array>& inputs,
std::vector<mx::array>& outputs) {
auto& x = inputs[0];
auto& y = inputs[1];
auto& out = outputs[0];
// Dispatch to the correct dtype
if (out.dtype() == mx::float32) {
return axpby_impl<float>(x, y, out, alpha_, beta_, stream());
} else if (out.dtype() == mx::float16) {
return axpby_impl<mx::float16_t>(x, y, out, alpha_, beta_, stream());
} else if (out.dtype() == mx::bfloat16) {
return axpby_impl<mx::bfloat16_t>(x, y, out, alpha_, beta_, stream());
} else if (out.dtype() == mx::complex64) {
return axpby_impl<mx::complex64_t>(x, y, out, alpha_, beta_, stream());
} else {
throw std::runtime_error(
"Axpby is only supported for floating point types.");
}
}
Just this much is enough to run the operation :meth:`axpby` on a CPU stream! If
you do not plan on running the operation on the GPU or using transforms on
computation graphs that contain :class:`Axpby`, you can stop implementing the
primitive here.
Implementing the GPU Back-end
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Apple silicon devices address their GPUs using the Metal_ shading language, and
GPU kernels in MLX are written using Metal.
.. note::
Here are some helpful resources if you are new to Metal:
* A walkthrough of the metal compute pipeline: `Metal Example`_
* Documentation for metal shading language: `Metal Specification`_
* Using metal from C++: `Metal-cpp`_
Let's keep the GPU kernel simple. We will launch exactly as many threads as
there are elements in the output. Each thread will pick the element it needs
from ``x`` and ``y``, do the point-wise operation, and update its assigned
element in the output.
.. code-block:: C++
template <typename T>
[[kernel]] void axpby_general(
device const T* x [[buffer(0)]],
device const T* y [[buffer(1)]],
device T* out [[buffer(2)]],
constant const float& alpha [[buffer(3)]],
constant const float& beta [[buffer(4)]],
constant const int* shape [[buffer(5)]],
constant const int64_t* x_strides [[buffer(6)]],
constant const int64_t* y_strides [[buffer(7)]],
constant const int& ndim [[buffer(8)]],
uint index [[thread_position_in_grid]]) {
// Convert linear indices to offsets in array
auto x_offset = elem_to_loc(index, shape, x_strides, ndim);
auto y_offset = elem_to_loc(index, shape, y_strides, ndim);
// Do the operation and update the output
out[index] =
static_cast<T>(alpha) * x[x_offset] + static_cast<T>(beta) * y[y_offset];
}
We then need to instantiate this template for all floating point types and give
each instantiation a unique host name so we can identify it.
.. code-block:: C++
instantiate_kernel("axpby_general_float32", axpby_general, float)
instantiate_kernel("axpby_general_float16", axpby_general, float16_t)
instantiate_kernel("axpby_general_bfloat16", axpby_general, bfloat16_t)
instantiate_kernel("axpby_general_complex64", axpby_general, complex64_t)
The logic to determine the kernel, set the inputs, resolve the grid dimensions,
and dispatch to the GPU are contained in :meth:`Axpby::eval_gpu` as shown
below.
.. code-block:: C++
/** Evaluate primitive on GPU */
void Axpby::eval_gpu(
const std::vector<array>& inputs,
std::vector<array>& outputs) {
// Prepare inputs
assert(inputs.size() == 2);
auto& x = inputs[0];
auto& y = inputs[1];
auto& out = outputs[0];
// Each primitive carries the stream it should execute on
// and each stream carries its device identifiers
auto& s = stream();
// We get the needed metal device using the stream
auto& d = metal::device(s.device);
// Allocate output memory
out.set_data(allocator::malloc(out.nbytes()));
// Resolve name of kernel
std::stream kname;
kname = "axpby_general_" + type_to_name(out);
// Load the metal library
auto lib = d.get_library("mlx_ext", current_binary_dir());
// Make a kernel from this metal library
auto kernel = d.get_kernel(kname, lib);
// Prepare to encode kernel
auto& compute_encoder = d.get_command_encoder(s.index);
compute_encoder.set_compute_pipeline_state(kernel);
// Kernel parameters are registered with buffer indices corresponding to
// those in the kernel declaration at axpby.metal
int ndim = out.ndim();
size_t nelem = out.size();
// Encode input arrays to kernel
compute_encoder.set_input_array(x, 0);
compute_encoder.set_input_array(y, 1);
// Encode output arrays to kernel
compute_encoder.set_output_array(out, 2);
// Encode alpha and beta
compute_encoder.set_bytes(alpha_, 3);
compute_encoder.set_bytes(beta_, 4);
// Encode shape, strides and ndim
compute_encoder.set_vector_bytes(x.shape(), 5);
compute_encoder.set_vector_bytes(x.strides(), 6);
compute_encoder.set_bytes(y.strides(), 7);
compute_encoder.set_bytes(ndim, 8);
// We launch 1 thread for each input and make sure that the number of
// threads in any given threadgroup is not higher than the max allowed
size_t tgp_size = std::min(nelem, kernel->maxTotalThreadsPerThreadgroup());
// Fix the 3D size of each threadgroup (in terms of threads)
MTL::Size group_dims = MTL::Size(tgp_size, 1, 1);
// Fix the 3D size of the launch grid (in terms of threads)
MTL::Size grid_dims = MTL::Size(nelem, 1, 1);
// Launch the grid with the given number of threads divided among
// the given threadgroups
compute_encoder.dispatch_threads(grid_dims, group_dims);
}
We can now call the :meth:`axpby` operation on both the CPU and the GPU!
A few things to note about MLX and Metal before moving on. MLX keeps track of
the active ``command_buffer`` and the ``MTLCommandBuffer`` to which it is
associated. We rely on :meth:`d.get_command_encoder` to give us the active
metal compute command encoder instead of building a new one and calling
:meth:`compute_encoder->end_encoding` at the end. MLX adds kernels (compute
pipelines) to the active command buffer until some specified limit is hit or
the command buffer needs to be flushed for synchronization.
Primitive Transforms
^^^^^^^^^^^^^^^^^^^^^
Next, let's add implementations for transformations in a :class:`Primitive`.
These transformations can be built on top of other operations, including the
one we just defined:
.. code-block:: C++
/** The Jacobian-vector product. */
std::vector<array> Axpby::jvp(
const std::vector<array>& primals,
const std::vector<array>& tangents,
const std::vector<int>& argnums) {
// Forward mode diff that pushes along the tangents
// The jvp transform on the primitive can be built with ops
// that are scheduled on the same stream as the primitive
// If argnums = {0}, we only push along x in which case the
// jvp is just the tangent scaled by alpha
// Similarly, if argnums = {1}, the jvp is just the tangent
// scaled by beta
if (argnums.size() > 1) {
auto scale = argnums[0] == 0 ? alpha_ : beta_;
auto scale_arr = array(scale, tangents[0].dtype());
return {multiply(scale_arr, tangents[0], stream())};
}
// If argnums = {0, 1}, we take contributions from both
// which gives us jvp = tangent_x * alpha + tangent_y * beta
else {
return {axpby(tangents[0], tangents[1], alpha_, beta_, stream())};
}
}
.. code-block:: C++
/** The vector-Jacobian product. */
std::vector<array> Axpby::vjp(
const std::vector<array>& primals,
const std::vector<array>& cotangents,
const std::vector<int>& argnums,
const std::vector<int>& /* unused */) {
// Reverse mode diff
std::vector<array> vjps;
for (auto arg : argnums) {
auto scale = arg == 0 ? alpha_ : beta_;
auto scale_arr = array(scale, cotangents[0].dtype());
vjps.push_back(multiply(scale_arr, cotangents[0], stream()));
}
return vjps;
}
Note, a transformation does not need to be fully defined to start using
the :class:`Primitive`.
.. code-block:: C++
/** Vectorize primitive along given axis */
std::pair<std::vector<array>, std::vector<int>> Axpby::vmap(
const std::vector<array>& inputs,
const std::vector<int>& axes) {
throw std::runtime_error("[Axpby] vmap not implemented.");
}
Building and Binding
--------------------
Let's look at the overall directory structure first.
| extensions
| βββ axpby
| β βββ axpby.cpp
| β βββ axpby.h
| β βββ axpby.metal
| βββ mlx_sample_extensions
| β βββ __init__.py
| βββ bindings.cpp
| βββ CMakeLists.txt
| βββ setup.py
* ``extensions/axpby/`` defines the C++ extension library
* ``extensions/mlx_sample_extensions`` sets out the structure for the
associated Python package
* ``extensions/bindings.cpp`` provides Python bindings for our operation
* ``extensions/CMakeLists.txt`` holds CMake rules to build the library and
Python bindings
* ``extensions/setup.py`` holds the ``setuptools`` rules to build and install
the Python package
Binding to Python
^^^^^^^^^^^^^^^^^^
We use nanobind_ to build a Python API for the C++ library. Since bindings for
components such as :class:`mlx.core.array`, :class:`mlx.core.stream`, etc. are
already provided, adding our :meth:`axpby` is simple.
.. code-block:: C++
NB_MODULE(_ext, m) {
m.doc() = "Sample extension for MLX";
m.def(
"axpby",
&axpby,
"x"_a,
"y"_a,
"alpha"_a,
"beta"_a,
nb::kw_only(),
"stream"_a = nb::none(),
R"(
Scale and sum two vectors element-wise
``z = alpha * x + beta * y``
Follows numpy style broadcasting between ``x`` and ``y``
Inputs are upcasted to floats if needed
Args:
x (array): Input array.
y (array): Input array.
alpha (float): Scaling factor for ``x``.
beta (float): Scaling factor for ``y``.
Returns:
array: ``alpha * x + beta * y``
)");
}
Most of the complexity in the above example comes from additional bells and
whistles such as the literal names and doc-strings.
.. warning::
:mod:`mlx.core` must be imported before importing
:mod:`mlx_sample_extensions` as defined by the nanobind module above to
ensure that the casters for :mod:`mlx.core` components like
:class:`mlx.core.array` are available.
.. _Building with CMake:
Building with CMake
^^^^^^^^^^^^^^^^^^^^
Building the C++ extension library only requires that you ``find_package(MLX
CONFIG)`` and then link it to your library.
.. code-block:: cmake
# Add library
add_library(mlx_ext)
# Add sources
target_sources(
mlx_ext
PUBLIC
${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.cpp
)
# Add include headers
target_include_directories(
mlx_ext PUBLIC ${CMAKE_CURRENT_LIST_DIR}
)
# Link to mlx
target_link_libraries(mlx_ext PUBLIC mlx)
We also need to build the attached Metal library. For convenience, we provide a
:meth:`mlx_build_metallib` function that builds a ``.metallib`` target given
sources, headers, destinations, etc. (defined in ``cmake/extension.cmake`` and
automatically imported with MLX package).
Here is what that looks like in practice:
.. code-block:: cmake
# Build metallib
if(MLX_BUILD_METAL)
mlx_build_metallib(
TARGET mlx_ext_metallib
TITLE mlx_ext
SOURCES ${CMAKE_CURRENT_LIST_DIR}/axpby/axpby.metal
INCLUDE_DIRS ${PROJECT_SOURCE_DIR} ${MLX_INCLUDE_DIRS}
OUTPUT_DIRECTORY ${CMAKE_LIBRARY_OUTPUT_DIRECTORY}
)
add_dependencies(
mlx_ext
mlx_ext_metallib
)
endif()
Finally, we build the nanobind_ bindings
.. code-block:: cmake
nanobind_add_module(
_ext
NB_STATIC STABLE_ABI LTO NOMINSIZE
NB_DOMAIN mlx
${CMAKE_CURRENT_LIST_DIR}/bindings.cpp
)
target_link_libraries(_ext PRIVATE mlx_ext)
if(BUILD_SHARED_LIBS)
target_link_options(_ext PRIVATE -Wl,-rpath,@loader_path)
endif()
Building with ``setuptools``
^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Once we have set out the CMake build rules as described above, we can use the
build utilities defined in :mod:`mlx.extension`:
.. code-block:: python
from mlx import extension
from setuptools import setup
if __name__ == "__main__":
setup(
name="mlx_sample_extensions",
version="0.0.0",
description="Sample C++ and Metal extensions for MLX primitives.",
ext_modules=[extension.CMakeExtension("mlx_sample_extensions._ext")],
cmdclass={"build_ext": extension.CMakeBuild},
packages=["mlx_sample_extensions"],
package_data={"mlx_sample_extensions": ["*.so", "*.dylib", "*.metallib"]},
extras_require={"dev":[]},
zip_safe=False,
python_requires=">=3.8",
)
.. note::
We treat ``extensions/mlx_sample_extensions`` as the package directory
even though it only contains a ``__init__.py`` to ensure the following:
* :mod:`mlx.core` must be imported before importing :mod:`_ext`
* The C++ extension library and the metal library are co-located with the python
bindings and copied together if the package is installed
To build the package, first install the build dependencies with ``pip install
-r requirements.txt``. You can then build inplace for development using
``python setup.py build_ext -j8 --inplace`` (in ``extensions/``)
This results in the directory structure:
| extensions
| βββ mlx_sample_extensions
| β βββ __init__.py
| β βββ libmlx_ext.dylib # C++ extension library
| β βββ mlx_ext.metallib # Metal library
| β βββ _ext.cpython-3x-darwin.so # Python Binding
| ...
When you try to install using the command ``python -m pip install .`` (in
``extensions/``), the package will be installed with the same structure as
``extensions/mlx_sample_extensions`` and the C++ and Metal library will be
copied along with the Python binding since they are specified as
``package_data``.
Usage
-----
After installing the extension as described above, you should be able to simply
import the Python package and play with it as you would any other MLX operation.
Let's look at a simple script and its results:
.. code-block:: python
import mlx.core as mx
from mlx_sample_extensions import axpby
a = mx.ones((3, 4))
b = mx.ones((3, 4))
c = axpby(a, b, 4.0, 2.0, stream=mx.cpu)
print(f"c shape: {c.shape}")
print(f"c dtype: {c.dtype}")
print(f"c is correct: {mx.all(c == 6.0).item()}")
Output:
.. code-block::
c shape: [3, 4]
c dtype: float32
c is correct: True
Results
^^^^^^^
Let's run a quick benchmark and see how our new ``axpby`` operation compares
with the naive :meth:`simple_axpby` we first defined.
.. code-block:: python
import mlx.core as mx
from mlx_sample_extensions import axpby
import time
def simple_axpby(x: mx.array, y: mx.array, alpha: float, beta: float) -> mx.array:
return alpha * x + beta * y
M = 4096
N = 4096
x = mx.random.normal((M, N))
y = mx.random.normal((M, N))
alpha = 4.0
beta = 2.0
mx.eval(x, y)
def bench(f):
# Warm up
for i in range(5):
z = f(x, y, alpha, beta)
mx.eval(z)
# Timed run
s = time.time()
for i in range(100):
z = f(x, y, alpha, beta)
mx.eval(z)
e = time.time()
return 1000 * (e - s) / 100
simple_time = bench(simple_axpby)
custom_time = bench(axpby)
print(f"Simple axpby: {simple_time:.3f} ms | Custom axpby: {custom_time:.3f} ms")
The results are ``Simple axpby: 1.559 ms | Custom axpby: 0.774 ms``. We see
modest improvements right away!
This operation is now good to be used to build other operations, in
:class:`mlx.nn.Module` calls, and also as a part of graph transformations like
:meth:`grad`.
Scripts
-------
.. admonition:: Download the code
The full example code is available in `mlx <https://github.com/ml-explore/mlx/tree/main/examples/extensions/>`_.
.. _Accelerate: https://developer.apple.com/documentation/accelerate/blas?language=objc
.. _Metal: https://developer.apple.com/documentation/metal?language=objc
.. _Metal-cpp: https://developer.apple.com/metal/cpp/
.. _`Metal Specification`: https://developer.apple.com/metal/Metal-Shading-Language-Specification.pdf
.. _`Metal Example`: https://developer.apple.com/documentation/metal/performing_calculations_on_a_gpu?language=objc
.. _nanobind: https://nanobind.readthedocs.io/en/latest/
|