File size: 20,952 Bytes
712dbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
# Copyright © 2023 Apple Inc.

import itertools
import math
import unittest

import mlx.core as mx
import mlx_tests
import numpy as np


class TestLinalg(mlx_tests.MLXTestCase):
    def test_norm(self):
        vector_ords = [None, 0.5, 0, 1, 2, 3, -1, float("inf"), -float("inf")]
        matrix_ords = [None, "fro", "nuc", -1, 1, -2, 2, float("inf"), -float("inf")]

        for shape in [(3,), (2, 3), (2, 3, 3)]:
            x_mx = mx.arange(1, math.prod(shape) + 1, dtype=mx.float32).reshape(shape)
            x_np = np.arange(1, math.prod(shape) + 1, dtype=np.float32).reshape(shape)
            # Test when at least one axis is provided
            for num_axes in range(1, len(shape)):
                if num_axes == 1:
                    ords = vector_ords
                else:
                    ords = matrix_ords
                for axis in itertools.combinations(range(len(shape)), num_axes):
                    for keepdims in [True, False]:
                        for o in ords:
                            stream = (
                                mx.cpu if o in ["nuc", -2, 2] else mx.default_device()
                            )
                            out_np = np.linalg.norm(
                                x_np, ord=o, axis=axis, keepdims=keepdims
                            )
                            out_mx = mx.linalg.norm(
                                x_mx, ord=o, axis=axis, keepdims=keepdims, stream=stream
                            )
                            with self.subTest(
                                shape=shape, ord=o, axis=axis, keepdims=keepdims
                            ):
                                self.assertTrue(
                                    np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6)
                                )

        # Test only ord provided
        for shape in [(3,), (2, 3)]:
            x_mx = mx.arange(1, math.prod(shape) + 1).reshape(shape)
            x_np = np.arange(1, math.prod(shape) + 1).reshape(shape)
            for o in [None, 1, -1, float("inf"), -float("inf")]:
                for keepdims in [True, False]:
                    out_np = np.linalg.norm(x_np, ord=o, keepdims=keepdims)
                    out_mx = mx.linalg.norm(x_mx, ord=o, keepdims=keepdims)
                    with self.subTest(shape=shape, ord=o, keepdims=keepdims):
                        self.assertTrue(
                            np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6)
                        )

        # Test no ord and no axis provided
        for shape in [(3,), (2, 3), (2, 3, 3)]:
            x_mx = mx.arange(1, math.prod(shape) + 1).reshape(shape)
            x_np = np.arange(1, math.prod(shape) + 1).reshape(shape)
            for keepdims in [True, False]:
                out_np = np.linalg.norm(x_np, keepdims=keepdims)
                out_mx = mx.linalg.norm(x_mx, keepdims=keepdims)
                with self.subTest(shape=shape, keepdims=keepdims):
                    self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))

    def test_complex_norm(self):
        for shape in [(3,), (2, 3), (2, 3, 3)]:
            x_np = np.random.uniform(size=shape).astype(
                np.float32
            ) + 1j * np.random.uniform(size=shape).astype(np.float32)
            x_mx = mx.array(x_np)
            out_np = np.linalg.norm(x_np)
            out_mx = mx.linalg.norm(x_mx)
            with self.subTest(shape=shape):
                self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))
            for num_axes in range(1, len(shape)):
                for axis in itertools.combinations(range(len(shape)), num_axes):
                    out_np = np.linalg.norm(x_np, axis=axis)
                    out_mx = mx.linalg.norm(x_mx, axis=axis)
                    with self.subTest(shape=shape, axis=axis):
                        self.assertTrue(
                            np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6)
                        )

        x_np = np.random.uniform(size=(4, 4)).astype(
            np.float32
        ) + 1j * np.random.uniform(size=(4, 4)).astype(np.float32)
        x_mx = mx.array(x_np)
        out_np = np.linalg.norm(x_np, ord="fro")
        out_mx = mx.linalg.norm(x_mx, ord="fro")
        self.assertTrue(np.allclose(out_np, out_mx, atol=1e-5, rtol=1e-6))

    def test_qr_factorization(self):
        with self.assertRaises(ValueError):
            mx.linalg.qr(mx.array(0.0))

        with self.assertRaises(ValueError):
            mx.linalg.qr(mx.array([0.0, 1.0]))

        with self.assertRaises(ValueError):
            mx.linalg.qr(mx.array([[0, 1], [1, 0]]))

        A = mx.array([[2.0, 3.0], [1.0, 2.0]])
        Q, R = mx.linalg.qr(A, stream=mx.cpu)
        out = Q @ R
        self.assertTrue(mx.allclose(out, A))
        out = Q.T @ Q
        self.assertTrue(mx.allclose(out, mx.eye(2), rtol=1e-5, atol=1e-7))
        self.assertTrue(mx.allclose(mx.tril(R, -1), mx.zeros_like(R)))
        self.assertEqual(Q.dtype, mx.float32)
        self.assertEqual(R.dtype, mx.float32)

        # Multiple matrices
        B = mx.array([[-1.0, 2.0], [-4.0, 1.0]])
        A = mx.stack([A, B])
        Q, R = mx.linalg.qr(A, stream=mx.cpu)
        for a, q, r in zip(A, Q, R):
            out = q @ r
            self.assertTrue(mx.allclose(out, a))
            out = q.T @ q
            self.assertTrue(mx.allclose(out, mx.eye(2), rtol=1e-5, atol=1e-7))
            self.assertTrue(mx.allclose(mx.tril(r, -1), mx.zeros_like(r)))

        # Non square matrices
        for shape in [(4, 8), (8, 4)]:
            A = mx.random.uniform(shape=shape)
            Q, R = mx.linalg.qr(A, stream=mx.cpu)
            out = Q @ R
            self.assertTrue(mx.allclose(out, A, rtol=1e-4, atol=1e-6))
            out = Q.T @ Q
            self.assertTrue(
                mx.allclose(out, mx.eye(min(A.shape)), rtol=1e-4, atol=1e-6)
            )

    def test_svd_decomposition(self):
        A = mx.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]], dtype=mx.float32)
        U, S, Vt = mx.linalg.svd(A, compute_uv=True, stream=mx.cpu)
        self.assertTrue(
            mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, A, rtol=1e-5, atol=1e-7)
        )

        S = mx.linalg.svd(A, compute_uv=False, stream=mx.cpu)
        self.assertTrue(
            mx.allclose(
                mx.linalg.norm(S), mx.linalg.norm(A, ord="fro"), rtol=1e-5, atol=1e-7
            )
        )

        # Multiple matrices
        B = A + 10.0
        AB = mx.stack([A, B])
        Us, Ss, Vts = mx.linalg.svd(AB, compute_uv=True, stream=mx.cpu)
        for M, U, S, Vt in zip([A, B], Us, Ss, Vts):
            self.assertTrue(
                mx.allclose(U[:, : len(S)] @ mx.diag(S) @ Vt, M, rtol=1e-5, atol=1e-7)
            )

        Ss = mx.linalg.svd(AB, compute_uv=False, stream=mx.cpu)
        for M, S in zip([A, B], Ss):
            self.assertTrue(
                mx.allclose(
                    mx.linalg.norm(S),
                    mx.linalg.norm(M, ord="fro"),
                    rtol=1e-5,
                    atol=1e-7,
                )
            )

    def test_inverse(self):
        A = mx.array([[1, 2, 3], [6, -5, 4], [-9, 8, 7]], dtype=mx.float32)
        A_inv = mx.linalg.inv(A, stream=mx.cpu)
        self.assertTrue(mx.allclose(A @ A_inv, mx.eye(A.shape[0]), rtol=0, atol=1e-6))

        # Multiple matrices
        B = A - 100
        AB = mx.stack([A, B])
        invs = mx.linalg.inv(AB, stream=mx.cpu)
        for M, M_inv in zip(AB, invs):
            self.assertTrue(
                mx.allclose(M @ M_inv, mx.eye(M.shape[0]), rtol=0, atol=1e-5)
            )

    def test_tri_inverse(self):
        for upper in (False, True):
            A = mx.array([[1, 0, 0], [6, -5, 0], [-9, 8, 7]], dtype=mx.float32)
            B = mx.array([[7, 0, 0], [3, -2, 0], [1, 8, 3]], dtype=mx.float32)
            if upper:
                A = A.T
                B = B.T
            AB = mx.stack([A, B])
            invs = mx.linalg.tri_inv(AB, upper=upper, stream=mx.cpu)
            for M, M_inv in zip(AB, invs):
                self.assertTrue(
                    mx.allclose(M @ M_inv, mx.eye(M.shape[0]), rtol=0, atol=1e-5)
                )

        # Ensure that tri_inv will 0-out the supposedly 0 triangle
        x = mx.random.normal((2, 8, 8))
        y1 = mx.linalg.tri_inv(x, upper=True, stream=mx.cpu)
        y2 = mx.linalg.tri_inv(x, upper=False, stream=mx.cpu)
        self.assertTrue(mx.all(y1 == mx.triu(y1)))
        self.assertTrue(mx.all(y2 == mx.tril(y2)))

    def test_cholesky(self):
        sqrtA = mx.array(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=mx.float32
        )
        A = sqrtA.T @ sqrtA / 81
        L = mx.linalg.cholesky(A, stream=mx.cpu)
        U = mx.linalg.cholesky(A, upper=True, stream=mx.cpu)
        self.assertTrue(mx.allclose(L @ L.T, A, rtol=1e-5, atol=1e-7))
        self.assertTrue(mx.allclose(U.T @ U, A, rtol=1e-5, atol=1e-7))

        # Multiple matrices
        B = A + 1 / 9
        AB = mx.stack([A, B])
        Ls = mx.linalg.cholesky(AB, stream=mx.cpu)
        for M, L in zip(AB, Ls):
            self.assertTrue(mx.allclose(L @ L.T, M, rtol=1e-5, atol=1e-7))

    def test_pseudo_inverse(self):
        A = mx.array([[1, 2, 3], [6, -5, 4], [-9, 8, 7]], dtype=mx.float32)
        A_plus = mx.linalg.pinv(A, stream=mx.cpu)
        self.assertTrue(mx.allclose(A @ A_plus @ A, A, rtol=0, atol=1e-5))

        # Multiple matrices
        B = A - 100
        AB = mx.stack([A, B])
        pinvs = mx.linalg.pinv(AB, stream=mx.cpu)
        for M, M_plus in zip(AB, pinvs):
            self.assertTrue(mx.allclose(M @ M_plus @ M, M, rtol=0, atol=1e-3))

        # Test singular matrix
        A = mx.array([[4.0, 1.0], [4.0, 1.0]])
        A_plus = mx.linalg.pinv(A, stream=mx.cpu)
        self.assertTrue(mx.allclose(A @ A_plus @ A, A))

    def test_cholesky_inv(self):
        mx.random.seed(7)

        sqrtA = mx.array(
            [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]], dtype=mx.float32
        )
        A = sqrtA.T @ sqrtA / 81

        N = 3
        A = mx.random.uniform(shape=(N, N))
        A = A @ A.T

        for upper in (False, True):
            L = mx.linalg.cholesky(A, upper=upper, stream=mx.cpu)
            A_inv = mx.linalg.cholesky_inv(L, upper=upper, stream=mx.cpu)
            self.assertTrue(mx.allclose(A @ A_inv, mx.eye(N), atol=1e-4))

        # Multiple matrices
        B = A + 1 / 9
        AB = mx.stack([A, B])
        Ls = mx.linalg.cholesky(AB, stream=mx.cpu)
        for upper in (False, True):
            Ls = mx.linalg.cholesky(AB, upper=upper, stream=mx.cpu)
            AB_inv = mx.linalg.cholesky_inv(Ls, upper=upper, stream=mx.cpu)
            for M, M_inv in zip(AB, AB_inv):
                self.assertTrue(mx.allclose(M @ M_inv, mx.eye(N), atol=1e-4))

    def test_cross_product(self):
        a = mx.array([1.0, 2.0, 3.0])
        b = mx.array([4.0, 5.0, 6.0])
        result = mx.linalg.cross(a, b)
        expected = np.cross(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test with negative values
        a = mx.array([-1.0, -2.0, -3.0])
        b = mx.array([4.0, -5.0, 6.0])
        result = mx.linalg.cross(a, b)
        expected = np.cross(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test with integer values
        a = mx.array([1, 2, 3])
        b = mx.array([4, 5, 6])
        result = mx.linalg.cross(a, b)
        expected = np.cross(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test with 2D arrays and axis parameter
        a = mx.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
        b = mx.array([[4.0, 5.0, 6.0], [1.0, 2.0, 3.0]])
        result = mx.linalg.cross(a, b, axis=1)
        expected = np.cross(a, b, axis=1)
        self.assertTrue(np.allclose(result, expected))

        # Test with broadcast
        a = mx.random.uniform(shape=(2, 1, 3))
        b = mx.random.uniform(shape=(1, 2, 3))
        result = mx.linalg.cross(a, b)
        expected = np.cross(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Type promotion
        a = mx.array([1.0, 2.0, 3.0])
        b = mx.array([4, 5, 6])
        result = mx.linalg.cross(a, b)
        expected = np.cross(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test with incorrect vector size (should raise an exception)
        a = mx.array([1.0])
        b = mx.array([4.0])
        with self.assertRaises(ValueError):
            mx.linalg.cross(a, b)

    def test_eig(self):
        tols = {"atol": 1e-5, "rtol": 1e-5}

        def check_eigs_and_vecs(A_np, kwargs={}):
            A = mx.array(A_np)
            eig_vals, eig_vecs = mx.linalg.eig(A, stream=mx.cpu, **kwargs)
            self.assertTrue(
                mx.allclose(A @ eig_vecs, eig_vals[..., None, :] * eig_vecs, **tols)
            )
            eig_vals_only = mx.linalg.eigvals(A, stream=mx.cpu, **kwargs)
            self.assertTrue(mx.allclose(eig_vals, eig_vals_only, **tols))

        # Test a simple 2x2 matrix
        A_np = np.array([[1.0, 1.0], [3.0, 4.0]], dtype=np.float32)
        check_eigs_and_vecs(A_np)

        # Test complex eigenvalues
        A_np = np.array([[1.0, -1.0], [1.0, 1.0]], dtype=np.float32)
        check_eigs_and_vecs(A_np)

        # Test a larger random symmetric matrix
        n = 5
        np.random.seed(1)
        A_np = np.random.randn(n, n).astype(np.float32)
        check_eigs_and_vecs(A_np)

        # Test with batched input
        A_np = np.random.randn(3, n, n).astype(np.float32)
        check_eigs_and_vecs(A_np)

        # Test error cases
        with self.assertRaises(ValueError):
            mx.linalg.eig(mx.array([1.0, 2.0]))  # 1D array

        with self.assertRaises(ValueError):
            mx.linalg.eig(
                mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
            )  # Non-square matrix

        with self.assertRaises(ValueError):
            mx.linalg.eigvals(mx.array([1.0, 2.0]))  # 1D array

        with self.assertRaises(ValueError):
            mx.linalg.eigvals(
                mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
            )  # Non-square matrix

    def test_eigh(self):
        tols = {"atol": 1e-5, "rtol": 1e-5}

        def check_eigs_and_vecs(A_np, kwargs={}):
            A = mx.array(A_np)
            eig_vals, eig_vecs = mx.linalg.eigh(A, stream=mx.cpu, **kwargs)
            eig_vals_np, _ = np.linalg.eigh(A_np, **kwargs)
            self.assertTrue(np.allclose(eig_vals, eig_vals_np, **tols))
            self.assertTrue(
                mx.allclose(A @ eig_vecs, eig_vals[..., None, :] * eig_vecs, **tols)
            )

            eig_vals_only = mx.linalg.eigvalsh(A, stream=mx.cpu, **kwargs)
            self.assertTrue(mx.allclose(eig_vals, eig_vals_only, **tols))

        # Test a simple 2x2 symmetric matrix
        A_np = np.array([[1.0, 2.0], [2.0, 4.0]], dtype=np.float32)
        check_eigs_and_vecs(A_np)

        # Test a larger random symmetric matrix
        n = 5
        np.random.seed(1)
        A_np = np.random.randn(n, n).astype(np.float32)
        A_np = (A_np + A_np.T) / 2
        check_eigs_and_vecs(A_np)

        # Test with upper triangle
        check_eigs_and_vecs(A_np, {"UPLO": "U"})

        # Test with batched input
        A_np = np.random.randn(3, n, n).astype(np.float32)
        A_np = (A_np + np.transpose(A_np, (0, 2, 1))) / 2
        check_eigs_and_vecs(A_np)

        # Test with complex inputs
        A_np = (
            np.random.randn(8, 8, 2).astype(np.float32).view(np.complex64).squeeze(-1)
        )
        A_np = A_np + A_np.T.conj()
        check_eigs_and_vecs(A_np)

        # Test error cases
        with self.assertRaises(ValueError):
            mx.linalg.eigh(mx.array([1.0, 2.0]))  # 1D array

        with self.assertRaises(ValueError):
            mx.linalg.eigh(
                mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
            )  # Non-square matrix

        with self.assertRaises(ValueError):
            mx.linalg.eigvalsh(mx.array([1.0, 2.0]))  # 1D array

        with self.assertRaises(ValueError):
            mx.linalg.eigvalsh(
                mx.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
            )  # Non-square matrix

    def test_lu(self):
        with self.assertRaises(ValueError):
            mx.linalg.lu(mx.array(0.0), stream=mx.cpu)

        with self.assertRaises(ValueError):
            mx.linalg.lu(mx.array([0.0, 1.0]), stream=mx.cpu)

        with self.assertRaises(ValueError):
            mx.linalg.lu(mx.array([[0, 1], [1, 0]]), stream=mx.cpu)

        # Test 3x3 matrix
        a = mx.array([[3.0, 1.0, 2.0], [1.0, 8.0, 6.0], [9.0, 2.0, 5.0]])
        P, L, U = mx.linalg.lu(a, stream=mx.cpu)
        self.assertTrue(mx.allclose(L[P, :] @ U, a))

        # Test batch dimension
        a = mx.broadcast_to(a, (5, 5, 3, 3))
        P, L, U = mx.linalg.lu(a, stream=mx.cpu)
        L = mx.take_along_axis(L, P[..., None], axis=-2)
        self.assertTrue(mx.allclose(L @ U, a))

        # Test non-square matrix
        a = mx.array([[3.0, 1.0, 2.0], [1.0, 8.0, 6.0]])
        P, L, U = mx.linalg.lu(a, stream=mx.cpu)
        self.assertTrue(mx.allclose(L[P, :] @ U, a))

        a = mx.array([[3.0, 1.0], [1.0, 8.0], [9.0, 2.0]])
        P, L, U = mx.linalg.lu(a, stream=mx.cpu)
        self.assertTrue(mx.allclose(L[P, :] @ U, a))

    def test_lu_factor(self):
        mx.random.seed(7)

        # Test 3x3 matrix
        a = mx.random.uniform(shape=(5, 5))
        LU, pivots = mx.linalg.lu_factor(a, stream=mx.cpu)
        n = a.shape[-1]

        pivots = pivots.tolist()
        perm = list(range(n))
        for i in range(len(pivots)):
            perm[i], perm[pivots[i]] = perm[pivots[i]], perm[i]

        L = mx.add(mx.tril(LU, k=-1), mx.eye(n))
        U = mx.triu(LU)
        self.assertTrue(mx.allclose(L @ U, a[perm, :]))

    def test_solve(self):
        mx.random.seed(7)

        # Test 3x3 matrix with 1D rhs
        a = mx.array([[3.0, 1.0, 2.0], [1.0, 8.0, 6.0], [9.0, 2.0, 5.0]])
        b = mx.array([11.0, 35.0, 28.0])

        result = mx.linalg.solve(a, b, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test symmetric positive-definite matrix
        N = 5
        a = mx.random.uniform(shape=(N, N))
        a = mx.matmul(a, a.T) + N * mx.eye(N)
        b = mx.random.uniform(shape=(N, 1))

        result = mx.linalg.solve(a, b, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test batch dimension
        a = mx.random.uniform(shape=(5, 5, 4, 4))
        b = mx.random.uniform(shape=(5, 5, 4, 1))

        result = mx.linalg.solve(a, b, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected, atol=1e-5))

        # Test large matrix
        N = 1000
        a = mx.random.uniform(shape=(N, N))
        b = mx.random.uniform(shape=(N, 1))

        result = mx.linalg.solve(a, b, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected, atol=1e-3))

        # Test multi-column rhs
        a = mx.random.uniform(shape=(5, 5))
        b = mx.random.uniform(shape=(5, 8))

        result = mx.linalg.solve(a, b, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test batched multi-column rhs
        a = mx.broadcast_to(a, (3, 2, 5, 5))
        b = mx.broadcast_to(b, (3, 1, 5, 8))

        result = mx.linalg.solve(a, b, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected, rtol=1e-5, atol=1e-5))

    def test_solve_triangular(self):
        # Test lower triangular matrix
        a = mx.array([[4.0, 0.0, 0.0], [2.0, 3.0, 0.0], [1.0, -2.0, 5.0]])
        b = mx.array([8.0, 14.0, 3.0])

        result = mx.linalg.solve_triangular(a, b, upper=False, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test upper triangular matrix
        a = mx.array([[3.0, 2.0, 1.0], [0.0, 5.0, 4.0], [0.0, 0.0, 6.0]])
        b = mx.array([13.0, 33.0, 18.0])

        result = mx.linalg.solve_triangular(a, b, upper=True, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected))

        # Test batch multi-column rhs
        a = mx.broadcast_to(a, (3, 4, 3, 3))
        b = mx.broadcast_to(mx.expand_dims(b, -1), (3, 4, 3, 8))

        result = mx.linalg.solve_triangular(a, b, upper=True, stream=mx.cpu)
        expected = np.linalg.solve(a, b)
        self.assertTrue(np.allclose(result, expected))


if __name__ == "__main__":
    mlx_tests.MLXTestRunner()