Delete beam_search.py
Browse files- beam_search.py +0 -1078
beam_search.py
DELETED
|
@@ -1,1078 +0,0 @@
|
|
| 1 |
-
"""
|
| 2 |
-
This is a self-contained and flexible beam search implementation adapted from
|
| 3 |
-
AllenNLP's beam search: https://github.com/allenai/allennlp/blob/main/allennlp/nn/beam_search.py
|
| 4 |
-
"""
|
| 5 |
-
|
| 6 |
-
import copy
|
| 7 |
-
import warnings
|
| 8 |
-
from abc import abstractmethod
|
| 9 |
-
from inspect import signature
|
| 10 |
-
from typing import Any, Callable, Dict, List, Optional, Tuple, TypeVar, cast
|
| 11 |
-
|
| 12 |
-
import torch
|
| 13 |
-
|
| 14 |
-
__all__ = [
|
| 15 |
-
"Sampler",
|
| 16 |
-
"DeterministicSampler",
|
| 17 |
-
"MultinomialSampler",
|
| 18 |
-
"TopKSampler",
|
| 19 |
-
"TopPSampler",
|
| 20 |
-
"GumbelSampler",
|
| 21 |
-
"FinalSequenceScorer",
|
| 22 |
-
"SequenceLogProbabilityScorer",
|
| 23 |
-
"LengthNormalizedSequenceLogProbabilityScorer",
|
| 24 |
-
"Constraint",
|
| 25 |
-
"RepeatedNGramBlockingConstraint",
|
| 26 |
-
"BeamSearch",
|
| 27 |
-
]
|
| 28 |
-
|
| 29 |
-
StateType = Dict[str, torch.Tensor]
|
| 30 |
-
StepFunctionTypeWithTimestep = Callable[[torch.Tensor, StateType, int], Tuple[torch.Tensor, StateType]]
|
| 31 |
-
StepFunctionTypeNoTimestep = Callable[[torch.Tensor, StateType], Tuple[torch.Tensor, StateType]]
|
| 32 |
-
|
| 33 |
-
StepFunctionType = TypeVar("StepFunctionType", StepFunctionTypeWithTimestep, StepFunctionTypeNoTimestep)
|
| 34 |
-
"""
|
| 35 |
-
The type of step function that can be passed to [`BeamSearch.search`](#search).
|
| 36 |
-
|
| 37 |
-
This can either be [`StepFunctionTypeWithTimestep`](#stepfunctiontypewithtimestep)
|
| 38 |
-
or [`StepFunctionTypeNoTimestep`](#stepfunctiontypenotimestep).
|
| 39 |
-
"""
|
| 40 |
-
|
| 41 |
-
ConstraintStateType = List[List[Dict[str, Any]]]
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
class Sampler:
|
| 45 |
-
"""
|
| 46 |
-
An abstract class that can be used to sample candidates (either nodes or beams)
|
| 47 |
-
within `BeamSearch`.
|
| 48 |
-
|
| 49 |
-
A `Sampler` just has three methods, `init_state()`, `sample_nodes()` and `sample_beams()`.
|
| 50 |
-
|
| 51 |
-
`init_state()` takes three arguments:
|
| 52 |
-
|
| 53 |
-
- a tensor of starting log probs with shape `(batch_size,, num_classes)`,
|
| 54 |
-
- the batch size, an int,
|
| 55 |
-
- and the number of classes, also an int.
|
| 56 |
-
|
| 57 |
-
It returns a state dictionary with any state tensors needed for subsequent
|
| 58 |
-
calls to `sample_nodes()` and `sample_beams()`.
|
| 59 |
-
|
| 60 |
-
By default this method just returns an empty dictionary.
|
| 61 |
-
|
| 62 |
-
Both `sample_nodes()` and `sample_beams()` should take three arguments:
|
| 63 |
-
|
| 64 |
-
- tensor of normalized log probabilities with shape `(batch_size, num_examples)`,
|
| 65 |
-
- an integer representing the number of samples to take for each example in the batch,
|
| 66 |
-
- and a state dictionary which could contain any tensors needed for the `Sampler` to keep
|
| 67 |
-
track of state.
|
| 68 |
-
|
| 69 |
-
For `sample_nodes()`, `num_examples = num_classes`, but for `sample_beams`,
|
| 70 |
-
`num_examples = beam_size * per_node_beam_size`.
|
| 71 |
-
|
| 72 |
-
The return value should be a tuple containing:
|
| 73 |
-
|
| 74 |
-
- a tensor of log probabilities of the sampled examples with shape `(batch_size, num_samples)`,
|
| 75 |
-
- a tensor of indices of the sampled examples with shape `(batch_size, num_samples)`,
|
| 76 |
-
- and the updated state dictionary.
|
| 77 |
-
|
| 78 |
-
A default implementation of `sample_beams` is provided, which just deterministically
|
| 79 |
-
picks the `k` examples with highest log probability.
|
| 80 |
-
"""
|
| 81 |
-
|
| 82 |
-
def init_state(
|
| 83 |
-
self, start_class_log_probabilities: torch.Tensor, batch_size: int, num_classes: int
|
| 84 |
-
) -> StateType:
|
| 85 |
-
del start_class_log_probabilities, batch_size, num_classes
|
| 86 |
-
return {}
|
| 87 |
-
|
| 88 |
-
@abstractmethod
|
| 89 |
-
def sample_nodes(
|
| 90 |
-
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
| 91 |
-
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
| 92 |
-
raise NotImplementedError
|
| 93 |
-
|
| 94 |
-
def sample_beams(
|
| 95 |
-
self, log_probs: torch.Tensor, beam_size: int, state: StateType
|
| 96 |
-
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
| 97 |
-
del state
|
| 98 |
-
selected_log_probs, selected_indices = torch.topk(log_probs, beam_size, dim=-1)
|
| 99 |
-
return selected_log_probs, selected_indices, {}
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
class DeterministicSampler(Sampler):
|
| 103 |
-
"""
|
| 104 |
-
A `Sampler` that just deterministically returns the `k` nodes or beams with highest
|
| 105 |
-
log probability.
|
| 106 |
-
"""
|
| 107 |
-
|
| 108 |
-
def sample_nodes(
|
| 109 |
-
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
| 110 |
-
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
| 111 |
-
del state
|
| 112 |
-
selected_log_probs, selected_indices = torch.topk(log_probs, per_node_beam_size, dim=-1)
|
| 113 |
-
return selected_log_probs, selected_indices, {}
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
class MultinomialSampler(Sampler):
|
| 117 |
-
"""
|
| 118 |
-
A `Sampler` which samples nodes from the given multinomial distribution. Beams are sampled
|
| 119 |
-
in the default, non-deterministic way.
|
| 120 |
-
|
| 121 |
-
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
| 122 |
-
above 1.0 produces a flatter probability distribution.
|
| 123 |
-
:param with_replacement: Whether to sample with replacement.
|
| 124 |
-
|
| 125 |
-
"""
|
| 126 |
-
|
| 127 |
-
def __init__(
|
| 128 |
-
self,
|
| 129 |
-
temperature: float = 1.0,
|
| 130 |
-
with_replacement: bool = False,
|
| 131 |
-
) -> None:
|
| 132 |
-
self.temperature = temperature
|
| 133 |
-
self.with_replacement = with_replacement
|
| 134 |
-
|
| 135 |
-
def sample_nodes(
|
| 136 |
-
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
| 137 |
-
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
| 138 |
-
if self.temperature != 1.0:
|
| 139 |
-
_probabilities = torch.nn.functional.softmax(log_probs / self.temperature, dim=-1)
|
| 140 |
-
else:
|
| 141 |
-
_probabilities = log_probs.exp()
|
| 142 |
-
|
| 143 |
-
selected_indices = torch.multinomial(_probabilities, per_node_beam_size, replacement=self.with_replacement)
|
| 144 |
-
|
| 145 |
-
return torch.gather(log_probs, 1, selected_indices), selected_indices, state
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
class TopKSampler(Sampler):
|
| 149 |
-
"""
|
| 150 |
-
A `Sampler` which redistributes the probability mass function for nodes among the
|
| 151 |
-
top `k` choices, then samples from that subset after re-normalizing the probabilities.
|
| 152 |
-
|
| 153 |
-
Beams are sampled in the default, deterministic way.
|
| 154 |
-
|
| 155 |
-
:param k: The number of top choices to be selected from.
|
| 156 |
-
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
| 157 |
-
above 1.0 produces a flatter probability distribution.
|
| 158 |
-
:param with_replacement: If set to `True`, samples will be selected with replacement from the top k choices.
|
| 159 |
-
"""
|
| 160 |
-
|
| 161 |
-
def __init__(
|
| 162 |
-
self,
|
| 163 |
-
k: int = 1,
|
| 164 |
-
temperature: float = 1.0,
|
| 165 |
-
with_replacement: bool = False,
|
| 166 |
-
):
|
| 167 |
-
self.k = k
|
| 168 |
-
self.temperature = temperature or 1.0
|
| 169 |
-
self.with_replacement = with_replacement
|
| 170 |
-
|
| 171 |
-
def sample_nodes(
|
| 172 |
-
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
| 173 |
-
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
| 174 |
-
if not per_node_beam_size <= self.k <= log_probs.size()[1]:
|
| 175 |
-
raise ValueError(
|
| 176 |
-
"k must be a postive integer no less than per_node_beam_size and no greater than vocabulary size"
|
| 177 |
-
)
|
| 178 |
-
|
| 179 |
-
# shape (both): (batch_size, k)
|
| 180 |
-
top_k_log_probs, top_k_indices = log_probs.topk(self.k, dim=-1)
|
| 181 |
-
|
| 182 |
-
# Apply temperature if necessary.
|
| 183 |
-
# shape: (batch_size, k)
|
| 184 |
-
if self.temperature != 1.0:
|
| 185 |
-
top_k_log_probs = top_k_log_probs / self.temperature
|
| 186 |
-
|
| 187 |
-
# Re-normalize the subset.
|
| 188 |
-
# shape: (batch_size, k)
|
| 189 |
-
normalized_top_k_probs = torch.nn.functional.softmax(top_k_log_probs, dim=-1)
|
| 190 |
-
|
| 191 |
-
# Sample from the re-normalized subset.
|
| 192 |
-
# NOTE: These indices are not indices into `log_probs`, they are indices into `top_k_log_probs`.
|
| 193 |
-
# shape: (batch_size, per_node_beam_size)
|
| 194 |
-
sampled_indices = torch.multinomial(
|
| 195 |
-
normalized_top_k_probs, per_node_beam_size, replacement=self.with_replacement
|
| 196 |
-
)
|
| 197 |
-
|
| 198 |
-
# Convert `sampled_indices` back to indices in the original `log_probs` tensor.
|
| 199 |
-
# shape: (batch_size, per_node_beam_size)
|
| 200 |
-
indices = top_k_indices.gather(-1, sampled_indices)
|
| 201 |
-
|
| 202 |
-
return log_probs.gather(1, indices), indices, state
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
class TopPSampler(Sampler):
|
| 206 |
-
"""
|
| 207 |
-
A `Sampler` which redistributes the probability mass function for nodes among
|
| 208 |
-
the top choices with a cumulative probability of at least `p`, then samples from that subset
|
| 209 |
-
after re-normalizing the probabilities.
|
| 210 |
-
|
| 211 |
-
Beams are sampled in the default, deterministic way.
|
| 212 |
-
|
| 213 |
-
:param p:
|
| 214 |
-
The cumulative probability cutoff threshold. A higher value of `p` will result in more possible
|
| 215 |
-
examples to sample from. If `with_replacement` is `False` and the number of possible samples is
|
| 216 |
-
insufficient to sample without replacement from when calling `sample_nodes`, then the top
|
| 217 |
-
`per_node_beam_size` examples will be chosen.
|
| 218 |
-
:param temperature:
|
| 219 |
-
A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
| 220 |
-
above 1.0 produces a flatter probability distribution.
|
| 221 |
-
:param with_replacement:
|
| 222 |
-
If set to `True`, samples will be selected with replacement from the top choices.
|
| 223 |
-
|
| 224 |
-
"""
|
| 225 |
-
|
| 226 |
-
def __init__(
|
| 227 |
-
self,
|
| 228 |
-
p: float = 0.9,
|
| 229 |
-
temperature: float = 1.0,
|
| 230 |
-
with_replacement: bool = False,
|
| 231 |
-
):
|
| 232 |
-
if p < 0.0 or p > 1.0:
|
| 233 |
-
raise ValueError("p must be a positive float no greater than 1.0")
|
| 234 |
-
self.p = p
|
| 235 |
-
self.temperature = temperature or 1.0
|
| 236 |
-
self.with_replacement = with_replacement
|
| 237 |
-
|
| 238 |
-
def sample_nodes(
|
| 239 |
-
self, log_probs: torch.Tensor, per_node_beam_size: int, state: StateType
|
| 240 |
-
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
| 241 |
-
if not per_node_beam_size <= log_probs.size()[1]:
|
| 242 |
-
raise ValueError("per_node_beam_size cannot be greater than vocabulary size")
|
| 243 |
-
|
| 244 |
-
# First apply temperature coefficient:
|
| 245 |
-
if self.temperature != 1.0:
|
| 246 |
-
_log_probs = torch.nn.functional.log_softmax(log_probs / self.temperature, dim=-1)
|
| 247 |
-
else:
|
| 248 |
-
_log_probs = log_probs
|
| 249 |
-
|
| 250 |
-
# Sort the probabilities in descending order to then find cumulative sum
|
| 251 |
-
log_probs_descending, sorting_indices = torch.sort(_log_probs, descending=True)
|
| 252 |
-
|
| 253 |
-
# shape: (batch_size, num_classes)
|
| 254 |
-
probabilities_descending = log_probs_descending.exp()
|
| 255 |
-
probabilities_summed = torch.cumsum(probabilities_descending, dim=-1)
|
| 256 |
-
|
| 257 |
-
# Create a mask for filtering out probabilities that don't make the top `p`.
|
| 258 |
-
# shape: (batch_size, num_classes)
|
| 259 |
-
exclusion_mask = probabilities_summed >= self.p
|
| 260 |
-
|
| 261 |
-
# We want to include the first index where probabilities_summed >= p, so we shift over one.
|
| 262 |
-
exclusion_mask[..., 1:] = exclusion_mask[..., :-1].clone()
|
| 263 |
-
exclusion_mask[..., 0] = False
|
| 264 |
-
|
| 265 |
-
# Make sure there's at least `per_node_beam_size` options to be selected.
|
| 266 |
-
if not self.with_replacement:
|
| 267 |
-
exclusion_mask[..., :per_node_beam_size] = False
|
| 268 |
-
|
| 269 |
-
log_probs_descending[exclusion_mask] = torch.finfo(log_probs.dtype).min
|
| 270 |
-
|
| 271 |
-
# Now re-normalized the included log probs.
|
| 272 |
-
# shape: (batch_size, num_classes)
|
| 273 |
-
filtered_probabilities = torch.nn.functional.softmax(log_probs_descending, dim=-1)
|
| 274 |
-
|
| 275 |
-
# Sample from the re-normalized subset.
|
| 276 |
-
# NOTE: These indices are not indices into `log_probs`, they are indices into `log_probs_descending`.
|
| 277 |
-
# shape: (batch_size, per_node_beam_size)
|
| 278 |
-
sampled_indices = torch.multinomial(
|
| 279 |
-
filtered_probabilities, per_node_beam_size, replacement=self.with_replacement
|
| 280 |
-
)
|
| 281 |
-
|
| 282 |
-
# Convert `sampled_indices` back to indices in the original `log_probs` tensor.
|
| 283 |
-
# shape: (batch_size, per_node_beam_size)
|
| 284 |
-
selected_indices = sorting_indices.gather(-1, sampled_indices)
|
| 285 |
-
|
| 286 |
-
# Return (selected log probabilities, selected classes)
|
| 287 |
-
# shape: (len(log_probs),1) , (len(log_probs), 1)
|
| 288 |
-
return torch.gather(log_probs, 1, selected_indices), selected_indices, state
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
class GumbelSampler(Sampler):
|
| 292 |
-
"""
|
| 293 |
-
A `Sampler` which uses the Gumbel-Top-K trick to sample without replacement. See
|
| 294 |
-
[*Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling
|
| 295 |
-
Sequences Without Replacement*, W Kool, H Van Hoof and M Welling, 2010]
|
| 296 |
-
(https://api.semanticscholar.org/CorpusID:76662039).
|
| 297 |
-
|
| 298 |
-
:param temperature: A `temperature` below 1.0 produces a sharper probability distribution and a `temperature`
|
| 299 |
-
above 1.0 produces a flatter probability distribution.
|
| 300 |
-
"""
|
| 301 |
-
|
| 302 |
-
def __init__(self, temperature: float = 1.0):
|
| 303 |
-
self.temperature = temperature
|
| 304 |
-
|
| 305 |
-
def init_state(
|
| 306 |
-
self, start_class_log_probabilities: torch.Tensor, batch_size: int, num_classes: int
|
| 307 |
-
) -> StateType:
|
| 308 |
-
# shape: (batch_size, num_classes)
|
| 309 |
-
zeros = start_class_log_probabilities.new_zeros((batch_size, num_classes))
|
| 310 |
-
|
| 311 |
-
# shape: (batch_size, num_classes)
|
| 312 |
-
G_phi_S = self.gumbel_with_max(start_class_log_probabilities, zeros)
|
| 313 |
-
|
| 314 |
-
return {"G_phi_S": G_phi_S}
|
| 315 |
-
|
| 316 |
-
def sample_nodes(
|
| 317 |
-
self,
|
| 318 |
-
log_probs: torch.Tensor,
|
| 319 |
-
per_node_beam_size: int,
|
| 320 |
-
state: StateType,
|
| 321 |
-
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
| 322 |
-
# First apply temperature coefficient:
|
| 323 |
-
# shape: (batch_size * beam_size, num_classes)
|
| 324 |
-
if self.temperature != 1.0:
|
| 325 |
-
_log_probs = torch.nn.functional.log_softmax(log_probs / self.temperature, dim=-1)
|
| 326 |
-
else:
|
| 327 |
-
_log_probs = log_probs
|
| 328 |
-
|
| 329 |
-
# shape: (group_size,)
|
| 330 |
-
phi_S = state["phi_S"]
|
| 331 |
-
|
| 332 |
-
# shape: (group_size, num_classes)
|
| 333 |
-
phi_S = phi_S.unsqueeze(-1).expand_as(_log_probs)
|
| 334 |
-
|
| 335 |
-
# shape: (group_size, num_classes)
|
| 336 |
-
phi_S_new = phi_S + _log_probs
|
| 337 |
-
|
| 338 |
-
# shape: (group_size, 1)
|
| 339 |
-
G_phi_S = state["G_phi_S"].unsqueeze(-1)
|
| 340 |
-
|
| 341 |
-
# shape: (group_size, num_classes)
|
| 342 |
-
G_phi_S_new = self.gumbel_with_max(phi_S_new, G_phi_S)
|
| 343 |
-
|
| 344 |
-
# Replace NaNs with very negative number.
|
| 345 |
-
# shape: (group_size, num_classes)
|
| 346 |
-
# G_phi_S_new[G_phi_S_new.isnan()] = torch.finfo(G_phi_S_new.dtype).min
|
| 347 |
-
|
| 348 |
-
# shape (both): (group_size, per_node_beam_size)
|
| 349 |
-
top_G_phi_S_new, top_indices = torch.topk(G_phi_S_new, per_node_beam_size, dim=-1)
|
| 350 |
-
|
| 351 |
-
# shape: (group_size, per_node_beam_size)
|
| 352 |
-
top_log_probs = log_probs.gather(1, top_indices)
|
| 353 |
-
|
| 354 |
-
return top_log_probs, top_indices, {"G_phi_S": top_G_phi_S_new}
|
| 355 |
-
|
| 356 |
-
def sample_beams(
|
| 357 |
-
self,
|
| 358 |
-
log_probs: torch.Tensor,
|
| 359 |
-
beam_size: int,
|
| 360 |
-
state: StateType,
|
| 361 |
-
) -> Tuple[torch.Tensor, torch.Tensor, StateType]:
|
| 362 |
-
"""
|
| 363 |
-
Returns the beams with the highest perturbed log probabilities.
|
| 364 |
-
"""
|
| 365 |
-
# shape (log_probs): (batch_size, beam_size * per_node_beam_size)
|
| 366 |
-
|
| 367 |
-
batch_size = log_probs.size()[0]
|
| 368 |
-
|
| 369 |
-
# shape: (batch_size * beam_size, per_node_beam_size)
|
| 370 |
-
G_phi_S = state["G_phi_S"]
|
| 371 |
-
|
| 372 |
-
# shape: (batch_size, beam_size * per_node_beam_size)
|
| 373 |
-
G_phi_S = G_phi_S.reshape_as(log_probs)
|
| 374 |
-
|
| 375 |
-
# shape (both): (batch_size, beam_size)
|
| 376 |
-
G_phi_S_new, selected_indices = torch.topk(G_phi_S, beam_size, dim=-1)
|
| 377 |
-
|
| 378 |
-
# shape: (batch_size, beam_size)
|
| 379 |
-
selected_log_probs = log_probs.gather(1, selected_indices)
|
| 380 |
-
|
| 381 |
-
# Now sort the selected beams by their true log prob.
|
| 382 |
-
# shape (all): (batch_size, beam_size)
|
| 383 |
-
selected_log_probs, sort_indices = selected_log_probs.sort(dim=-1, descending=True)
|
| 384 |
-
selected_indices = selected_indices.gather(1, sort_indices)
|
| 385 |
-
G_phi_S_new = G_phi_S_new.gather(1, sort_indices)
|
| 386 |
-
|
| 387 |
-
# shape: (batch_size * beam_size,)
|
| 388 |
-
G_phi_S_new = G_phi_S_new.reshape(batch_size * beam_size)
|
| 389 |
-
|
| 390 |
-
# shape: (batch_size * beam_size,)
|
| 391 |
-
phi_S = selected_log_probs.reshape(batch_size * beam_size)
|
| 392 |
-
|
| 393 |
-
return selected_log_probs, selected_indices, {"G_phi_S": G_phi_S_new, "phi_S": phi_S}
|
| 394 |
-
|
| 395 |
-
def gumbel(self, phi) -> torch.Tensor:
|
| 396 |
-
"""
|
| 397 |
-
Sample `Gumbel(phi)`.
|
| 398 |
-
|
| 399 |
-
`phi` should have shape `(batch_size, num_classes)`.
|
| 400 |
-
"""
|
| 401 |
-
return -torch.log(-torch.log(torch.rand_like(phi))) + phi
|
| 402 |
-
|
| 403 |
-
def gumbel_with_max(self, phi, T) -> torch.Tensor:
|
| 404 |
-
"""
|
| 405 |
-
Sample `Gumbel(phi)` conditioned on the maximum value being equal to `T`.
|
| 406 |
-
|
| 407 |
-
`phi` should have shape `(batch_size, num_classes)` and `T` should have
|
| 408 |
-
shape `(batch_size, 1)`.
|
| 409 |
-
"""
|
| 410 |
-
# Shape: (batch_size, num_classes)
|
| 411 |
-
G_phi = self.gumbel(phi)
|
| 412 |
-
|
| 413 |
-
# Now we find the maximum from these samples.
|
| 414 |
-
# Shape: (batch_size, )
|
| 415 |
-
Z, _ = G_phi.max(dim=-1)
|
| 416 |
-
|
| 417 |
-
# Shape: (batch_size, num_classes)
|
| 418 |
-
v = T - G_phi + torch.log1p(-torch.exp(G_phi - Z.unsqueeze(-1)))
|
| 419 |
-
|
| 420 |
-
# Shape: (batch_size, num_classes)
|
| 421 |
-
return T - torch.nn.functional.relu(v) - torch.log1p(torch.exp(-v.abs()))
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
class FinalSequenceScorer:
|
| 425 |
-
"""
|
| 426 |
-
An abstract class that can be used to score the final generated sequences found
|
| 427 |
-
by beam search. Given the predicted sequences and the corresponding log probabilities of
|
| 428 |
-
those sequences, the class calculates and returns the final score of the sequences.
|
| 429 |
-
|
| 430 |
-
The default implementation scores the sequences using the sum of the log probabilities of
|
| 431 |
-
the sequence, which is passed as input.
|
| 432 |
-
"""
|
| 433 |
-
|
| 434 |
-
@abstractmethod
|
| 435 |
-
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
| 436 |
-
"""
|
| 437 |
-
Score the final predictions found by beam search.
|
| 438 |
-
Returns a tensor of the final sequence scores of shape `(batch_size, beam_size)`.
|
| 439 |
-
|
| 440 |
-
:param predictions: A tensor containing the initial predictions with shape `(batch_size, beam_size, max_steps)`.
|
| 441 |
-
:param log_probabilities: A tensor containing the log probabilities of the sequence, defined as the sum
|
| 442 |
-
of the log probabilities per token, with shape `(batch_size, beam_size)`.
|
| 443 |
-
:param end_index: The index of the end symbol.
|
| 444 |
-
|
| 445 |
-
"""
|
| 446 |
-
raise NotImplementedError
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
class SequenceLogProbabilityScorer(FinalSequenceScorer):
|
| 450 |
-
"""
|
| 451 |
-
A :class:`FinalSequenceScorer` which scores the sequences by the sum of the log probabilities
|
| 452 |
-
across the sequence's tokens.
|
| 453 |
-
"""
|
| 454 |
-
|
| 455 |
-
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
| 456 |
-
del predictions, end_index
|
| 457 |
-
# The sum of the sequence log probabilities is the input parameter, so just
|
| 458 |
-
# return it.
|
| 459 |
-
return log_probabilities
|
| 460 |
-
|
| 461 |
-
|
| 462 |
-
class LengthNormalizedSequenceLogProbabilityScorer(FinalSequenceScorer):
|
| 463 |
-
"""
|
| 464 |
-
A :class:`FinalSequenceScorer` which scores the sequences by the average log probability of the
|
| 465 |
-
tokens in the sequence. It optionally includes a length penalty which promotes
|
| 466 |
-
or demotes sequences based on their lengths. The final score for a sequence will
|
| 467 |
-
be `(sequence_log_probability) / (sequence_length ** length_penalty)`. The sequence length
|
| 468 |
-
here includes the end token.
|
| 469 |
-
|
| 470 |
-
:param length_penalty: The length penalty to use. A value of 1.0 means no length penalty is used.
|
| 471 |
-
A value > 1.0 favors longer sequences, and < 1.0 favors shorter sequences.
|
| 472 |
-
"""
|
| 473 |
-
|
| 474 |
-
def __init__(self, length_penalty: float = 1.0):
|
| 475 |
-
super().__init__()
|
| 476 |
-
self.length_penalty = length_penalty
|
| 477 |
-
|
| 478 |
-
def score(self, predictions: torch.Tensor, log_probabilities: torch.Tensor, end_index: int) -> torch.Tensor:
|
| 479 |
-
# shape: (batch_size, beam_size)
|
| 480 |
-
lengths = (predictions != end_index).long().sum(dim=2)
|
| 481 |
-
|
| 482 |
-
# If the sequence ended during beam search, the `log_probabilities` will include
|
| 483 |
-
# the transition to the end token. Therefore, in such situations, `lengths` is
|
| 484 |
-
# actually off by 1. This corrects for that.
|
| 485 |
-
# shape: (batch_size, beam_size)
|
| 486 |
-
is_end_token = predictions[:, :, -1] == end_index
|
| 487 |
-
lengths += is_end_token.long()
|
| 488 |
-
|
| 489 |
-
# shape: (batch_size, beam_size)
|
| 490 |
-
average_log_probs = log_probabilities / (lengths**self.length_penalty)
|
| 491 |
-
return average_log_probs
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
class Constraint:
|
| 495 |
-
"""
|
| 496 |
-
An abstract class that can be used to enforce constraints on the output predictions
|
| 497 |
-
by manipulating the class log probabilities during beam search.
|
| 498 |
-
|
| 499 |
-
A `Constraint` just has three methods that need to be implemented by subclasses:
|
| 500 |
-
`init_state()`, `apply()` and `_update_state()`.
|
| 501 |
-
|
| 502 |
-
`init_state()` takes one argument:
|
| 503 |
-
|
| 504 |
-
- the batch size, an int
|
| 505 |
-
|
| 506 |
-
It returns a constraint state, which is a nested list of dictionaries, with any state needed for subsequent
|
| 507 |
-
calls to `apply()` and `update_state()`. The length of the outer list should be equal to `batch_size`.
|
| 508 |
-
Each inner list should be of length 1.
|
| 509 |
-
|
| 510 |
-
`apply()` takes two arguments:
|
| 511 |
-
|
| 512 |
-
- the constraint state, which is a nested list of dictionaries. The length of the outer list is `batch_size`
|
| 513 |
-
and the length of each inner list is `beam_size` except on the first time `apply()` is called when it is 1.
|
| 514 |
-
- `class_log_probabilities`, a tensor of shape `(batch_size, beam_size, num_classes)` that contains the
|
| 515 |
-
log probabilities for the classes during search. The first time `apply()` is called, `beam_size = 1`.
|
| 516 |
-
|
| 517 |
-
The `apply()` method should return new `class_log_probabilities` that enforce the constraint
|
| 518 |
-
for this step of beam search. For instance, it may prevent a specific class from being selected by setting
|
| 519 |
-
the corresponding log probability to a negligible value such as `float("-inf")` or
|
| 520 |
-
`torch.finfo(class_log_probabilities.dtype).min`.
|
| 521 |
-
|
| 522 |
-
`_update_state()` takes two arguments:
|
| 523 |
-
|
| 524 |
-
- the copied parent constraint state, which is a nested list of dictionaries. `state[i][j]` contains the
|
| 525 |
-
copied state for the parent of `last_prediction[i, j]`. It is unique to that batch and beam, so it can be
|
| 526 |
-
directly edited in-place without affecting the others.
|
| 527 |
-
- last_prediction, a tensor of shape `(batch_size, beam_size)` containing the predictions from the last
|
| 528 |
-
step of beam search.
|
| 529 |
-
|
| 530 |
-
The `_update_state()` function should return a new constraint state, a nested list of dictionaries of
|
| 531 |
-
length `batch_size` and inner list of length `beam_size`, one for each of the predictions in `last_prediction`.
|
| 532 |
-
|
| 533 |
-
"""
|
| 534 |
-
|
| 535 |
-
@abstractmethod
|
| 536 |
-
def init_state(
|
| 537 |
-
self,
|
| 538 |
-
batch_size: int,
|
| 539 |
-
) -> ConstraintStateType:
|
| 540 |
-
raise NotImplementedError
|
| 541 |
-
|
| 542 |
-
@abstractmethod
|
| 543 |
-
def apply(
|
| 544 |
-
self,
|
| 545 |
-
state: ConstraintStateType,
|
| 546 |
-
class_log_probabilities: torch.Tensor,
|
| 547 |
-
) -> torch.Tensor:
|
| 548 |
-
raise NotImplementedError
|
| 549 |
-
|
| 550 |
-
@staticmethod
|
| 551 |
-
def _copy_state(
|
| 552 |
-
state: ConstraintStateType,
|
| 553 |
-
batch_size: int,
|
| 554 |
-
beam_size: int,
|
| 555 |
-
last_backpointer: Optional[torch.Tensor] = None,
|
| 556 |
-
) -> ConstraintStateType:
|
| 557 |
-
"""
|
| 558 |
-
Copies the `state` . This method copies the data in `state` using `copy.deepcopy()`. If this
|
| 559 |
-
is not appropriate for your constraint, you will need to implement the copying yourself.
|
| 560 |
-
"""
|
| 561 |
-
new_state = []
|
| 562 |
-
for i in range(batch_size):
|
| 563 |
-
batch_state = []
|
| 564 |
-
for j in range(beam_size):
|
| 565 |
-
if last_backpointer is None:
|
| 566 |
-
# This is the first prediction, so the backpointer is 0
|
| 567 |
-
backpointer = 0
|
| 568 |
-
else:
|
| 569 |
-
backpointer = last_backpointer[i, j].item()
|
| 570 |
-
batch_state.append(copy.deepcopy(state[i][backpointer])) # type: ignore
|
| 571 |
-
new_state.append(batch_state)
|
| 572 |
-
return new_state
|
| 573 |
-
|
| 574 |
-
def update_state(
|
| 575 |
-
self,
|
| 576 |
-
state: ConstraintStateType,
|
| 577 |
-
last_prediction: torch.Tensor,
|
| 578 |
-
last_backpointer: Optional[torch.Tensor] = None,
|
| 579 |
-
) -> ConstraintStateType:
|
| 580 |
-
batch_size, beam_size = last_prediction.size()
|
| 581 |
-
new_state = self._copy_state(state, batch_size, beam_size, last_backpointer)
|
| 582 |
-
return self._update_state(new_state, last_prediction)
|
| 583 |
-
|
| 584 |
-
@abstractmethod
|
| 585 |
-
def _update_state(
|
| 586 |
-
self,
|
| 587 |
-
state: ConstraintStateType,
|
| 588 |
-
last_prediction: torch.Tensor,
|
| 589 |
-
) -> ConstraintStateType:
|
| 590 |
-
raise NotImplementedError
|
| 591 |
-
|
| 592 |
-
|
| 593 |
-
class RepeatedNGramBlockingConstraint(Constraint):
|
| 594 |
-
def __init__(self, ngram_size: int, **kwargs) -> None:
|
| 595 |
-
super().__init__(**kwargs)
|
| 596 |
-
self.ngram_size = ngram_size
|
| 597 |
-
|
| 598 |
-
def init_state(
|
| 599 |
-
self,
|
| 600 |
-
batch_size: int,
|
| 601 |
-
) -> ConstraintStateType:
|
| 602 |
-
return [[{"seen_ngrams": {}, "current_prefix": []}] for _ in range(batch_size)]
|
| 603 |
-
|
| 604 |
-
def apply(
|
| 605 |
-
self,
|
| 606 |
-
state: ConstraintStateType,
|
| 607 |
-
class_log_probabilities: torch.Tensor,
|
| 608 |
-
) -> torch.Tensor:
|
| 609 |
-
for i, batch in enumerate(state):
|
| 610 |
-
for j, beam in enumerate(batch):
|
| 611 |
-
current_prefix = tuple(beam["current_prefix"])
|
| 612 |
-
seen_ngrams = beam["seen_ngrams"]
|
| 613 |
-
try:
|
| 614 |
-
disallowed_indices = seen_ngrams[current_prefix]
|
| 615 |
-
class_log_probabilities[i, j, disallowed_indices] = torch.finfo(
|
| 616 |
-
class_log_probabilities.dtype
|
| 617 |
-
).min
|
| 618 |
-
except KeyError:
|
| 619 |
-
# We have not seen this prefix before, so there is no index
|
| 620 |
-
# that needs to be blocked
|
| 621 |
-
pass
|
| 622 |
-
return class_log_probabilities
|
| 623 |
-
|
| 624 |
-
def _update_state(
|
| 625 |
-
self,
|
| 626 |
-
state: ConstraintStateType,
|
| 627 |
-
last_prediction: torch.Tensor,
|
| 628 |
-
) -> ConstraintStateType:
|
| 629 |
-
for i, batch in enumerate(state):
|
| 630 |
-
for j, beam in enumerate(batch):
|
| 631 |
-
prediction = last_prediction[i, j].item()
|
| 632 |
-
prefix = beam["current_prefix"]
|
| 633 |
-
seen_ngrams = beam["seen_ngrams"]
|
| 634 |
-
|
| 635 |
-
if len(prefix) == self.ngram_size - 1:
|
| 636 |
-
# This is a new ngram that we have to remember
|
| 637 |
-
if tuple(prefix) not in seen_ngrams:
|
| 638 |
-
seen_ngrams[tuple(prefix)] = []
|
| 639 |
-
seen_ngrams[tuple(prefix)].append(prediction)
|
| 640 |
-
|
| 641 |
-
# Create the new prefix, removing the oldest index if the prefix
|
| 642 |
-
# is too long
|
| 643 |
-
prefix.append(prediction)
|
| 644 |
-
if len(prefix) == self.ngram_size:
|
| 645 |
-
prefix.pop(0)
|
| 646 |
-
return state
|
| 647 |
-
|
| 648 |
-
|
| 649 |
-
class BeamSearch:
|
| 650 |
-
"""
|
| 651 |
-
Implements the beam search algorithm for decoding the most likely sequences.
|
| 652 |
-
|
| 653 |
-
:param end_index: The index of the "stop" or "end" token in the vocabulary. Usually the EOS token ID.
|
| 654 |
-
|
| 655 |
-
:param max_steps: The maximum number of decoding steps to take, i.e. the maximum length
|
| 656 |
-
of the predicted sequences.
|
| 657 |
-
|
| 658 |
-
:param beam_size: The width of the beam used.
|
| 659 |
-
|
| 660 |
-
:param per_node_beam_size: The maximum number of candidates to consider per node, at each step in the search.
|
| 661 |
-
If not given, this just defaults to `beam_size`. Setting this parameter
|
| 662 |
-
to a number smaller than `beam_size` may give better results, as it can introduce
|
| 663 |
-
more diversity into the search. See
|
| 664 |
-
[*Beam Search Strategies for Neural Machine Translation*, Freitag and Al-Onaizan, 2017]
|
| 665 |
-
(https://api.semanticscholar.org/CorpusID:2229477).
|
| 666 |
-
|
| 667 |
-
:param sampler: An optional `Sampler` which is used to pick next candidate nodes and beams.
|
| 668 |
-
If not specified, `DeterministicSampler` will be used, which just takes the
|
| 669 |
-
`per_node_beam_size` most likely nodes and the `beam_size` most likely beams.
|
| 670 |
-
|
| 671 |
-
Using the [`GumbelSampler`](#gumbelsampler), on the other hand, will give you
|
| 672 |
-
[Stochastic Beam Search](https://api.semanticscholar.org/CorpusID:76662039).
|
| 673 |
-
|
| 674 |
-
:param min_steps: The minimum number of decoding steps to take, i.e. the minimum length of
|
| 675 |
-
the predicted sequences. This does not include the start or end tokens. If `None`,
|
| 676 |
-
no minimum is enforced.
|
| 677 |
-
|
| 678 |
-
:param final_sequence_scorer: An optional `FinalSequenceScorer` which is used to score the final generated sequences.
|
| 679 |
-
The output from this module is what is returned by the `search` method. If not
|
| 680 |
-
specified, `SequenceLogProbabilityScorer` will be used, which scores the sequences
|
| 681 |
-
by the sum of the token log probabilities.
|
| 682 |
-
|
| 683 |
-
:param constraints: An optional list of `Constraint`s which should be applied during beam search. If not
|
| 684 |
-
provided, no constraints will be enforced.
|
| 685 |
-
|
| 686 |
-
"""
|
| 687 |
-
|
| 688 |
-
def __init__(
|
| 689 |
-
self,
|
| 690 |
-
end_index: int,
|
| 691 |
-
*,
|
| 692 |
-
max_steps: int = 50,
|
| 693 |
-
beam_size: int = 10,
|
| 694 |
-
per_node_beam_size: Optional[int] = None,
|
| 695 |
-
sampler: Optional[Sampler] = None,
|
| 696 |
-
min_steps: Optional[int] = None,
|
| 697 |
-
final_sequence_scorer: Optional[FinalSequenceScorer] = None,
|
| 698 |
-
constraints: Optional[List[Constraint]] = None,
|
| 699 |
-
) -> None:
|
| 700 |
-
if not max_steps > 0:
|
| 701 |
-
raise ValueError("max_steps must be positive")
|
| 702 |
-
if not beam_size > 0:
|
| 703 |
-
raise ValueError("beam_size must be positive")
|
| 704 |
-
if per_node_beam_size is not None and not per_node_beam_size > 0:
|
| 705 |
-
raise ValueError("per_node_beam_size must be positive")
|
| 706 |
-
if min_steps is not None:
|
| 707 |
-
if not min_steps >= 0:
|
| 708 |
-
raise ValueError("min_steps must be non-negative")
|
| 709 |
-
if not min_steps <= max_steps:
|
| 710 |
-
raise ValueError("min_steps must be less than or equal to max_steps")
|
| 711 |
-
|
| 712 |
-
self._end_index = end_index
|
| 713 |
-
self.max_steps = max_steps
|
| 714 |
-
self.beam_size = beam_size
|
| 715 |
-
self.per_node_beam_size = per_node_beam_size or beam_size
|
| 716 |
-
self.sampler = sampler or DeterministicSampler()
|
| 717 |
-
self.min_steps = min_steps or 0
|
| 718 |
-
self.final_sequence_scorer = final_sequence_scorer or SequenceLogProbabilityScorer()
|
| 719 |
-
self.constraints = constraints or []
|
| 720 |
-
|
| 721 |
-
@staticmethod
|
| 722 |
-
def _reconstruct_sequences(predictions, backpointers):
|
| 723 |
-
# Reconstruct the sequences.
|
| 724 |
-
# shape: [(batch_size, beam_size, 1)]
|
| 725 |
-
reconstructed_predictions = [predictions[-1].unsqueeze(2)]
|
| 726 |
-
|
| 727 |
-
if not backpointers:
|
| 728 |
-
return reconstructed_predictions
|
| 729 |
-
|
| 730 |
-
# shape: (batch_size, beam_size)
|
| 731 |
-
cur_backpointers = backpointers[-1]
|
| 732 |
-
|
| 733 |
-
for timestep in range(len(predictions) - 2, 0, -1):
|
| 734 |
-
# shape: (batch_size, beam_size, 1)
|
| 735 |
-
cur_preds = predictions[timestep].gather(1, cur_backpointers).unsqueeze(2)
|
| 736 |
-
|
| 737 |
-
reconstructed_predictions.append(cur_preds)
|
| 738 |
-
|
| 739 |
-
# shape: (batch_size, beam_size)
|
| 740 |
-
cur_backpointers = backpointers[timestep - 1].gather(1, cur_backpointers)
|
| 741 |
-
|
| 742 |
-
# shape: (batch_size, beam_size, 1)
|
| 743 |
-
final_preds = predictions[0].gather(1, cur_backpointers).unsqueeze(2)
|
| 744 |
-
|
| 745 |
-
reconstructed_predictions.append(final_preds)
|
| 746 |
-
|
| 747 |
-
return reconstructed_predictions
|
| 748 |
-
|
| 749 |
-
def search(
|
| 750 |
-
self,
|
| 751 |
-
start_predictions: torch.Tensor,
|
| 752 |
-
start_state: StateType,
|
| 753 |
-
step: StepFunctionType,
|
| 754 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 755 |
-
"""
|
| 756 |
-
Given a starting state and a step function, apply beam search to find the
|
| 757 |
-
most likely target sequences.
|
| 758 |
-
|
| 759 |
-
Returns a tuple of `(predictions, final_scores)`, where `predictions`
|
| 760 |
-
has shape `(batch_size, beam_size, max_steps)` and `final_scores`
|
| 761 |
-
has shape `(batch_size, beam_size)`.
|
| 762 |
-
|
| 763 |
-
.. note::
|
| 764 |
-
If your step function returns `-inf` for some log probabilities
|
| 765 |
-
(like if you're using a masked log-softmax) then some of the "best"
|
| 766 |
-
sequences returned may also have `-inf` log probability. Specifically
|
| 767 |
-
this happens when the beam size is smaller than the number of actions
|
| 768 |
-
with finite log probability (non-zero probability) returned by the step function.
|
| 769 |
-
Therefore if you're using a mask you may want to check the results from `search`
|
| 770 |
-
and potentially discard sequences with non-finite log probability.
|
| 771 |
-
|
| 772 |
-
:param start_predictions: A tensor containing the initial predictions with shape `(batch_size,)`.
|
| 773 |
-
Usually the initial predictions are just the index of the "start" token
|
| 774 |
-
in the target vocabulary.
|
| 775 |
-
|
| 776 |
-
:param start_state: The initial state passed to the `step` function. Each value of the state dict
|
| 777 |
-
should be a tensor of shape `(batch_size, *)`, where `*` means any other
|
| 778 |
-
number of dimensions.
|
| 779 |
-
|
| 780 |
-
:param step: A function that is responsible for computing the next most likely tokens,
|
| 781 |
-
given the current state and the predictions from the last time step.
|
| 782 |
-
The function should accept two or three arguments:
|
| 783 |
-
|
| 784 |
-
- a tensor of shape `(group_size,)` or representing the index of the predicted
|
| 785 |
-
tokens from the last time step,
|
| 786 |
-
- the current state, a `StateType`, and
|
| 787 |
-
- optionally, the timestep, an `int`.
|
| 788 |
-
|
| 789 |
-
The `group_size` will be `batch_size * beam_size`, except in the initial
|
| 790 |
-
step, for which it will just be `batch_size`.
|
| 791 |
-
|
| 792 |
-
The function is expected to return a tuple, where the first element
|
| 793 |
-
is a tensor of shape `(group_size, vocab_size)` containing
|
| 794 |
-
the log probabilities of the tokens for the next step, and the second
|
| 795 |
-
element is the updated state. The tensor in the state should have shape
|
| 796 |
-
`(group_size, *)`, where `*` means any other number of dimensions.
|
| 797 |
-
|
| 798 |
-
"""
|
| 799 |
-
step_signature = signature(step)
|
| 800 |
-
if len(step_signature.parameters) < 3:
|
| 801 |
-
# If the step function we're given does not take the time step argument, wrap it
|
| 802 |
-
# in one that does.
|
| 803 |
-
old_step = cast(StepFunctionTypeNoTimestep, step)
|
| 804 |
-
|
| 805 |
-
def new_step(last_predictions: torch.Tensor, state: Dict[str, torch.Tensor], time_step: int):
|
| 806 |
-
del time_step
|
| 807 |
-
return old_step(last_predictions, state)
|
| 808 |
-
|
| 809 |
-
return self._search(start_predictions, start_state, new_step)
|
| 810 |
-
else:
|
| 811 |
-
return self._search(start_predictions, start_state, cast(StepFunctionTypeWithTimestep, step))
|
| 812 |
-
|
| 813 |
-
def _search(
|
| 814 |
-
self,
|
| 815 |
-
start_predictions: torch.Tensor,
|
| 816 |
-
start_state: StateType,
|
| 817 |
-
step: StepFunctionTypeWithTimestep,
|
| 818 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 819 |
-
batch_size = start_predictions.size()[0]
|
| 820 |
-
|
| 821 |
-
# List of (batch_size, beam_size) tensors. One for each time step. Does not
|
| 822 |
-
# include the start symbols, which are implicit.
|
| 823 |
-
predictions: List[torch.Tensor] = []
|
| 824 |
-
|
| 825 |
-
# List of (batch_size, beam_size) tensors. One for each time step. None for
|
| 826 |
-
# the first. Stores the index n for the parent prediction, i.e.
|
| 827 |
-
# predictions[t-1][i][n], that it came from.
|
| 828 |
-
backpointers: List[torch.Tensor] = []
|
| 829 |
-
|
| 830 |
-
constraint_states = [constraint.init_state(batch_size) for constraint in self.constraints]
|
| 831 |
-
|
| 832 |
-
# Calculate the first timestep. This is done outside the main loop
|
| 833 |
-
# because we are going from a single decoder input (the output from the
|
| 834 |
-
# encoder) to the top `beam_size` decoder outputs. On the other hand,
|
| 835 |
-
# within the main loop we are going from the `beam_size` elements of the
|
| 836 |
-
# beam to `beam_size`^2 candidates from which we will select the top
|
| 837 |
-
# `beam_size` elements for the next iteration.
|
| 838 |
-
# shape: (batch_size, num_classes)
|
| 839 |
-
start_class_log_probabilities, state = step(start_predictions, start_state, 0)
|
| 840 |
-
|
| 841 |
-
num_classes = start_class_log_probabilities.size()[1]
|
| 842 |
-
|
| 843 |
-
# Make sure `per_node_beam_size` is not larger than `num_classes`.
|
| 844 |
-
if self.per_node_beam_size > num_classes:
|
| 845 |
-
raise ValueError(
|
| 846 |
-
f"Vocab size ({num_classes:d}) too small "
|
| 847 |
-
f"relative to per_node_beam_size ({self.per_node_beam_size:d}).\n"
|
| 848 |
-
f"Please decrease beam_size or per_node_beam_size."
|
| 849 |
-
)
|
| 850 |
-
|
| 851 |
-
sampler_state = self.sampler.init_state(start_class_log_probabilities, batch_size, num_classes)
|
| 852 |
-
|
| 853 |
-
# Apply all constraints.
|
| 854 |
-
if self.constraints:
|
| 855 |
-
# shape: (batch_size, 1, num_classes)
|
| 856 |
-
expanded_start_class_log_probabilities = start_class_log_probabilities.unsqueeze(1)
|
| 857 |
-
for constraint, constraint_state in zip(self.constraints, constraint_states):
|
| 858 |
-
expanded_start_class_log_probabilities = constraint.apply(
|
| 859 |
-
constraint_state, expanded_start_class_log_probabilities
|
| 860 |
-
)
|
| 861 |
-
start_class_log_probabilities = expanded_start_class_log_probabilities.squeeze(1)
|
| 862 |
-
|
| 863 |
-
# Prevent selecting the end symbol if there is any min_steps constraint
|
| 864 |
-
if self.min_steps >= 1:
|
| 865 |
-
start_class_log_probabilities[:, self._end_index] = torch.finfo(
|
| 866 |
-
start_class_log_probabilities.dtype
|
| 867 |
-
).min
|
| 868 |
-
|
| 869 |
-
# Get the initial predicted classed and their log probabilities.
|
| 870 |
-
# shape: (batch_size, beam_size), (batch_size, beam_size)
|
| 871 |
-
(
|
| 872 |
-
start_top_log_probabilities,
|
| 873 |
-
start_predicted_classes,
|
| 874 |
-
sampler_state,
|
| 875 |
-
) = self.sampler.sample_beams(start_class_log_probabilities, self.beam_size, sampler_state)
|
| 876 |
-
|
| 877 |
-
if self.beam_size == 1 and (start_predicted_classes == self._end_index).all():
|
| 878 |
-
warnings.warn(
|
| 879 |
-
"Empty sequences predicted. You may want to increase the beam size or ensure "
|
| 880 |
-
"your step function is working properly.",
|
| 881 |
-
RuntimeWarning,
|
| 882 |
-
)
|
| 883 |
-
return start_predicted_classes.unsqueeze(-1), start_top_log_probabilities
|
| 884 |
-
|
| 885 |
-
# The log probabilities for the last time step.
|
| 886 |
-
# shape: (batch_size, beam_size)
|
| 887 |
-
last_log_probabilities = start_top_log_probabilities
|
| 888 |
-
|
| 889 |
-
# shape: [(batch_size, beam_size)]
|
| 890 |
-
predictions.append(start_predicted_classes)
|
| 891 |
-
|
| 892 |
-
# Log probability tensor that mandates that the end token is selected.
|
| 893 |
-
# shape: (batch_size * beam_size, num_classes)
|
| 894 |
-
log_probs_after_end = start_class_log_probabilities.new_full(
|
| 895 |
-
(batch_size * self.beam_size, num_classes),
|
| 896 |
-
torch.finfo(start_class_log_probabilities.dtype).min,
|
| 897 |
-
)
|
| 898 |
-
log_probs_after_end[:, self._end_index] = 0.0
|
| 899 |
-
|
| 900 |
-
# Set the same state for each element in the beam.
|
| 901 |
-
self._update_initial_state(state, batch_size)
|
| 902 |
-
|
| 903 |
-
for i, constraint in enumerate(self.constraints):
|
| 904 |
-
constraint_states[i] = constraint.update_state(constraint_states[i], start_predicted_classes)
|
| 905 |
-
|
| 906 |
-
for timestep in range(self.max_steps - 1):
|
| 907 |
-
# shape: (batch_size * beam_size,)
|
| 908 |
-
last_predictions = predictions[-1].reshape(batch_size * self.beam_size)
|
| 909 |
-
|
| 910 |
-
# If every predicted token from the last step is `self._end_index`,
|
| 911 |
-
# then we can stop early.
|
| 912 |
-
if (last_predictions == self._end_index).all():
|
| 913 |
-
break
|
| 914 |
-
# Take a step. This get the predicted log probs of the next classes
|
| 915 |
-
# and updates the state.
|
| 916 |
-
# shape: (batch_size * beam_size, num_classes)
|
| 917 |
-
class_log_probabilities, state = step(last_predictions, state, timestep + 1)
|
| 918 |
-
|
| 919 |
-
# Apply all constraints.
|
| 920 |
-
if self.constraints:
|
| 921 |
-
# shape: (batch_size, beam_size, num_classes)
|
| 922 |
-
reshaped_class_log_probabilities = class_log_probabilities.view(batch_size, self.beam_size, -1)
|
| 923 |
-
for constraint, constraint_state in zip(self.constraints, constraint_states):
|
| 924 |
-
reshaped_class_log_probabilities = constraint.apply(
|
| 925 |
-
constraint_state, reshaped_class_log_probabilities
|
| 926 |
-
)
|
| 927 |
-
# shape: (batch_size * beam_size, num_classes)
|
| 928 |
-
class_log_probabilities = reshaped_class_log_probabilities.view(batch_size * self.beam_size, -1)
|
| 929 |
-
|
| 930 |
-
# The `timestep`-th iteration of the for loop is generating the `timestep + 2`-th token
|
| 931 |
-
# of the sequence (because `timestep` is 0-indexed and we generated the first token
|
| 932 |
-
# before the for loop). Here we block the end index if the search is not allowed to
|
| 933 |
-
# terminate on this iteration.
|
| 934 |
-
if timestep + 2 <= self.min_steps:
|
| 935 |
-
class_log_probabilities[:, self._end_index] = torch.finfo(class_log_probabilities.dtype).min
|
| 936 |
-
|
| 937 |
-
# shape: (batch_size * beam_size, num_classes)
|
| 938 |
-
last_predictions_expanded = last_predictions.unsqueeze(-1).expand(
|
| 939 |
-
batch_size * self.beam_size, num_classes
|
| 940 |
-
)
|
| 941 |
-
|
| 942 |
-
# Here we are finding any beams where we predicted the end token in
|
| 943 |
-
# the previous timestep and replacing the distribution with a
|
| 944 |
-
# one-hot distribution, forcing the beam to predict the end token
|
| 945 |
-
# this timestep as well.
|
| 946 |
-
# shape: (batch_size * beam_size, num_classes)
|
| 947 |
-
cleaned_log_probabilities = torch.where(
|
| 948 |
-
last_predictions_expanded == self._end_index,
|
| 949 |
-
log_probs_after_end,
|
| 950 |
-
class_log_probabilities,
|
| 951 |
-
)
|
| 952 |
-
|
| 953 |
-
# shape (both): (batch_size * beam_size, per_node_beam_size)
|
| 954 |
-
top_log_probabilities, predicted_classes, sampler_state = self.sampler.sample_nodes(
|
| 955 |
-
cleaned_log_probabilities, self.per_node_beam_size, sampler_state
|
| 956 |
-
)
|
| 957 |
-
|
| 958 |
-
# Here we expand the last log probabilities to (batch_size * beam_size, per_node_beam_size)
|
| 959 |
-
# so that we can add them to the current log probs for this timestep.
|
| 960 |
-
# This lets us maintain the log probability of each element on the beam.
|
| 961 |
-
# shape: (batch_size * beam_size, per_node_beam_size)
|
| 962 |
-
expanded_last_log_probabilities = (
|
| 963 |
-
last_log_probabilities.unsqueeze(2)
|
| 964 |
-
.expand(batch_size, self.beam_size, self.per_node_beam_size)
|
| 965 |
-
.reshape(batch_size * self.beam_size, self.per_node_beam_size)
|
| 966 |
-
)
|
| 967 |
-
|
| 968 |
-
# shape: (batch_size * beam_size, per_node_beam_size)
|
| 969 |
-
summed_top_log_probabilities = top_log_probabilities + expanded_last_log_probabilities
|
| 970 |
-
|
| 971 |
-
# shape: (batch_size, beam_size * per_node_beam_size)
|
| 972 |
-
reshaped_summed = summed_top_log_probabilities.reshape(
|
| 973 |
-
batch_size, self.beam_size * self.per_node_beam_size
|
| 974 |
-
)
|
| 975 |
-
|
| 976 |
-
# shape: (batch_size, beam_size * per_node_beam_size)
|
| 977 |
-
reshaped_predicted_classes = predicted_classes.reshape(
|
| 978 |
-
batch_size, self.beam_size * self.per_node_beam_size
|
| 979 |
-
)
|
| 980 |
-
|
| 981 |
-
# Keep only the top `beam_size` beam indices.
|
| 982 |
-
# shape (both): (batch_size, beam_size)
|
| 983 |
-
(
|
| 984 |
-
restricted_beam_log_probs,
|
| 985 |
-
restricted_beam_indices,
|
| 986 |
-
sampler_state,
|
| 987 |
-
) = self.sampler.sample_beams(reshaped_summed, self.beam_size, sampler_state)
|
| 988 |
-
|
| 989 |
-
# Use the beam indices to extract the corresponding classes.
|
| 990 |
-
# shape: (batch_size, beam_size)
|
| 991 |
-
restricted_predicted_classes = reshaped_predicted_classes.gather(1, restricted_beam_indices)
|
| 992 |
-
|
| 993 |
-
predictions.append(restricted_predicted_classes)
|
| 994 |
-
|
| 995 |
-
# shape: (batch_size, beam_size)
|
| 996 |
-
last_log_probabilities = restricted_beam_log_probs
|
| 997 |
-
|
| 998 |
-
# The beam indices come from a `beam_size * per_node_beam_size` dimension where the
|
| 999 |
-
# indices with a common ancestor are grouped together. Hence
|
| 1000 |
-
# dividing by per_node_beam_size gives the ancestor. (Note that this is integer
|
| 1001 |
-
# division as the tensor is a LongTensor.)
|
| 1002 |
-
# shape: (batch_size, beam_size)
|
| 1003 |
-
backpointer = torch.divide(restricted_beam_indices, self.per_node_beam_size, rounding_mode="trunc")
|
| 1004 |
-
backpointers.append(backpointer)
|
| 1005 |
-
|
| 1006 |
-
# Keep only the pieces of the state tensors corresponding to the
|
| 1007 |
-
# ancestors created this iteration.
|
| 1008 |
-
self._update_state(state, backpointer)
|
| 1009 |
-
|
| 1010 |
-
for i, constraint in enumerate(self.constraints):
|
| 1011 |
-
constraint_states[i] = constraint.update_state(
|
| 1012 |
-
constraint_states[i], restricted_predicted_classes, last_backpointer=backpointer
|
| 1013 |
-
)
|
| 1014 |
-
|
| 1015 |
-
# Warn about "-inf" log probabilities if not using any constraints (negligible
|
| 1016 |
-
# log probabilities are expected when using constraints).
|
| 1017 |
-
if not self.constraints and (
|
| 1018 |
-
not torch.isfinite(last_log_probabilities).all()
|
| 1019 |
-
or (last_log_probabilities == torch.finfo(last_log_probabilities.dtype).min).any()
|
| 1020 |
-
):
|
| 1021 |
-
warnings.warn(
|
| 1022 |
-
"Negligible log probabilities encountered ('-inf' or equivalent). "
|
| 1023 |
-
"Some final sequences may not make sense. "
|
| 1024 |
-
"This can happen when the beam size is larger than the number of valid (non-zero "
|
| 1025 |
-
"probability) transitions that the step function produces.",
|
| 1026 |
-
RuntimeWarning,
|
| 1027 |
-
)
|
| 1028 |
-
|
| 1029 |
-
reconstructed_predictions = self._reconstruct_sequences(predictions, backpointers)
|
| 1030 |
-
|
| 1031 |
-
# shape: (batch_size, beam_size, max_steps)
|
| 1032 |
-
all_predictions = torch.cat(list(reversed(reconstructed_predictions)), 2)
|
| 1033 |
-
|
| 1034 |
-
# Calculate the final sequence scores
|
| 1035 |
-
# shape: (batch_size, beam_size)
|
| 1036 |
-
final_scores = self.final_sequence_scorer.score(all_predictions, last_log_probabilities, self._end_index)
|
| 1037 |
-
|
| 1038 |
-
# Sort the sequences based on the final scores so the best scoring
|
| 1039 |
-
# sequence is at index 0
|
| 1040 |
-
sorted_final_scores, sorted_indices = torch.sort(final_scores, dim=1, descending=True)
|
| 1041 |
-
sorted_all_predictions = torch.gather(
|
| 1042 |
-
all_predictions, 1, sorted_indices.unsqueeze(-1).expand_as(all_predictions)
|
| 1043 |
-
)
|
| 1044 |
-
|
| 1045 |
-
return sorted_all_predictions, sorted_final_scores
|
| 1046 |
-
|
| 1047 |
-
def _update_initial_state(self, state: StateType, batch_size: int):
|
| 1048 |
-
"""
|
| 1049 |
-
Expand tensors in a state dictionary from `(batch_size, *)` to `(batch_size * beam_size, *)`.
|
| 1050 |
-
"""
|
| 1051 |
-
for key, state_tensor in state.items():
|
| 1052 |
-
if state_tensor is None:
|
| 1053 |
-
continue
|
| 1054 |
-
# shape: (batch_size * beam_size, *)
|
| 1055 |
-
_, *last_dims = state_tensor.size()
|
| 1056 |
-
state[key] = (
|
| 1057 |
-
state_tensor.unsqueeze(1)
|
| 1058 |
-
.expand(batch_size, self.beam_size, *last_dims)
|
| 1059 |
-
.reshape(batch_size * self.beam_size, *last_dims)
|
| 1060 |
-
)
|
| 1061 |
-
|
| 1062 |
-
def _update_state(self, state: StateType, backpointer: torch.Tensor):
|
| 1063 |
-
batch_size = backpointer.size()[0]
|
| 1064 |
-
|
| 1065 |
-
for key, state_tensor in state.items():
|
| 1066 |
-
if state_tensor is None:
|
| 1067 |
-
continue
|
| 1068 |
-
_, *last_dims = state_tensor.size()
|
| 1069 |
-
# shape: (batch_size, beam_size, *)
|
| 1070 |
-
expanded_backpointer = backpointer.view(batch_size, self.beam_size, *([1] * len(last_dims))).expand(
|
| 1071 |
-
batch_size, self.beam_size, *last_dims
|
| 1072 |
-
)
|
| 1073 |
-
# shape: (batch_size * beam_size, *)
|
| 1074 |
-
state[key] = (
|
| 1075 |
-
state_tensor.reshape(batch_size, self.beam_size, *last_dims)
|
| 1076 |
-
.gather(1, expanded_backpointer)
|
| 1077 |
-
.reshape(batch_size * self.beam_size, *last_dims)
|
| 1078 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|