File size: 13,917 Bytes
20ffd89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
import numpy as np
import matplotlib.pyplot as plt
from tqdm import tqdm
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error, r2_score

# 设置随机种子以确保结果可复现
torch.manual_seed(42)
np.random.seed(42)

# 模型定义
class HodgeDualLayer(nn.Module):
    """
    实现霍奇对偶操作的层,灵感来自霍奇理论中的对偶性
    """
    def __init__(self, in_features, out_features):
        super(HodgeDualLayer, self).__init__()
        self.forward_map = nn.Linear(in_features, out_features)
        self.dual_map = nn.Linear(out_features, in_features)
        
    def forward(self, x):
        # 前向映射
        y = self.forward_map(x)
        # 对偶映射 (类似于霍奇对偶)
        dual_x = self.dual_map(y)
        return y, dual_x

class MirrorSymmetryBlock(nn.Module):
    """
    镜像对称块:实现类似于镜像对称的结构
    """
    def __init__(self, dim):
        super(MirrorSymmetryBlock, self).__init__()
        self.dim = dim
        # 两个互为"镜像"的分支
        self.branch_a = nn.Sequential(
            nn.Linear(dim, dim),  # 修改:保持输出维度与输入相同,以便残差连接
            nn.LayerNorm(dim),
            nn.GELU()
        )
        self.branch_b = nn.Sequential(
            nn.Linear(dim, dim),  # 修改:保持输出维度与输入相同,以便残差连接
            nn.LayerNorm(dim),
            nn.GELU()
        )
        # 对称性保持层
        self.symmetry_preserving = nn.Parameter(torch.ones(1))
        
    def forward(self, x):
        a = self.branch_a(x)
        b = self.branch_b(x)
        # 通过对称操作连接两个分支
        mirror_term = self.symmetry_preserving * (a * b)
        return a + b + mirror_term

class ComplexStructureModule(nn.Module):
    """
    模拟复几何结构的模块
    """
    def __init__(self, dim):
        super(ComplexStructureModule, self).__init__()
        self.real_transform = nn.Linear(dim, dim)
        self.imag_transform = nn.Linear(dim, dim)
        
    def forward(self, x):
        # 分离实部和虚部通道
        mid_point = x.shape[1] // 2
        real_part = x[:, :mid_point]
        imag_part = x[:, mid_point:]
        
        # 应用复几何变换
        new_real = self.real_transform(real_part) - self.imag_transform(imag_part)
        new_imag = self.imag_transform(real_part) + self.real_transform(imag_part)
        
        # 合并实部和虚部
        return torch.cat([new_real, new_imag], dim=1)

class MirrorSymmetryHodgeNetwork(nn.Module):
    """
    基于镜像对称和霍奇理论概念的神经网络
    """
    def __init__(self, input_dim, hidden_dim, output_dim, num_blocks=3):
        super(MirrorSymmetryHodgeNetwork, self).__init__()
        
        # 输入嵌入层
        self.embedding = nn.Linear(input_dim, hidden_dim*2)  # 双倍维度用于复结构
        
        # 霍奇对偶层
        self.hodge_dual = HodgeDualLayer(hidden_dim*2, hidden_dim*2)
        
        # 镜像对称块
        self.mirror_blocks = nn.ModuleList([
            MirrorSymmetryBlock(hidden_dim*2) for _ in range(num_blocks)
        ])
        
        # 复结构模块
        self.complex_structure = ComplexStructureModule(hidden_dim)
        
        # 输出映射
        self.output_map = nn.Linear(hidden_dim*2, output_dim)
        
        # 标度因子(代表霍奇结构中的度量)
        self.scale_factor = nn.Parameter(torch.ones(1))
        
    def forward(self, x):
        # 初始嵌入
        x = self.embedding(x)
        
        # 应用霍奇对偶
        primary, dual = self.hodge_dual(x)
        
        # 残差连接
        x = primary + self.scale_factor * dual
        
        # 应用镜像对称块
        for block in self.mirror_blocks:
            x = x + block(x)  # 残差连接
        
        # 应用复结构变换
        x = self.complex_structure(x)
        
        # 输出层
        return self.output_map(x)

# 基准模型 - 标准MLP
class BaselineMLP(nn.Module):
    def __init__(self, input_dim, hidden_dim, output_dim, num_layers=3):
        super(BaselineMLP, self).__init__()
        
        layers = [nn.Linear(input_dim, hidden_dim), nn.ReLU()]
        for _ in range(num_layers - 1):
            layers.extend([nn.Linear(hidden_dim, hidden_dim), nn.ReLU()])
        layers.append(nn.Linear(hidden_dim, output_dim))
        
        self.network = nn.Sequential(*layers)
    
    def forward(self, x):
        return self.network(x)

# 生成具有对称性的合成数据
def generate_symmetric_data(n_samples=1000, input_dim=10, noise_level=0.1):
    """
    生成具有对称性质的数据,适合测试镜像对称模型
    """
    # 随机生成输入特征
    X = np.random.randn(n_samples, input_dim)
    
    # 创建符合对称性的目标变量
    # 一半特征与另一半特征之间存在对称关系
    mid = input_dim // 2
    
    # 基础函数
    y_base = np.sum(X[:, :mid]**2, axis=1) - np.sum(X[:, mid:]**2, axis=1)
    
    # 添加一些镜像对称项
    mirror_terms = np.sum(X[:, :mid] * X[:, mid:], axis=1)
    
    # 添加复结构项 - 确保索引不会越界
    if mid > 1:  # 确保有足够的维度进行复结构计算
        complex_terms = np.sum(X[:, :mid-1] * X[:, 1:mid] - X[:, mid:-1] * X[:, mid+1:], axis=1)
    else:
        complex_terms = np.zeros(n_samples)
    
    # 组合各项,创建最终目标
    y = y_base + 0.5 * mirror_terms + 0.3 * complex_terms
    
    # 添加噪声
    y += noise_level * np.random.randn(n_samples)
    
    # 转换为张量
    X_tensor = torch.FloatTensor(X)
    y_tensor = torch.FloatTensor(y).reshape(-1, 1)
    
    return X_tensor, y_tensor

# 训练函数
def train_model(model, train_loader, val_loader, epochs=100, lr=0.001, device='cpu'):
    """
    训练模型并返回训练历史
    """
    model.to(device)
    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=lr)
    scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, 'min', patience=5, factor=0.5)
    
    history = {
        'train_loss': [],
        'val_loss': [],
    }
    
    best_val_loss = float('inf')
    best_model_state = None
    
    for epoch in range(epochs):
        # 训练阶段
        model.train()
        train_loss = 0.0
        
        for X_batch, y_batch in train_loader:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            
            # 前向传播
            y_pred = model(X_batch)
            loss = criterion(y_pred, y_batch)
            
            # 反向传播和优化
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            
            train_loss += loss.item()
        
        train_loss /= len(train_loader)
        history['train_loss'].append(train_loss)
        
        # 验证阶段
        model.eval()
        val_loss = 0.0
        
        with torch.no_grad():
            for X_batch, y_batch in val_loader:
                X_batch, y_batch = X_batch.to(device), y_batch.to(device)
                y_pred = model(X_batch)
                loss = criterion(y_pred, y_batch)
                val_loss += loss.item()
        
        val_loss /= len(val_loader)
        history['val_loss'].append(val_loss)
        
        # 更新学习率
        scheduler.step(val_loss)
        
        # 保存最佳模型
        if val_loss < best_val_loss:
            best_val_loss = val_loss
            best_model_state = model.state_dict().copy()
        
        # 输出进度
        if (epoch + 1) % 10 == 0:
            print(f'Epoch {epoch+1}/{epochs}, Train Loss: {train_loss:.6f}, Val Loss: {val_loss:.6f}')
    
    # 加载最佳模型权重
    model.load_state_dict(best_model_state)
    
    return model, history

# 评估函数
def evaluate_model(model, test_loader, device='cpu'):
    """
    评估模型性能
    """
    model.eval()
    criterion = nn.MSELoss()
    
    all_preds = []
    all_targets = []
    test_loss = 0.0
    
    with torch.no_grad():
        for X_batch, y_batch in test_loader:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            y_pred = model(X_batch)
            loss = criterion(y_pred, y_batch)
            test_loss += loss.item()
            
            all_preds.append(y_pred.cpu().numpy())
            all_targets.append(y_batch.cpu().numpy())
    
    test_loss /= len(test_loader)
    all_preds = np.vstack(all_preds)
    all_targets = np.vstack(all_targets)
    
    # 计算R2和RMSE
    r2 = r2_score(all_targets, all_preds)
    rmse = np.sqrt(mean_squared_error(all_targets, all_preds))
    
    return {
        'test_loss': test_loss,
        'r2': r2,
        'rmse': rmse,
        'predictions': all_preds,
        'targets': all_targets
    }

# 绘制训练历史
def plot_training_history(history_mirror, history_baseline):
    """
    绘制训练和验证损失的对比图
    """
    plt.figure(figsize=(12, 5))
    
    # 训练损失
    plt.subplot(1, 2, 1)
    plt.plot(history_mirror['train_loss'], label='Mirror Symmetry Model')
    plt.plot(history_baseline['train_loss'], label='Baseline MLP')
    plt.title('Training Loss')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    
    # 验证损失
    plt.subplot(1, 2, 2)
    plt.plot(history_mirror['val_loss'], label='Mirror Symmetry Model')
    plt.plot(history_baseline['val_loss'], label='Baseline MLP')
    plt.title('Validation Loss')
    plt.xlabel('Epochs')
    plt.ylabel('Loss')
    plt.legend()
    
    plt.tight_layout()
    plt.show()

# 绘制预测对比
def plot_predictions(mirror_results, baseline_results):
    """
    绘制预测值与真实值的对比图
    """
    plt.figure(figsize=(12, 5))
    
    # 镜像对称模型的预测
    plt.subplot(1, 2, 1)
    plt.scatter(mirror_results['targets'], mirror_results['predictions'], alpha=0.5)
    min_val = min(mirror_results['targets'].min(), mirror_results['predictions'].min())
    max_val = max(mirror_results['targets'].max(), mirror_results['predictions'].max())
    plt.plot([min_val, max_val], [min_val, max_val], 'r--')
    plt.title(f'Mirror Symmetry Model\nR² = {mirror_results["r2"]:.4f}, RMSE = {mirror_results["rmse"]:.4f}')
    plt.xlabel('True Values')
    plt.ylabel('Predicted Values')
    
    # 基准模型的预测
    plt.subplot(1, 2, 2)
    plt.scatter(baseline_results['targets'], baseline_results['predictions'], alpha=0.5)
    min_val = min(baseline_results['targets'].min(), baseline_results['predictions'].min())
    max_val = max(baseline_results['targets'].max(), baseline_results['predictions'].max())
    plt.plot([min_val, max_val], [min_val, max_val], 'r--')
    plt.title(f'Baseline MLP\nR² = {baseline_results["r2"]:.4f}, RMSE = {baseline_results["rmse"]:.4f}')
    plt.xlabel('True Values')
    plt.ylabel('Predicted Values')
    
    plt.tight_layout()
    plt.show()

# 主函数
def main():
    # 设置设备
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    print(f"Using device: {device}")
    
    # 超参数
    input_dim = 10
    hidden_dim = 64
    output_dim = 1
    batch_size = 32
    epochs = 100
    lr = 0.001
    
    # 生成数据
    X, y = generate_symmetric_data(n_samples=5000, input_dim=input_dim)
    
    # 划分数据集
    X_train, X_temp, y_train, y_temp = train_test_split(X, y, test_size=0.3, random_state=42)
    X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5, random_state=42)
    
    # 创建数据加载器
    train_dataset = TensorDataset(X_train, y_train)
    val_dataset = TensorDataset(X_val, y_val)
    test_dataset = TensorDataset(X_test, y_test)
    
    train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
    val_loader = DataLoader(val_dataset, batch_size=batch_size)
    test_loader = DataLoader(test_dataset, batch_size=batch_size)
    
    # 实例化模型
    mirror_model = MirrorSymmetryHodgeNetwork(input_dim, hidden_dim, output_dim)
    baseline_model = BaselineMLP(input_dim, hidden_dim, output_dim)
    
    # 训练镜像对称模型
    print("Training Mirror Symmetry Hodge Network...")
    mirror_model, history_mirror = train_model(
        mirror_model, train_loader, val_loader, 
        epochs=epochs, lr=lr, device=device
    )
    
    # 训练基准模型
    print("\nTraining Baseline MLP...")
    baseline_model, history_baseline = train_model(
        baseline_model, train_loader, val_loader, 
        epochs=epochs, lr=lr, device=device
    )
    
    # 评估两个模型
    print("\nEvaluating models on test set...")
    mirror_results = evaluate_model(mirror_model, test_loader, device)
    baseline_results = evaluate_model(baseline_model, test_loader, device)
    
    # 输出结果
    print("\nMirror Symmetry Hodge Network Results:")
    print(f"Test Loss: {mirror_results['test_loss']:.6f}")
    print(f"R2 Score: {mirror_results['r2']:.6f}")
    print(f"RMSE: {mirror_results['rmse']:.6f}")
    
    print("\nBaseline MLP Results:")
    print(f"Test Loss: {baseline_results['test_loss']:.6f}")
    print(f"R2 Score: {baseline_results['r2']:.6f}")
    print(f"RMSE: {baseline_results['rmse']:.6f}")
    
    # 绘制结果
    plot_training_history(history_mirror, history_baseline)
    plot_predictions(mirror_results, baseline_results)
    
    # 保存最佳模型
    torch.save(mirror_model.state_dict(), 'mirror_symmetry_hodge_model.pth')
    torch.save(baseline_model.state_dict(), 'baseline_mlp_model.pth')
    
    print("\nModels saved successfully!")

if __name__ == "__main__":
    main()