tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/doc
/source
/reference
/routines.linalg.rst
| .. _routines.linalg: | |
| Linear algebra (:mod:`numpy.linalg`) | |
| ************************************ | |
| .. currentmodule:: numpy | |
| Matrix and vector products | |
| -------------------------- | |
| .. autosummary:: | |
| :toctree: generated/ | |
| dot | |
| vdot | |
| inner | |
| outer | |
| tensordot | |
| einsum | |
| linalg.matrix_power | |
| kron | |
| Decompositions | |
| -------------- | |
| .. autosummary:: | |
| :toctree: generated/ | |
| linalg.cholesky | |
| linalg.qr | |
| linalg.svd | |
| Matrix eigenvalues | |
| ------------------ | |
| .. autosummary:: | |
| :toctree: generated/ | |
| linalg.eig | |
| linalg.eigh | |
| linalg.eigvals | |
| linalg.eigvalsh | |
| Norms and other numbers | |
| ----------------------- | |
| .. autosummary:: | |
| :toctree: generated/ | |
| linalg.norm | |
| linalg.cond | |
| linalg.det | |
| linalg.matrix_rank | |
| linalg.slogdet | |
| trace | |
| Solving equations and inverting matrices | |
| ---------------------------------------- | |
| .. autosummary:: | |
| :toctree: generated/ | |
| linalg.solve | |
| linalg.tensorsolve | |
| linalg.lstsq | |
| linalg.inv | |
| linalg.pinv | |
| linalg.tensorinv | |
| Exceptions | |
| ---------- | |
| .. autosummary:: | |
| :toctree: generated/ | |
| linalg.LinAlgError | |
| Linear algebra on several matrices at once | |
| ------------------------------------------ | |
| Several of the linear algebra routines listed above are able to | |
| compute results for several matrices at once, if they are stacked into | |
| the same array. | |
| This is indicated in the documentation via input parameter | |
| specifications such as ``a : (..., M, M) array_like``. This means that | |
| if for instance given an input array ``a.shape == (N, M, M)``, it is | |
| interpreted as a "stack" of N matrices, each of size M-by-M. Similar | |
| specification applies to return values, for instance the determinant | |
| has ``det : (...)`` and will in this case return an array of shape | |
| ``det(a).shape == (N,)``. This generalizes to linear algebra | |
| operations on higher-dimensional arrays: the last 1 or 2 dimensions of | |
| a multidimensional array are interpreted as vectors or matrices, as | |
| appropriate for each operation. | |