File size: 8,309 Bytes
226675b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
try:
from itertools import ifilterfalse
except ImportError: # py3k
from itertools import filterfalse as ifilterfalse
class CELoss(nn.Module):
def __init__(self, ignore_index=255, reduction='mean'):
super(CELoss, self).__init__()
self.ignore_index = ignore_index
self.criterion = nn.CrossEntropyLoss(reduction=reduction)
if not reduction:
print("disabled the reduction.")
def forward(self, pred, target):
loss = self.criterion(pred, target)
return loss
class FocalLoss(nn.Module):
def __init__(self, gamma=0, alpha=None, size_average=True):
super(FocalLoss, self).__init__()
self.gamma = gamma
self.alpha = alpha
if isinstance(alpha, (float, int)):
self.alpha = torch.Tensor([alpha, 1-alpha])
if isinstance(alpha, list):
self.alpha = torch.Tensor(alpha)
self.size_average = size_average
def forward(self, input, target):
if input.dim() > 2:
# N,C,H,W => N,C,H*W
input = input.view(input.size(0), input.size(1), -1)
# N,C,H*W => N,H*W,C
input = input.transpose(1, 2)
# N,H*W,C => N*H*W,C
input = input.contiguous().view(-1, input.size(2))
target = target.view(-1, 1)
logpt = F.log_softmax(input)
logpt = logpt.gather(1, target)
logpt = logpt.view(-1)
pt = Variable(logpt.data.exp())
if self.alpha is not None:
if self.alpha.type() != input.data.type():
self.alpha = self.alpha.type_as(input.data)
at = self.alpha.gather(0, target.data.view(-1))
logpt = logpt * Variable(at)
loss = -1 * (1-pt)**self.gamma * logpt
if self.size_average:
return loss.mean()
else:
return loss.sum()
class dice_loss(nn.Module):
def __init__(self, eps=1e-7):
super(dice_loss, self).__init__()
self.eps = eps
def forward(self, logits, true):
"""
Computes the Sørensen–Dice loss.
Note that PyTorch optimizers minimize a loss. In this
case, we would like to maximize the dice loss so we
return the negated dice loss.
Args:
true: a tensor of shape [B, 1, H, W].
logits: a tensor of shape [B, C, H, W]. Corresponds to
the raw output or logits of the model.
eps: added to the denominator for numerical stability.
Returns:
dice_loss: the Sørensen–Dice loss.
"""
num_classes = logits.shape[1]
if num_classes == 1:
true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
true_1_hot_f = true_1_hot[:, 0:1, :, :]
true_1_hot_s = true_1_hot[:, 1:2, :, :]
true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1)
pos_prob = torch.sigmoid(logits)
neg_prob = 1 - pos_prob
probas = torch.cat([pos_prob, neg_prob], dim=1)
else:
p = torch.eye(num_classes).cuda()
true_1_hot = p[true.squeeze(1)]
true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
probas = F.softmax(logits, dim=1)
true_1_hot = true_1_hot.type(logits.type())
dims = (0,) + tuple(range(2, true.ndimension()))
intersection = torch.sum(probas * true_1_hot, dims)
cardinality = torch.sum(probas + true_1_hot, dims)
dice_loss = (2. * intersection / (cardinality + self.eps)).mean()
return (1 - dice_loss)
class BCEDICE_loss(nn.Module):
def __init__(self):
super(BCEDICE_loss, self).__init__()
self.bce = torch.nn.BCELoss()
def forward(self, target, true):
bce_loss = self.bce(target, true.float())
true_u = true.unsqueeze(1)
target_u = target.unsqueeze(1)
inter = (true * target).sum()
eps = 1e-7
dice_loss = (2 * inter + eps) / (true.sum() + target.sum() + eps)
return bce_loss + 1 - dice_loss
class LOVASZ(nn.Module):
def __init__(self):
super(LOVASZ, self).__init__()
def forward(self, probas, labels):
return lovasz_softmax(F.softmax(probas, dim=1), labels)
def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=None):
"""
Multi-class Lovasz-Softmax loss
probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1).
Interpreted as binary (sigmoid) output with outputs of size [B, H, W].
labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
per_image: compute the loss per image instead of per batch
ignore: void class labels
"""
if per_image:
loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes)
for prob, lab in zip(probas, labels))
else:
loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes)
return loss
def lovasz_softmax_flat(probas, labels, classes='present'):
"""
Multi-class Lovasz-Softmax loss
probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
labels: [P] Tensor, ground truth labels (between 0 and C - 1)
classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
"""
if probas.numel() == 0:
# only void pixels, the gradients should be 0
return probas * 0.
C = probas.size(1)
losses = []
class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes
for c in class_to_sum:
fg = (labels == c).float() # foreground for class c
if (classes is 'present' and fg.sum() == 0):
continue
if C == 1:
if len(classes) > 1:
raise ValueError('Sigmoid output possible only with 1 class')
class_pred = probas[:, 0]
else:
class_pred = probas[:, c]
errors = (Variable(fg) - class_pred).abs()
errors_sorted, perm = torch.sort(errors, 0, descending=True)
perm = perm.data
fg_sorted = fg[perm]
losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted))))
return mean(losses)
def lovasz_grad(gt_sorted):
"""
Computes gradient of the Lovasz extension w.r.t sorted errors
See Alg. 1 in paper
"""
p = len(gt_sorted)
gts = gt_sorted.sum()
intersection = gts - gt_sorted.float().cumsum(0)
union = gts + (1 - gt_sorted).float().cumsum(0)
jaccard = 1. - intersection / union
if p > 1: # cover 1-pixel case
jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
return jaccard
def flatten_probas(probas, labels, ignore=None):
"""
Flattens predictions in the batch
"""
if probas.dim() == 3:
# assumes output of a sigmoid layer
B, H, W = probas.size()
probas = probas.view(B, 1, H, W)
B, C, H, W = probas.size()
probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C) # B * H * W, C = P, C
labels = labels.view(-1)
if ignore is None:
return probas, labels
valid = (labels != ignore)
vprobas = probas[valid.nonzero().squeeze()]
vlabels = labels[valid]
return vprobas, vlabels
def isnan(x):
return x != x
def mean(l, ignore_nan=False, empty=0):
"""
nanmean compatible with generators.
"""
l = iter(l)
if ignore_nan:
l = ifilterfalse(isnan, l)
try:
n = 1
acc = next(l)
except StopIteration:
if empty == 'raise':
raise ValueError('Empty mean')
return empty
for n, v in enumerate(l, 2):
acc += v
if n == 1:
return acc
return acc / n
if __name__ == "__main__":
predict = torch.randn(4, 2, 10, 10)
target = torch.randint(low=0,high=2,size=[4, 10, 10])
func = CELoss()
loss = func(predict, target)
print(loss)
|