File size: 8,309 Bytes
226675b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
try:
    from itertools import  ifilterfalse
except ImportError: # py3k
    from itertools import  filterfalse as ifilterfalse

class CELoss(nn.Module):
    def __init__(self, ignore_index=255, reduction='mean'):
        super(CELoss, self).__init__()

        self.ignore_index = ignore_index
        self.criterion = nn.CrossEntropyLoss(reduction=reduction)
        if not reduction:
            print("disabled the reduction.")
    
    def forward(self, pred, target):
        loss = self.criterion(pred, target) 
        return loss

class FocalLoss(nn.Module):
    def __init__(self, gamma=0, alpha=None, size_average=True):
        super(FocalLoss, self).__init__()
        self.gamma = gamma
        self.alpha = alpha
        if isinstance(alpha, (float, int)):
            self.alpha = torch.Tensor([alpha, 1-alpha])
        if isinstance(alpha, list):
            self.alpha = torch.Tensor(alpha)
        self.size_average = size_average

    def forward(self, input, target):
        if input.dim() > 2:
            # N,C,H,W => N,C,H*W
            input = input.view(input.size(0), input.size(1), -1)

            # N,C,H*W => N,H*W,C
            input = input.transpose(1, 2)

            # N,H*W,C => N*H*W,C
            input = input.contiguous().view(-1, input.size(2))

        target = target.view(-1, 1)
        logpt = F.log_softmax(input)
        logpt = logpt.gather(1, target)
        logpt = logpt.view(-1)
        pt = Variable(logpt.data.exp())

        if self.alpha is not None:
            if self.alpha.type() != input.data.type():
                self.alpha = self.alpha.type_as(input.data)
            at = self.alpha.gather(0, target.data.view(-1))
            logpt = logpt * Variable(at)

        loss = -1 * (1-pt)**self.gamma * logpt

        if self.size_average:
            return loss.mean()
        else:
            return loss.sum()

class dice_loss(nn.Module):
    def __init__(self, eps=1e-7):
        super(dice_loss, self).__init__()
        self.eps = eps
    
    def forward(self, logits, true):
        """
        Computes the Sørensen–Dice loss.
        Note that PyTorch optimizers minimize a loss. In this
        case, we would like to maximize the dice loss so we
        return the negated dice loss.
        Args:
            true: a tensor of shape [B, 1, H, W].
            logits: a tensor of shape [B, C, H, W]. Corresponds to
                the raw output or logits of the model.
            eps: added to the denominator for numerical stability.
        Returns:
            dice_loss: the Sørensen–Dice loss.
        """
        num_classes = logits.shape[1]
        if num_classes == 1:
            true_1_hot = torch.eye(num_classes + 1)[true.squeeze(1)]
            true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
            true_1_hot_f = true_1_hot[:, 0:1, :, :]
            true_1_hot_s = true_1_hot[:, 1:2, :, :]
            true_1_hot = torch.cat([true_1_hot_s, true_1_hot_f], dim=1)
            pos_prob = torch.sigmoid(logits)
            neg_prob = 1 - pos_prob
            probas = torch.cat([pos_prob, neg_prob], dim=1)
        else:
            p = torch.eye(num_classes).cuda()
            true_1_hot = p[true.squeeze(1)]
            true_1_hot = true_1_hot.permute(0, 3, 1, 2).float()
            probas = F.softmax(logits, dim=1)
        true_1_hot = true_1_hot.type(logits.type())
        dims = (0,) + tuple(range(2, true.ndimension()))
        intersection = torch.sum(probas * true_1_hot, dims)
        cardinality = torch.sum(probas + true_1_hot, dims)
        dice_loss = (2. * intersection / (cardinality + self.eps)).mean()
        return (1 - dice_loss)

class BCEDICE_loss(nn.Module):
    def __init__(self):
        super(BCEDICE_loss, self).__init__()
        self.bce = torch.nn.BCELoss()
    
    def forward(self, target, true):
        
        bce_loss = self.bce(target, true.float())

        true_u = true.unsqueeze(1)
        target_u = target.unsqueeze(1)

        inter = (true * target).sum()
        eps = 1e-7
        dice_loss = (2 * inter + eps) / (true.sum() + target.sum() + eps)

        return bce_loss + 1 - dice_loss

class LOVASZ(nn.Module):
    def __init__(self):
        super(LOVASZ, self).__init__()

    def forward(self, probas, labels):
        return lovasz_softmax(F.softmax(probas, dim=1), labels)

def lovasz_softmax(probas, labels, classes='present', per_image=False, ignore=None):
    """
    Multi-class Lovasz-Softmax loss
      probas: [B, C, H, W] Variable, class probabilities at each prediction (between 0 and 1).
              Interpreted as binary (sigmoid) output with outputs of size [B, H, W].
      labels: [B, H, W] Tensor, ground truth labels (between 0 and C - 1)
      classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
      per_image: compute the loss per image instead of per batch
      ignore: void class labels
    """
    if per_image:
        loss = mean(lovasz_softmax_flat(*flatten_probas(prob.unsqueeze(0), lab.unsqueeze(0), ignore), classes=classes)
                          for prob, lab in zip(probas, labels))
    else:
        loss = lovasz_softmax_flat(*flatten_probas(probas, labels, ignore), classes=classes)
    return loss


def lovasz_softmax_flat(probas, labels, classes='present'):
    """
    Multi-class Lovasz-Softmax loss
      probas: [P, C] Variable, class probabilities at each prediction (between 0 and 1)
      labels: [P] Tensor, ground truth labels (between 0 and C - 1)
      classes: 'all' for all, 'present' for classes present in labels, or a list of classes to average.
    """
    if probas.numel() == 0:
        # only void pixels, the gradients should be 0
        return probas * 0.
    C = probas.size(1)
    losses = []
    class_to_sum = list(range(C)) if classes in ['all', 'present'] else classes
    for c in class_to_sum:
        fg = (labels == c).float() # foreground for class c
        if (classes is 'present' and fg.sum() == 0):
            continue
        if C == 1:
            if len(classes) > 1:
                raise ValueError('Sigmoid output possible only with 1 class')
            class_pred = probas[:, 0]
        else:
            class_pred = probas[:, c]
        errors = (Variable(fg) - class_pred).abs()
        errors_sorted, perm = torch.sort(errors, 0, descending=True)
        perm = perm.data
        fg_sorted = fg[perm]
        losses.append(torch.dot(errors_sorted, Variable(lovasz_grad(fg_sorted))))
    return mean(losses)

def lovasz_grad(gt_sorted):
    """
    Computes gradient of the Lovasz extension w.r.t sorted errors
    See Alg. 1 in paper
    """
    p = len(gt_sorted)
    gts = gt_sorted.sum()
    intersection = gts - gt_sorted.float().cumsum(0)
    union = gts + (1 - gt_sorted).float().cumsum(0)
    jaccard = 1. - intersection / union
    if p > 1: # cover 1-pixel case
        jaccard[1:p] = jaccard[1:p] - jaccard[0:-1]
    return jaccard

def flatten_probas(probas, labels, ignore=None):
    """
    Flattens predictions in the batch
    """
    if probas.dim() == 3:
        # assumes output of a sigmoid layer
        B, H, W = probas.size()
        probas = probas.view(B, 1, H, W)
    B, C, H, W = probas.size()
    probas = probas.permute(0, 2, 3, 1).contiguous().view(-1, C)  # B * H * W, C = P, C
    labels = labels.view(-1)
    if ignore is None:
        return probas, labels
    valid = (labels != ignore)
    vprobas = probas[valid.nonzero().squeeze()]
    vlabels = labels[valid]
    return vprobas, vlabels

def isnan(x):
    return x != x
    
    
def mean(l, ignore_nan=False, empty=0):
    """
    nanmean compatible with generators.
    """
    l = iter(l)
    if ignore_nan:
        l = ifilterfalse(isnan, l)
    try:
        n = 1
        acc = next(l)
    except StopIteration:
        if empty == 'raise':
            raise ValueError('Empty mean')
        return empty
    for n, v in enumerate(l, 2):
        acc += v
    if n == 1:
        return acc
    return acc / n

if __name__ == "__main__":
    predict = torch.randn(4, 2, 10, 10)
    target = torch.randint(low=0,high=2,size=[4, 10, 10])
    func = CELoss()
    loss = func(predict, target)
    print(loss)