File size: 23,949 Bytes
3cdaa7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
# script for diffusion protocols
import torch
import pickle
import numpy as np
import os
import logging
from scipy.spatial.transform import Rotation as scipy_R
from rfdiffusion.util import rigid_from_3_points
from rfdiffusion.util_module import ComputeAllAtomCoords
from rfdiffusion import igso3
import time
torch.set_printoptions(sci_mode=False)
def get_beta_schedule(T, b0, bT, schedule_type, schedule_params={}, inference=False):
"""
Given a noise schedule type, create the beta schedule
"""
assert schedule_type in ["linear"]
# Adjust b0 and bT if T is not 200
# This is a good approximation, with the beta correction below, unless T is very small
assert T >= 15, "With discrete time and T < 15, the schedule is badly approximated"
b0 *= 200 / T
bT *= 200 / T
# linear noise schedule
if schedule_type == "linear":
schedule = torch.linspace(b0, bT, T)
else:
raise NotImplementedError(f"Schedule of type {schedule_type} not implemented.")
# get alphabar_t for convenience
alpha_schedule = 1 - schedule
alphabar_t_schedule = torch.cumprod(alpha_schedule, dim=0)
if inference:
print(
f"With this beta schedule ({schedule_type} schedule, beta_0 = {round(b0, 3)}, beta_T = {round(bT,3)}), alpha_bar_T = {alphabar_t_schedule[-1]}"
)
return schedule, alpha_schedule, alphabar_t_schedule
class EuclideanDiffuser:
# class for diffusing points in 3D
def __init__(
self,
T,
b_0,
b_T,
schedule_type="linear",
schedule_kwargs={},
):
self.T = T
# make noise/beta schedule
(
self.beta_schedule,
self.alpha_schedule,
self.alphabar_schedule,
) = get_beta_schedule(T, b_0, b_T, schedule_type, **schedule_kwargs)
def diffuse_translations(self, xyz, diffusion_mask=None, var_scale=1):
return self.apply_kernel_recursive(xyz, diffusion_mask, var_scale)
def apply_kernel(self, x, t, diffusion_mask=None, var_scale=1):
"""
Applies a noising kernel to the points in x
Parameters:
x (torch.tensor, required): (N,3,3) set of backbone coordinates
t (int, required): Which timestep
noise_scale (float, required): scale for noise
"""
t_idx = t - 1 # bring from 1-indexed to 0-indexed
assert len(x.shape) == 3
L, _, _ = x.shape
# c-alpha crds
ca_xyz = x[:, 1, :]
b_t = self.beta_schedule[t_idx]
# get the noise at timestep t
mean = torch.sqrt(1 - b_t) * ca_xyz
var = torch.ones(L, 3) * (b_t) * var_scale
sampled_crds = torch.normal(mean, torch.sqrt(var))
delta = sampled_crds - ca_xyz
if not diffusion_mask is None:
delta[diffusion_mask, ...] = 0
out_crds = x + delta[:, None, :]
return out_crds, delta
def apply_kernel_recursive(self, xyz, diffusion_mask=None, var_scale=1):
"""
Repeatedly apply self.apply_kernel T times and return all crds
"""
bb_stack = []
T_stack = []
cur_xyz = torch.clone(xyz)
for t in range(1, self.T + 1):
cur_xyz, cur_T = self.apply_kernel(
cur_xyz, t, var_scale=var_scale, diffusion_mask=diffusion_mask
)
bb_stack.append(cur_xyz)
T_stack.append(cur_T)
return torch.stack(bb_stack).transpose(0, 1), torch.stack(T_stack).transpose(
0, 1
)
def write_pkl(save_path: str, pkl_data):
"""Serialize data into a pickle file."""
with open(save_path, "wb") as handle:
pickle.dump(pkl_data, handle, protocol=pickle.HIGHEST_PROTOCOL)
def read_pkl(read_path: str, verbose=False):
"""Read data from a pickle file."""
with open(read_path, "rb") as handle:
try:
return pickle.load(handle)
except Exception as e:
if verbose:
print(f"Failed to read {read_path}")
raise (e)
class IGSO3:
"""
Class for taking in a set of backbone crds and performing IGSO3 diffusion
on all of them.
Unlike the diffusion on translations, much of this class is written for a
scaling between an initial time t=0 and final time t=1.
"""
def __init__(
self,
*,
T,
min_sigma,
max_sigma,
min_b,
max_b,
cache_dir,
num_omega=1000,
schedule="linear",
L=2000,
):
"""
Args:
T: total number of time steps
min_sigma: smallest allowed scale parameter, should be at least 0.01 to maintain numerical stability. Recommended value is 0.05.
max_sigma: for exponential schedule, the largest scale parameter. Ignored for recommeded linear schedule
min_b: lower value of beta in Ho schedule analogue
max_b: upper value of beta in Ho schedule analogue
num_omega: discretization level in the angles across [0, pi]
schedule: currently only linear and exponential are supported. The exponential schedule may be noising too slowly.
L: truncation level
"""
self._log = logging.getLogger(__name__)
self.T = T
self.schedule = schedule
self.cache_dir = cache_dir
self.min_sigma = min_sigma
self.max_sigma = max_sigma
if self.schedule == "linear":
self.min_b = min_b
self.max_b = max_b
self.max_sigma = self.sigma(1.0)
self.num_omega = num_omega
self.num_sigma = 500
# Calculate igso3 values.
self.L = L # truncation level
self.igso3_vals = self._calc_igso3_vals(L=L)
self.step_size = 1 / self.T
def _calc_igso3_vals(self, L=2000):
"""_calc_igso3_vals computes numerical approximations to the
relevant analytically intractable functionals of the igso3
distribution.
The calculated values are cached, or loaded from cache if they already
exist.
Args:
L: truncation level for power series expansion of the pdf.
"""
replace_period = lambda x: str(x).replace(".", "_")
if self.schedule == "linear":
cache_fname = os.path.join(
self.cache_dir,
f"T_{self.T}_omega_{self.num_omega}_min_sigma_{replace_period(self.min_sigma)}"
+ f"_min_b_{replace_period(self.min_b)}_max_b_{replace_period(self.max_b)}_schedule_{self.schedule}.pkl",
)
elif self.schedule == "exponential":
cache_fname = os.path.join(
self.cache_dir,
f"T_{self.T}_omega_{self.num_omega}_min_sigma_{replace_period(self.min_sigma)}"
f"_max_sigma_{replace_period(self.max_sigma)}_schedule_{self.schedule}",
)
else:
raise ValueError(f"Unrecognize schedule {self.schedule}")
if not os.path.isdir(self.cache_dir):
os.makedirs(self.cache_dir)
if os.path.exists(cache_fname):
self._log.info("Using cached IGSO3.")
igso3_vals = read_pkl(cache_fname)
else:
self._log.info("Calculating IGSO3.")
igso3_vals = igso3.calculate_igso3(
num_sigma=self.num_sigma,
min_sigma=self.min_sigma,
max_sigma=self.max_sigma,
num_omega=self.num_omega
)
write_pkl(cache_fname, igso3_vals)
return igso3_vals
@property
def discrete_sigma(self):
return self.igso3_vals["discrete_sigma"]
def sigma_idx(self, sigma: np.ndarray):
"""
Calculates the index for discretized sigma during IGSO(3) initialization."""
return np.digitize(sigma, self.discrete_sigma) - 1
def t_to_idx(self, t: np.ndarray):
"""
Helper function to go from discrete time index t to corresponding sigma_idx.
Args:
t: time index (integer between 1 and 200)
"""
continuous_t = t / self.T
return self.sigma_idx(self.sigma(continuous_t))
def sigma(self, t: torch.tensor):
"""
Extract \sigma(t) corresponding to chosen sigma schedule.
Args:
t: torch tensor with time between 0 and 1
"""
if not type(t) == torch.Tensor:
t = torch.tensor(t)
if torch.any(t < 0) or torch.any(t > 1):
raise ValueError(f"Invalid t={t}")
if self.schedule == "exponential":
sigma = t * np.log10(self.max_sigma) + (1 - t) * np.log10(self.min_sigma)
return 10**sigma
elif self.schedule == "linear": # Variance exploding analogue of Ho schedule
# add self.min_sigma for stability
return (
self.min_sigma
+ t * self.min_b
+ (1 / 2) * (t**2) * (self.max_b - self.min_b)
)
else:
raise ValueError(f"Unrecognize schedule {self.schedule}")
def g(self, t):
"""
g returns the drift coefficient at time t
since
sigma(t)^2 := \int_0^t g(s)^2 ds,
for arbitrary sigma(t) we invert this relationship to compute
g(t) = sqrt(d/dt sigma(t)^2).
Args:
t: scalar time between 0 and 1
Returns:
drift cooeficient as a scalar.
"""
t = torch.tensor(t, requires_grad=True)
sigma_sqr = self.sigma(t) ** 2
grads = torch.autograd.grad(sigma_sqr.sum(), t)[0]
return torch.sqrt(grads)
def sample(self, ts, n_samples=1):
"""
sample uses the inverse cdf to sample an angle of rotation from
IGSO(3)
Args:
ts: array of integer time steps to sample from.
n_samples: number of samples to draw.
Returns:
sampled angles of rotation. [len(ts), N]
"""
assert sum(ts == 0) == 0, "assumes one-indexed, not zero indexed"
all_samples = []
for t in ts:
sigma_idx = self.t_to_idx(t)
sample_i = np.interp(
np.random.rand(n_samples),
self.igso3_vals["cdf"][sigma_idx],
self.igso3_vals["discrete_omega"],
) # [N, 1]
all_samples.append(sample_i)
return np.stack(all_samples, axis=0)
def sample_vec(self, ts, n_samples=1):
"""sample_vec generates a rotation vector(s) from IGSO(3) at time steps
ts.
Return:
Sampled vector of shape [len(ts), N, 3]
"""
x = np.random.randn(len(ts), n_samples, 3)
x /= np.linalg.norm(x, axis=-1, keepdims=True)
return x * self.sample(ts, n_samples=n_samples)[..., None]
def score_norm(self, t, omega):
"""
score_norm computes the score norm based on the time step and angle
Args:
t: integer time step
omega: angles (scalar or shape [N])
Return:
score_norm with same shape as omega
"""
sigma_idx = self.t_to_idx(t)
score_norm_t = np.interp(
omega,
self.igso3_vals["discrete_omega"],
self.igso3_vals["score_norm"][sigma_idx],
)
return score_norm_t
def score_vec(self, ts, vec):
"""score_vec computes the score of the IGSO(3) density as a rotation
vector. This score vector is in the direction of the sampled vector,
and has magnitude given by score_norms.
In particular, Rt @ hat(score_vec(ts, vec)) is what is referred to as
the score approximation in Algorithm 1
Args:
ts: times of shape [T]
vec: where to compute the score of shape [T, N, 3]
Returns:
score vectors of shape [T, N, 3]
"""
omega = np.linalg.norm(vec, axis=-1)
all_score_norm = []
for i, t in enumerate(ts):
omega_t = omega[i]
t_idx = t - 1
sigma_idx = self.t_to_idx(t)
score_norm_t = np.interp(
omega_t,
self.igso3_vals["discrete_omega"],
self.igso3_vals["score_norm"][sigma_idx],
)[:, None]
all_score_norm.append(score_norm_t)
score_norm = np.stack(all_score_norm, axis=0)
return score_norm * vec / omega[..., None]
def exp_score_norm(self, ts):
"""exp_score_norm returns the expected value of norm of the score for
IGSO(3) with time parameter ts of shape [T].
"""
sigma_idcs = [self.t_to_idx(t) for t in ts]
return self.igso3_vals["exp_score_norms"][sigma_idcs]
def diffuse_frames(self, xyz, t_list, diffusion_mask=None):
"""diffuse_frames samples from the IGSO(3) distribution to noise frames
Parameters:
xyz (np.array or torch.tensor, required): (L,3,3) set of backbone coordinates
mask (np.array or torch.tensor, required): (L,) set of bools. True/1 is NOT diffused, False/0 IS diffused
Returns:
np.array : N/CA/C coordinates for each residue
(T,L,3,3), where T is num timesteps
"""
if torch.is_tensor(xyz):
xyz = xyz.numpy()
t = np.arange(self.T) + 1 # 1-indexed!!
num_res = len(xyz)
N = torch.from_numpy(xyz[None, :, 0, :])
Ca = torch.from_numpy(xyz[None, :, 1, :]) # [1, num_res, 3, 3]
C = torch.from_numpy(xyz[None, :, 2, :])
# scipy rotation object for true coordinates
R_true, Ca = rigid_from_3_points(N, Ca, C)
R_true = R_true[0]
Ca = Ca[0]
# Sample rotations and scores from IGSO3
sampled_rots = self.sample_vec(t, n_samples=num_res) # [T, N, 3]
if diffusion_mask is not None:
non_diffusion_mask = 1 - diffusion_mask[None, :, None]
sampled_rots = sampled_rots * non_diffusion_mask
# Apply sampled rot.
R_sampled = (
scipy_R.from_rotvec(sampled_rots.reshape(-1, 3))
.as_matrix()
.reshape(self.T, num_res, 3, 3)
)
R_perturbed = np.einsum("tnij,njk->tnik", R_sampled, R_true)
perturbed_crds = (
np.einsum(
"tnij,naj->tnai", R_sampled, xyz[:, :3, :] - Ca[:, None, ...].numpy()
)
+ Ca[None, :, None].numpy()
)
if t_list != None:
idx = [i - 1 for i in t_list]
perturbed_crds = perturbed_crds[idx]
R_perturbed = R_perturbed[idx]
return (
perturbed_crds.transpose(1, 0, 2, 3), # [L, T, 3, 3]
R_perturbed.transpose(1, 0, 2, 3),
)
def reverse_sample_vectorized(
self, R_t, R_0, t, noise_level, mask=None, return_perturb=False
):
"""reverse_sample uses an approximation to the IGSO3 score to sample
a rotation at the previous time step.
Roughly - this update follows the reverse time SDE for Reimannian
manifolds proposed by de Bortoli et al. Theorem 1 [1]. But with an
approximation to the score based on the prediction of R0.
Unlike in reference [1], this diffusion on SO(3) relies on geometric
variance schedule. Specifically we follow [2] (appendix C) and assume
sigma_t = sigma_min * (sigma_max / sigma_min)^{t/T},
for time step t. When we view this as a discretization of the SDE
from time 0 to 1 with step size (1/T). Following Eq. 5 and Eq. 6,
this maps on to the forward time SDEs
dx = g(t) dBt [FORWARD]
and
dx = g(t)^2 score(xt, t)dt + g(t) B't, [REVERSE]
where g(t) = sigma_t * sqrt(2 * log(sigma_max/ sigma_min)), and Bt and
B't are Brownian motions. The formula for g(t) obtains from equation 9
of [2], from which this sampling function may be generalized to
alternative noising schedules.
Args:
R_t: noisy rotation of shape [N, 3, 3]
R_0: prediction of un-noised rotation
t: integer time step
noise_level: scaling on the noise added when obtaining sample
(preliminary performance seems empirically better with noise
level=0.5)
mask: whether the residue is to be updated. A value of 1 means the
rotation is not updated from r_t. A value of 0 means the
rotation is updated.
Return:
sampled rotation matrix for time t-1 of shape [3, 3]
Reference:
[1] De Bortoli, V., Mathieu, E., Hutchinson, M., Thornton, J., Teh, Y.
W., & Doucet, A. (2022). Riemannian score-based generative modeling.
arXiv preprint arXiv:2202.02763.
[2] Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S.,
& Poole, B. (2020). Score-based generative modeling through stochastic
differential equations. arXiv preprint arXiv:2011.13456.
"""
# compute rotation vector corresponding to prediction of how r_t goes to r_0
R_0, R_t = torch.tensor(R_0), torch.tensor(R_t)
R_0t = torch.einsum("...ij,...kj->...ik", R_t, R_0)
R_0t_rotvec = torch.tensor(
scipy_R.from_matrix(R_0t.cpu().numpy()).as_rotvec()
).to(R_0.device)
# Approximate the score based on the prediction of R0.
# R_t @ hat(Score_approx) is the score approximation in the Lie algebra
# SO(3) (i.e. the output of Algorithm 1)
Omega = torch.linalg.norm(R_0t_rotvec, axis=-1).numpy()
Score_approx = R_0t_rotvec * (self.score_norm(t, Omega) / Omega)[:, None]
# Compute scaling for score and sampled noise (following Eq 6 of [2])
continuous_t = t / self.T
rot_g = self.g(continuous_t).to(Score_approx.device)
# Sample and scale noise to add to the rotation perturbation in the
# SO(3) tangent space. Since IG-SO(3) is the Brownian motion on SO(3)
# (up to a deceleration of time by a factor of two), for small enough
# time-steps, this is equivalent to perturbing r_t with IG-SO(3) noise.
# See e.g. Algorithm 1 of De Bortoli et al.
Z = np.random.normal(size=(R_0.shape[0], 3))
Z = torch.from_numpy(Z).to(Score_approx.device)
Z *= noise_level
Delta_r = (rot_g**2) * self.step_size * Score_approx
# Sample perturbation from discretized SDE (following eq. 6 of [2]),
# This approximate sampling from IGSO3(* ; Delta_r, rot_g^2 *
# self.step_size) with tangent Gaussian.
Perturb_tangent = Delta_r + rot_g * np.sqrt(self.step_size) * Z
if mask is not None:
Perturb_tangent *= (1 - mask.long())[:, None, None]
Perturb = igso3.Exp(Perturb_tangent)
if return_perturb:
return Perturb
Interp_rot = torch.einsum("...ij,...jk->...ik", Perturb, R_t)
return Interp_rot
class Diffuser:
# wrapper for yielding diffused coordinates
def __init__(
self,
T,
b_0,
b_T,
min_sigma,
max_sigma,
min_b,
max_b,
schedule_type,
so3_schedule_type,
so3_type,
crd_scale,
schedule_kwargs={},
var_scale=1.0,
cache_dir=".",
partial_T=None,
truncation_level=2000,
):
"""
Parameters:
T (int, required): Number of steps in the schedule
b_0 (float, required): Starting variance for Euclidean schedule
b_T (float, required): Ending variance for Euclidean schedule
"""
self.T = T
self.b_0 = b_0
self.b_T = b_T
self.min_sigma = min_sigma
self.max_sigma = max_sigma
self.crd_scale = crd_scale
self.var_scale = var_scale
self.cache_dir = cache_dir
# get backbone frame diffuser
self.so3_diffuser = IGSO3(
T=self.T,
min_sigma=self.min_sigma,
max_sigma=self.max_sigma,
schedule=so3_schedule_type,
min_b=min_b,
max_b=max_b,
cache_dir=self.cache_dir,
L=truncation_level,
)
# get backbone translation diffuser
self.eucl_diffuser = EuclideanDiffuser(
self.T, b_0, b_T, schedule_type=schedule_type, **schedule_kwargs
)
print("Successful diffuser __init__")
def diffuse_pose(
self,
xyz,
seq,
atom_mask,
include_motif_sidechains=True,
diffusion_mask=None,
t_list=None,
):
"""
Given full atom xyz, sequence and atom mask, diffuse the protein frame
translations and rotations
Parameters:
xyz (L,14/27,3) set of coordinates
seq (L,) integer sequence
atom_mask: mask describing presence/absence of an atom in pdb
diffusion_mask (torch.tensor, optional): Tensor of bools, True means NOT diffused at this residue, False means diffused
t_list (list, optional): If present, only return the diffused coordinates at timesteps t within the list
"""
if diffusion_mask is None:
diffusion_mask = torch.zeros(len(xyz.squeeze())).to(dtype=bool)
get_allatom = ComputeAllAtomCoords().to(device=xyz.device)
L = len(xyz)
# bring to origin and scale
# check if any BB atoms are nan before centering
nan_mask = ~torch.isnan(xyz.squeeze()[:, :3]).any(dim=-1).any(dim=-1)
assert torch.sum(~nan_mask) == 0
# Centre unmasked structure at origin, as in training (to prevent information leak)
if torch.sum(diffusion_mask) != 0:
self.motif_com = xyz[diffusion_mask, 1, :].mean(
dim=0
) # This is needed for one of the potentials
xyz = xyz - self.motif_com
elif torch.sum(diffusion_mask) == 0:
xyz = xyz - xyz[:, 1, :].mean(dim=0)
xyz_true = torch.clone(xyz)
xyz = xyz * self.crd_scale
# 1 get translations
tick = time.time()
diffused_T, deltas = self.eucl_diffuser.diffuse_translations(
xyz[:, :3, :].clone(), diffusion_mask=diffusion_mask
)
# print('Time to diffuse coordinates: ',time.time()-tick)
diffused_T /= self.crd_scale
deltas /= self.crd_scale
# 2 get frames
tick = time.time()
diffused_frame_crds, diffused_frames = self.so3_diffuser.diffuse_frames(
xyz[:, :3, :].clone(), diffusion_mask=diffusion_mask.numpy(), t_list=None
)
diffused_frame_crds /= self.crd_scale
# print('Time to diffuse frames: ',time.time()-tick)
##### Now combine all the diffused quantities to make full atom diffused poses
tick = time.time()
cum_delta = deltas.cumsum(dim=1)
# The coordinates of the translated AND rotated frames
diffused_BB = (
torch.from_numpy(diffused_frame_crds) + cum_delta[:, :, None, :]
).transpose(
0, 1
) # [n,L,3,3]
# diffused_BB = torch.from_numpy(diffused_frame_crds).transpose(0,1)
# diffused_BB is [t_steps,L,3,3]
t_steps, L = diffused_BB.shape[:2]
diffused_fa = torch.zeros(t_steps, L, 27, 3)
diffused_fa[:, :, :3, :] = diffused_BB
# Add in sidechains from motif
if include_motif_sidechains:
diffused_fa[:, diffusion_mask, :14, :] = xyz_true[None, diffusion_mask, :14]
if t_list is None:
fa_stack = diffused_fa
else:
t_idx_list = [t - 1 for t in t_list]
fa_stack = diffused_fa[t_idx_list]
return fa_stack, xyz_true
|