File size: 3,554 Bytes
d0f4968 1ca31eb d0f4968 1ca31eb d0f4968 464c7c0 d0f4968 1ca31eb d0f4968 464c7c0 d0f4968 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
---
base_model:
- Qwen/Qwen3-8B
language:
- en
license: apache-2.0
pipeline_tag: text-generation
library_name: transformers
---
<div align="center">
# 🧩 ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization
<a href="https://arxiv.org/pdf/2510.24592"><img src="https://img.shields.io/badge/Paper-arXiv-d63031?logo=arxiv&logoColor=white"></a>
<a href="https://huggingface.co/collections/GuoxinChen/reform"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-0984e3"></a>
<a href="https://github.com/Chen-GX/ReForm"><img src="https://img.shields.io/badge/GitHub-ReForm-black?logo=github"></a>
</div>
**ReForm** is a reflective **Autoformalization** framework that enables large language models to *generate → verify → refine* formal mathematical statements in an integrated self-corrective loop.
It introduces **Prospective Bounded Sequence Optimization (PBSO)** — a novel reinforcement learning algorithm designed for heterogeneous rewards at different sequence positions — enabling stable, reflective training and substantial gains in semantic fidelity.
---
## 🚀 Highlights
- 🪞 **Reflective Autoformalization Paradigm**
Turns single-pass translation into an iterative “generate–validate–refine” cycle, allowing the model to autonomously detect and correct semantic errors.
- ⚖️ **Prospective Bounded Sequence Optimization (PBSO)**
A reinforcement learning algorithm with position-specific rewards for both task accuracy and critique quality, ensuring stable and interpretable optimization.
- 📈 **State-of-the-art Semantic Consistency**
ReForm achieves an **average +17.2pp improvement** over the strongest baseline across four formalization benchmarks (miniF2F, ProofNet, Putnam, and AIME 2025).
---
<div align="center">
<img src="https://github.com/Chen-GX/ReForm/raw/main/images/benchmark_comparison.png" width="100%">
<br>
<sub><b>Figure:</b> ReForm consistently outperforms Goedel-V2 and Kimina-Autoformalizer on all benchmarks.</sub>
</div>
---
## 💡 Quick Start
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "GuoxinChen/ReForm-8B" # or "GuoxinChen/ReForm-32B"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
prompt = "Think step by step to translate the mathematical problem in natural language to Lean 4, and verify the consistency.
Let $a_1, a_2,\\cdots, a_n$ be real constants, $x$ a real variable, and $f(x)=\\cos(a_1+x)+\\frac{1}{2}\\cos(a_2+x)+\\frac{1}{4}\\cos(a_3+x)+\\cdots+\\frac{1}{2^{n-1}}\\cos(a_n+x).$ Given that $f(x_1)=f(x_2)=0,$ prove that $x_2-x_1=m\\pi$ for some integer $m.$"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
More Details please refer to our [Github Repo](https://github.com/Chen-GX/ReForm).
# 📚 Citation
If you find ReForm useful for your research, please cite:
```bibtex
@misc{chen2025reform,
title={ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization},
author={Guoxin Chen and Jing Wu and Xinjie Chen and Wayne Xin Zhao and Ruihua Song and Chengxi Li and Kai Fan and Dayiheng Liu and Minpeng Liao},
year={2025},
eprint={2510.24592},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2510.24592},
}
``` |