| { | |
| "best_metric": 0.8843169724798454, | |
| "best_model_checkpoint": "./fine-tune/bert-base-uncased/stsb/checkpoint-540", | |
| "epoch": 3.0, | |
| "global_step": 540, | |
| "is_hyper_param_search": false, | |
| "is_local_process_zero": true, | |
| "is_world_process_zero": true, | |
| "log_history": [ | |
| { | |
| "epoch": 1.0, | |
| "eval_combined_score": 0.8770512336585177, | |
| "eval_loss": 0.517871081829071, | |
| "eval_pearson": 0.8805737478242902, | |
| "eval_runtime": 6.6982, | |
| "eval_samples_per_second": 223.94, | |
| "eval_spearmanr": 0.873528719492745, | |
| "eval_steps_per_second": 28.067, | |
| "step": 180 | |
| }, | |
| { | |
| "epoch": 2.0, | |
| "eval_combined_score": 0.8834893774364951, | |
| "eval_loss": 0.5145099759101868, | |
| "eval_pearson": 0.8850209566170038, | |
| "eval_runtime": 6.9391, | |
| "eval_samples_per_second": 216.167, | |
| "eval_spearmanr": 0.8819577982559864, | |
| "eval_steps_per_second": 27.093, | |
| "step": 360 | |
| }, | |
| { | |
| "epoch": 2.78, | |
| "learning_rate": 1.4814814814814815e-06, | |
| "loss": 0.7868, | |
| "step": 500 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "eval_combined_score": 0.8859105179324802, | |
| "eval_loss": 0.5143781900405884, | |
| "eval_pearson": 0.887504063385115, | |
| "eval_runtime": 7.1241, | |
| "eval_samples_per_second": 210.554, | |
| "eval_spearmanr": 0.8843169724798454, | |
| "eval_steps_per_second": 26.389, | |
| "step": 540 | |
| }, | |
| { | |
| "epoch": 3.0, | |
| "step": 540, | |
| "total_flos": 1134458907008256.0, | |
| "train_loss": 0.7539703951941596, | |
| "train_runtime": 279.0486, | |
| "train_samples_per_second": 61.806, | |
| "train_steps_per_second": 1.935 | |
| } | |
| ], | |
| "max_steps": 540, | |
| "num_train_epochs": 3, | |
| "total_flos": 1134458907008256.0, | |
| "trial_name": null, | |
| "trial_params": null | |
| } | |