tmp
/
pip-install-ghxuqwgs
/numpy_78e94bf2b6094bf9a1f3d92042f9bf46
/numpy
/polynomial
/tests
/test_hermite_e.py
| """Tests for hermite_e module. | |
| """ | |
| from __future__ import division, absolute_import, print_function | |
| import numpy as np | |
| import numpy.polynomial.hermite_e as herme | |
| from numpy.polynomial.polynomial import polyval | |
| from numpy.testing import ( | |
| TestCase, assert_almost_equal, assert_raises, | |
| assert_equal, assert_, run_module_suite) | |
| He0 = np.array([1]) | |
| He1 = np.array([0, 1]) | |
| He2 = np.array([-1, 0, 1]) | |
| He3 = np.array([0, -3, 0, 1]) | |
| He4 = np.array([3, 0, -6, 0, 1]) | |
| He5 = np.array([0, 15, 0, -10, 0, 1]) | |
| He6 = np.array([-15, 0, 45, 0, -15, 0, 1]) | |
| He7 = np.array([0, -105, 0, 105, 0, -21, 0, 1]) | |
| He8 = np.array([105, 0, -420, 0, 210, 0, -28, 0, 1]) | |
| He9 = np.array([0, 945, 0, -1260, 0, 378, 0, -36, 0, 1]) | |
| Helist = [He0, He1, He2, He3, He4, He5, He6, He7, He8, He9] | |
| def trim(x): | |
| return herme.hermetrim(x, tol=1e-6) | |
| class TestConstants(TestCase): | |
| def test_hermedomain(self): | |
| assert_equal(herme.hermedomain, [-1, 1]) | |
| def test_hermezero(self): | |
| assert_equal(herme.hermezero, [0]) | |
| def test_hermeone(self): | |
| assert_equal(herme.hermeone, [1]) | |
| def test_hermex(self): | |
| assert_equal(herme.hermex, [0, 1]) | |
| class TestArithmetic(TestCase): | |
| x = np.linspace(-3, 3, 100) | |
| def test_hermeadd(self): | |
| for i in range(5): | |
| for j in range(5): | |
| msg = "At i=%d, j=%d" % (i, j) | |
| tgt = np.zeros(max(i, j) + 1) | |
| tgt[i] += 1 | |
| tgt[j] += 1 | |
| res = herme.hermeadd([0]*i + [1], [0]*j + [1]) | |
| assert_equal(trim(res), trim(tgt), err_msg=msg) | |
| def test_hermesub(self): | |
| for i in range(5): | |
| for j in range(5): | |
| msg = "At i=%d, j=%d" % (i, j) | |
| tgt = np.zeros(max(i, j) + 1) | |
| tgt[i] += 1 | |
| tgt[j] -= 1 | |
| res = herme.hermesub([0]*i + [1], [0]*j + [1]) | |
| assert_equal(trim(res), trim(tgt), err_msg=msg) | |
| def test_hermemulx(self): | |
| assert_equal(herme.hermemulx([0]), [0]) | |
| assert_equal(herme.hermemulx([1]), [0, 1]) | |
| for i in range(1, 5): | |
| ser = [0]*i + [1] | |
| tgt = [0]*(i - 1) + [i, 0, 1] | |
| assert_equal(herme.hermemulx(ser), tgt) | |
| def test_hermemul(self): | |
| # check values of result | |
| for i in range(5): | |
| pol1 = [0]*i + [1] | |
| val1 = herme.hermeval(self.x, pol1) | |
| for j in range(5): | |
| msg = "At i=%d, j=%d" % (i, j) | |
| pol2 = [0]*j + [1] | |
| val2 = herme.hermeval(self.x, pol2) | |
| pol3 = herme.hermemul(pol1, pol2) | |
| val3 = herme.hermeval(self.x, pol3) | |
| assert_(len(pol3) == i + j + 1, msg) | |
| assert_almost_equal(val3, val1*val2, err_msg=msg) | |
| def test_hermediv(self): | |
| for i in range(5): | |
| for j in range(5): | |
| msg = "At i=%d, j=%d" % (i, j) | |
| ci = [0]*i + [1] | |
| cj = [0]*j + [1] | |
| tgt = herme.hermeadd(ci, cj) | |
| quo, rem = herme.hermediv(tgt, ci) | |
| res = herme.hermeadd(herme.hermemul(quo, ci), rem) | |
| assert_equal(trim(res), trim(tgt), err_msg=msg) | |
| class TestEvaluation(TestCase): | |
| # coefficients of 1 + 2*x + 3*x**2 | |
| c1d = np.array([4., 2., 3.]) | |
| c2d = np.einsum('i,j->ij', c1d, c1d) | |
| c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d) | |
| # some random values in [-1, 1) | |
| x = np.random.random((3, 5))*2 - 1 | |
| y = polyval(x, [1., 2., 3.]) | |
| def test_hermeval(self): | |
| #check empty input | |
| assert_equal(herme.hermeval([], [1]).size, 0) | |
| #check normal input) | |
| x = np.linspace(-1, 1) | |
| y = [polyval(x, c) for c in Helist] | |
| for i in range(10): | |
| msg = "At i=%d" % i | |
| tgt = y[i] | |
| res = herme.hermeval(x, [0]*i + [1]) | |
| assert_almost_equal(res, tgt, err_msg=msg) | |
| #check that shape is preserved | |
| for i in range(3): | |
| dims = [2]*i | |
| x = np.zeros(dims) | |
| assert_equal(herme.hermeval(x, [1]).shape, dims) | |
| assert_equal(herme.hermeval(x, [1, 0]).shape, dims) | |
| assert_equal(herme.hermeval(x, [1, 0, 0]).shape, dims) | |
| def test_hermeval2d(self): | |
| x1, x2, x3 = self.x | |
| y1, y2, y3 = self.y | |
| #test exceptions | |
| assert_raises(ValueError, herme.hermeval2d, x1, x2[:2], self.c2d) | |
| #test values | |
| tgt = y1*y2 | |
| res = herme.hermeval2d(x1, x2, self.c2d) | |
| assert_almost_equal(res, tgt) | |
| #test shape | |
| z = np.ones((2, 3)) | |
| res = herme.hermeval2d(z, z, self.c2d) | |
| assert_(res.shape == (2, 3)) | |
| def test_hermeval3d(self): | |
| x1, x2, x3 = self.x | |
| y1, y2, y3 = self.y | |
| #test exceptions | |
| assert_raises(ValueError, herme.hermeval3d, x1, x2, x3[:2], self.c3d) | |
| #test values | |
| tgt = y1*y2*y3 | |
| res = herme.hermeval3d(x1, x2, x3, self.c3d) | |
| assert_almost_equal(res, tgt) | |
| #test shape | |
| z = np.ones((2, 3)) | |
| res = herme.hermeval3d(z, z, z, self.c3d) | |
| assert_(res.shape == (2, 3)) | |
| def test_hermegrid2d(self): | |
| x1, x2, x3 = self.x | |
| y1, y2, y3 = self.y | |
| #test values | |
| tgt = np.einsum('i,j->ij', y1, y2) | |
| res = herme.hermegrid2d(x1, x2, self.c2d) | |
| assert_almost_equal(res, tgt) | |
| #test shape | |
| z = np.ones((2, 3)) | |
| res = herme.hermegrid2d(z, z, self.c2d) | |
| assert_(res.shape == (2, 3)*2) | |
| def test_hermegrid3d(self): | |
| x1, x2, x3 = self.x | |
| y1, y2, y3 = self.y | |
| #test values | |
| tgt = np.einsum('i,j,k->ijk', y1, y2, y3) | |
| res = herme.hermegrid3d(x1, x2, x3, self.c3d) | |
| assert_almost_equal(res, tgt) | |
| #test shape | |
| z = np.ones((2, 3)) | |
| res = herme.hermegrid3d(z, z, z, self.c3d) | |
| assert_(res.shape == (2, 3)*3) | |
| class TestIntegral(TestCase): | |
| def test_hermeint(self): | |
| # check exceptions | |
| assert_raises(ValueError, herme.hermeint, [0], .5) | |
| assert_raises(ValueError, herme.hermeint, [0], -1) | |
| assert_raises(ValueError, herme.hermeint, [0], 1, [0, 0]) | |
| # test integration of zero polynomial | |
| for i in range(2, 5): | |
| k = [0]*(i - 2) + [1] | |
| res = herme.hermeint([0], m=i, k=k) | |
| assert_almost_equal(res, [0, 1]) | |
| # check single integration with integration constant | |
| for i in range(5): | |
| scl = i + 1 | |
| pol = [0]*i + [1] | |
| tgt = [i] + [0]*i + [1/scl] | |
| hermepol = herme.poly2herme(pol) | |
| hermeint = herme.hermeint(hermepol, m=1, k=[i]) | |
| res = herme.herme2poly(hermeint) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| # check single integration with integration constant and lbnd | |
| for i in range(5): | |
| scl = i + 1 | |
| pol = [0]*i + [1] | |
| hermepol = herme.poly2herme(pol) | |
| hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1) | |
| assert_almost_equal(herme.hermeval(-1, hermeint), i) | |
| # check single integration with integration constant and scaling | |
| for i in range(5): | |
| scl = i + 1 | |
| pol = [0]*i + [1] | |
| tgt = [i] + [0]*i + [2/scl] | |
| hermepol = herme.poly2herme(pol) | |
| hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2) | |
| res = herme.herme2poly(hermeint) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| # check multiple integrations with default k | |
| for i in range(5): | |
| for j in range(2, 5): | |
| pol = [0]*i + [1] | |
| tgt = pol[:] | |
| for k in range(j): | |
| tgt = herme.hermeint(tgt, m=1) | |
| res = herme.hermeint(pol, m=j) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| # check multiple integrations with defined k | |
| for i in range(5): | |
| for j in range(2, 5): | |
| pol = [0]*i + [1] | |
| tgt = pol[:] | |
| for k in range(j): | |
| tgt = herme.hermeint(tgt, m=1, k=[k]) | |
| res = herme.hermeint(pol, m=j, k=list(range(j))) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| # check multiple integrations with lbnd | |
| for i in range(5): | |
| for j in range(2, 5): | |
| pol = [0]*i + [1] | |
| tgt = pol[:] | |
| for k in range(j): | |
| tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1) | |
| res = herme.hermeint(pol, m=j, k=list(range(j)), lbnd=-1) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| # check multiple integrations with scaling | |
| for i in range(5): | |
| for j in range(2, 5): | |
| pol = [0]*i + [1] | |
| tgt = pol[:] | |
| for k in range(j): | |
| tgt = herme.hermeint(tgt, m=1, k=[k], scl=2) | |
| res = herme.hermeint(pol, m=j, k=list(range(j)), scl=2) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| def test_hermeint_axis(self): | |
| # check that axis keyword works | |
| c2d = np.random.random((3, 4)) | |
| tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T | |
| res = herme.hermeint(c2d, axis=0) | |
| assert_almost_equal(res, tgt) | |
| tgt = np.vstack([herme.hermeint(c) for c in c2d]) | |
| res = herme.hermeint(c2d, axis=1) | |
| assert_almost_equal(res, tgt) | |
| tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d]) | |
| res = herme.hermeint(c2d, k=3, axis=1) | |
| assert_almost_equal(res, tgt) | |
| class TestDerivative(TestCase): | |
| def test_hermeder(self): | |
| # check exceptions | |
| assert_raises(ValueError, herme.hermeder, [0], .5) | |
| assert_raises(ValueError, herme.hermeder, [0], -1) | |
| # check that zeroth deriviative does nothing | |
| for i in range(5): | |
| tgt = [0]*i + [1] | |
| res = herme.hermeder(tgt, m=0) | |
| assert_equal(trim(res), trim(tgt)) | |
| # check that derivation is the inverse of integration | |
| for i in range(5): | |
| for j in range(2, 5): | |
| tgt = [0]*i + [1] | |
| res = herme.hermeder(herme.hermeint(tgt, m=j), m=j) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| # check derivation with scaling | |
| for i in range(5): | |
| for j in range(2, 5): | |
| tgt = [0]*i + [1] | |
| res = herme.hermeder( | |
| herme.hermeint(tgt, m=j, scl=2), m=j, scl=.5) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| def test_hermeder_axis(self): | |
| # check that axis keyword works | |
| c2d = np.random.random((3, 4)) | |
| tgt = np.vstack([herme.hermeder(c) for c in c2d.T]).T | |
| res = herme.hermeder(c2d, axis=0) | |
| assert_almost_equal(res, tgt) | |
| tgt = np.vstack([herme.hermeder(c) for c in c2d]) | |
| res = herme.hermeder(c2d, axis=1) | |
| assert_almost_equal(res, tgt) | |
| class TestVander(TestCase): | |
| # some random values in [-1, 1) | |
| x = np.random.random((3, 5))*2 - 1 | |
| def test_hermevander(self): | |
| # check for 1d x | |
| x = np.arange(3) | |
| v = herme.hermevander(x, 3) | |
| assert_(v.shape == (3, 4)) | |
| for i in range(4): | |
| coef = [0]*i + [1] | |
| assert_almost_equal(v[..., i], herme.hermeval(x, coef)) | |
| # check for 2d x | |
| x = np.array([[1, 2], [3, 4], [5, 6]]) | |
| v = herme.hermevander(x, 3) | |
| assert_(v.shape == (3, 2, 4)) | |
| for i in range(4): | |
| coef = [0]*i + [1] | |
| assert_almost_equal(v[..., i], herme.hermeval(x, coef)) | |
| def test_hermevander2d(self): | |
| # also tests hermeval2d for non-square coefficient array | |
| x1, x2, x3 = self.x | |
| c = np.random.random((2, 3)) | |
| van = herme.hermevander2d(x1, x2, [1, 2]) | |
| tgt = herme.hermeval2d(x1, x2, c) | |
| res = np.dot(van, c.flat) | |
| assert_almost_equal(res, tgt) | |
| # check shape | |
| van = herme.hermevander2d([x1], [x2], [1, 2]) | |
| assert_(van.shape == (1, 5, 6)) | |
| def test_hermevander3d(self): | |
| # also tests hermeval3d for non-square coefficient array | |
| x1, x2, x3 = self.x | |
| c = np.random.random((2, 3, 4)) | |
| van = herme.hermevander3d(x1, x2, x3, [1, 2, 3]) | |
| tgt = herme.hermeval3d(x1, x2, x3, c) | |
| res = np.dot(van, c.flat) | |
| assert_almost_equal(res, tgt) | |
| # check shape | |
| van = herme.hermevander3d([x1], [x2], [x3], [1, 2, 3]) | |
| assert_(van.shape == (1, 5, 24)) | |
| class TestFitting(TestCase): | |
| def test_hermefit(self): | |
| def f(x): | |
| return x*(x - 1)*(x - 2) | |
| # Test exceptions | |
| assert_raises(ValueError, herme.hermefit, [1], [1], -1) | |
| assert_raises(TypeError, herme.hermefit, [[1]], [1], 0) | |
| assert_raises(TypeError, herme.hermefit, [], [1], 0) | |
| assert_raises(TypeError, herme.hermefit, [1], [[[1]]], 0) | |
| assert_raises(TypeError, herme.hermefit, [1, 2], [1], 0) | |
| assert_raises(TypeError, herme.hermefit, [1], [1, 2], 0) | |
| assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[[1]]) | |
| assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[1, 1]) | |
| # Test fit | |
| x = np.linspace(0, 2) | |
| y = f(x) | |
| # | |
| coef3 = herme.hermefit(x, y, 3) | |
| assert_equal(len(coef3), 4) | |
| assert_almost_equal(herme.hermeval(x, coef3), y) | |
| # | |
| coef4 = herme.hermefit(x, y, 4) | |
| assert_equal(len(coef4), 5) | |
| assert_almost_equal(herme.hermeval(x, coef4), y) | |
| # | |
| coef2d = herme.hermefit(x, np.array([y, y]).T, 3) | |
| assert_almost_equal(coef2d, np.array([coef3, coef3]).T) | |
| # test weighting | |
| w = np.zeros_like(x) | |
| yw = y.copy() | |
| w[1::2] = 1 | |
| y[0::2] = 0 | |
| wcoef3 = herme.hermefit(x, yw, 3, w=w) | |
| assert_almost_equal(wcoef3, coef3) | |
| # | |
| wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, 3, w=w) | |
| assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T) | |
| # test scaling with complex values x points whose square | |
| # is zero when summed. | |
| x = [1, 1j, -1, -1j] | |
| assert_almost_equal(herme.hermefit(x, x, 1), [0, 1]) | |
| class TestCompanion(TestCase): | |
| def test_raises(self): | |
| assert_raises(ValueError, herme.hermecompanion, []) | |
| assert_raises(ValueError, herme.hermecompanion, [1]) | |
| def test_dimensions(self): | |
| for i in range(1, 5): | |
| coef = [0]*i + [1] | |
| assert_(herme.hermecompanion(coef).shape == (i, i)) | |
| def test_linear_root(self): | |
| assert_(herme.hermecompanion([1, 2])[0, 0] == -.5) | |
| class TestGauss(TestCase): | |
| def test_100(self): | |
| x, w = herme.hermegauss(100) | |
| # test orthogonality. Note that the results need to be normalized, | |
| # otherwise the huge values that can arise from fast growing | |
| # functions like Laguerre can be very confusing. | |
| v = herme.hermevander(x, 99) | |
| vv = np.dot(v.T * w, v) | |
| vd = 1/np.sqrt(vv.diagonal()) | |
| vv = vd[:, None] * vv * vd | |
| assert_almost_equal(vv, np.eye(100)) | |
| # check that the integral of 1 is correct | |
| tgt = np.sqrt(2*np.pi) | |
| assert_almost_equal(w.sum(), tgt) | |
| class TestMisc(TestCase): | |
| def test_hermefromroots(self): | |
| res = herme.hermefromroots([]) | |
| assert_almost_equal(trim(res), [1]) | |
| for i in range(1, 5): | |
| roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2]) | |
| pol = herme.hermefromroots(roots) | |
| res = herme.hermeval(roots, pol) | |
| tgt = 0 | |
| assert_(len(pol) == i + 1) | |
| assert_almost_equal(herme.herme2poly(pol)[-1], 1) | |
| assert_almost_equal(res, tgt) | |
| def test_hermeroots(self): | |
| assert_almost_equal(herme.hermeroots([1]), []) | |
| assert_almost_equal(herme.hermeroots([1, 1]), [-1]) | |
| for i in range(2, 5): | |
| tgt = np.linspace(-1, 1, i) | |
| res = herme.hermeroots(herme.hermefromroots(tgt)) | |
| assert_almost_equal(trim(res), trim(tgt)) | |
| def test_hermetrim(self): | |
| coef = [2, -1, 1, 0] | |
| # Test exceptions | |
| assert_raises(ValueError, herme.hermetrim, coef, -1) | |
| # Test results | |
| assert_equal(herme.hermetrim(coef), coef[:-1]) | |
| assert_equal(herme.hermetrim(coef, 1), coef[:-3]) | |
| assert_equal(herme.hermetrim(coef, 2), [0]) | |
| def test_hermeline(self): | |
| assert_equal(herme.hermeline(3, 4), [3, 4]) | |
| def test_herme2poly(self): | |
| for i in range(10): | |
| assert_almost_equal(herme.herme2poly([0]*i + [1]), Helist[i]) | |
| def test_poly2herme(self): | |
| for i in range(10): | |
| assert_almost_equal(herme.poly2herme(Helist[i]), [0]*i + [1]) | |
| def test_weight(self): | |
| x = np.linspace(-5, 5, 11) | |
| tgt = np.exp(-.5*x**2) | |
| res = herme.hermeweight(x) | |
| assert_almost_equal(res, tgt) | |
| if __name__ == "__main__": | |
| run_module_suite() | |