File size: 8,685 Bytes
c1a41d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import math
import matplotlib.pyplot as plt
import torch
from scipy.optimize import minimize_scalar

torch.set_float32_matmul_precision('high')
torch.manual_seed(0)
                
def opt_err_cvx(fn):
    res = minimize_scalar(fn, bounds=(0.1, 100))
    scale = res.x.item()
    err = res.fun
    return err, scale
        

def round(X, grid, grid_norm):
    Xqidx = (2 * X @ grid.T - grid_norm).argmax(-1)
    return grid[Xqidx]

def get_hint_curve(bit_cap=4, cols=1):
    def round_mvn(grid, dim=cols, nsamples=50000, sample_bs=500):
        X = torch.distributions.multivariate_normal.MultivariateNormal(
            torch.zeros(dim), torch.eye(dim)).rsample([nsamples]).to(grid.dtype).to(grid.device).abs()

        grid_norm = grid.norm(dim=-1)**2
        def test_s(s):
            total_err = 0
            for i in range(nsamples//sample_bs):
                sample_b = X[i*sample_bs: (i+1)*sample_bs].cuda()
                total_err += (round(sample_b*s, grid, grid_norm)/s - sample_b).float().norm()**2 / torch.numel(sample_b)
            total_err = total_err/(nsamples//sample_bs)
            return total_err.cpu()

        return opt_err_cvx(test_s)

    bits = 0
    last_bits = 0
    cr = 1
    data = [[], [], []]
    while bits < bit_cap:
        base_grid = torch.arange(0, cr).to(torch.float16)
        grid = torch.cartesian_prod(*[base_grid + 1/2] * cols)
        if cols == 1:
            grid = grid.unsqueeze(-1)
        grid_norms = torch.sum(grid**2, dim=-1)
        norms = torch.unique(grid_norms)
        norms = norms[torch.where((norms >= (cr - 1)**2) * (norms < cr**2))[0]]
        for norm in norms[::4]:
            cb = grid[torch.where(grid_norms <= norm)[0]].cuda()
            bits = math.log(len(cb))/math.log(2)/cols + 1
            if bits - last_bits < 0.1:
                continue
            last_bits = bits
            data[0].append(bits)
            err, scale = round_mvn(cb.cuda())
            data[1].append(err)
            data[2].append(scale)
            print(norm.item(), bits, err, scale)
            if bits > bit_cap:
                return data
        cr += 1
    return data


def get_D4_curve(bit_cap=4):
    def round_mvn(grid, nsamples=50000, sample_bs=1000):
        dim = grid.shape[-1]
        
        X = torch.distributions.multivariate_normal.MultivariateNormal(
            torch.zeros(dim), torch.eye(dim)).rsample([nsamples]).to(grid.dtype).to(grid.device)

        grid_norm = grid.norm(dim=-1)**2
        def test_s(s):
            err = (round(X*s, grid, grid_norm)/s - X).float().norm()**2 / torch.numel(X)
            return err.cpu()
        return opt_err_cvx(test_s)

    _D4_CODESZ = 4
    bits = 0
    last_bits = 0
    cr = 1
    data = [[], [], []]
    while bits < bit_cap:
        base_grid = torch.arange(-cr, cr).to(torch.float16)
        grid = torch.cartesian_prod(*[base_grid + 1/2] * _D4_CODESZ)
        grid = grid[torch.where(grid.sum(dim=-1) % 2 == 0)[0]]
        grid_norms = torch.sum(grid**2, dim=-1)
        norms = torch.unique(grid_norms)
        norms = norms[torch.where((norms >= (cr - 1)**2) * (norms < cr**2))[0]]
        for norm in norms[::4]:
            cb = grid[torch.where(grid_norms <= norm)[0]].cuda()
            bits = math.log(len(cb))/math.log(2)/_D4_CODESZ
            if bits - last_bits < 0.1:
                continue
            last_bits = bits
            data[0].append(bits)
            err, scale = round_mvn(cb.cuda())
            data[1].append(err)
            data[2].append(scale)
            print(norm.item(), bits, err, scale)
            if bits > bit_cap:
                return data
        cr += 1
    return data
    

def get_E8_curve(bit_cap=4):
    def round_mvn(grid, nsamples=50000, sample_bs=250):
        dim = grid.shape[-1]
        
        X = torch.distributions.multivariate_normal.MultivariateNormal(
            torch.zeros(dim), torch.eye(dim)).rsample([nsamples]).to(grid.dtype)
        X_part = torch.abs(X)
        X_odd = torch.where((X < 0).sum(dim=-1) % 2 != 0)[0]
        X_part[X_odd, 0] = -X_part[X_odd, 0]
        X = X_part
        
        grid_norm = grid.norm(dim=-1)**2
        def test_s(s):
            total_err = 0
            for i in range(nsamples//sample_bs):
                sample_b = X[i*sample_bs: (i+1)*sample_bs].cuda()
                total_err += (round(sample_b*s, grid, grid_norm)/s - sample_b).float().norm()**2 / torch.numel(sample_b)
            total_err = total_err/(nsamples//sample_bs)
            return total_err.cpu()
        return opt_err_cvx(test_s)
        
    def flip_cb(cb, flips, batch_size=5000000):
        map = 1 - 2*flips
        output = torch.zeros((len(cb), len(map), cb.shape[-1]), dtype=cb.dtype, device='cpu')
        map = map.unsqueeze(0)
        for i in range(math.ceil(len(cb)/batch_size)):
            next = min(len(cb), (i+1)*batch_size)
            output[i*batch_size: next] = (cb[i*batch_size:next].unsqueeze(1)*map).cpu()
        return output.reshape(-1, cb.shape[-1])

    def batched_unique(cpu_tensor, batch_size=10**9):
        res = []
        for i in range(math.ceil(len(cpu_tensor)/batch_size)):
            next = min(len(cpu_tensor), (i+1)*batch_size)
            res.append(torch.unique(cpu_tensor[i*batch_size:next].cuda(), dim=0).cpu())
        return torch.concat(res, dim=0)

    def combo(n, k):
        return ((n + 1).lgamma() - (k + 1).lgamma() - ((n - k) + 1).lgamma()).exp()
    
    _E8_CODESZ = 8

    int_map = 2**torch.arange(8)
    bitmap = torch.zeros(256, 8)
    for i in range(256):
        bitmap[i] = (i & int_map) != 0
    bitmap = bitmap[torch.where(bitmap.sum(dim=-1)%2 == 0)[0]].cuda()

    bits = 0
    cr = 2
    data = [[], [], []]
    last_bits = 0
    while bits < bit_cap:
        base_grid = torch.arange(-1, cr).to(torch.float16)
        int_grid = torch.cartesian_prod(*[base_grid] * _E8_CODESZ)
        int_grid = int_grid[torch.where(int_grid.sum(dim=-1) % 2 == 0)[0]]
        hint_grid = torch.cartesian_prod(*[base_grid + 1/2] * _E8_CODESZ)
        hint_grid = hint_grid[torch.where(hint_grid.sum(dim=-1) % 2 == 0)[0]]
        grid = torch.concat([int_grid, hint_grid], dim=0)
        
        grid_norms = torch.sum(grid**2, dim=-1)
        norms = torch.unique(grid_norms)
        norms = norms[torch.where((norms >= (cr - 1)**2) * (norms < cr**2))[0]]
        for norm in norms[::4]:
            cb = grid[torch.where(grid_norms <= norm)[0]].cuda()
            cb = batched_unique(flip_cb(cb, bitmap))
            idxs = torch.where(
                ((cb[:, 1:] < 0).sum(dim=-1) <= 1) * \
                (cb[:, 1:].min(dim=-1).values >= -0.5)
            )[0]
            cb_part = cb[idxs]

            bits = math.log(len(cb))/math.log(2)/_E8_CODESZ
            if bits - last_bits < 0.1:
                continue
            last_bits = bits
            data[0].append(bits)
            err, scale = round_mvn(cb_part.cuda())
            data[1].append(err)
            data[2].append(scale)
            print(norm.item(), bits, err, scale)
            if bits > bit_cap:
                return data
        cr += 1
    return data

def parse_cached(s):
    s = s.replace('\n', ' ')
    s = s.strip().rstrip().split(' ')
    bits = [float(_) for _ in s[1::3]]
    err = [float(_) for _ in s[2::3]]
    return bits, err

bit_cap = 3.5
hint_1c = get_hint_curve(bit_cap, 1)
hint_4c = get_hint_curve(bit_cap, 4)
hint_8c = get_hint_curve(bit_cap, 8)
D4 = get_D4_curve(bit_cap)
E8 = get_E8_curve(bit_cap)

import pickle as pkl
all_data = {
    'half_int_1col': hint_1c,
    'half_int_4col': hint_4c,
    'half_int_8col': hint_8c,
    'D4': D4,
    'E8': E8,
}

print(all_data)
pkl.dump(all_data, open('plot_data.pkl', 'wb'))
exit()


plt.rcParams["figure.figsize"] = (6,5)
plt.cla()
box = plt.plot(hint_1c[0], hint_1c[1], 's', label='Half Integer 1 Column')[0]
plt.plot(hint_1c[0], hint_1c[1], '-', alpha=0.5, color=box._color)
box = plt.plot(hint_4c[0], hint_4c[1], 'o', label='Half Integer 4 Column')[0]
plt.plot(hint_4c[0], hint_4c[1], '-', alpha=0.5, color=box._color) 
box = plt.plot(hint_8c[0], hint_8c[1], '+', label='Half Integer 8 Column')[0]
plt.plot(hint_8c[0], hint_8c[1], '-', alpha=0.5, color=box._color)
box = plt.plot(D4[0], D4[1], '*', label='D4')[0]
plt.plot(D4[0], D4[1], '-', alpha=0.5, color=box._color)
box = plt.plot(E8[0], E8[1], 'x', label='E8')[0]
plt.plot(E8[0], E8[1], '-', alpha=0.5, color=box._color)
plt.plot(2.0, 0.0915, 'yD', label='E8 Padded ($2^{16}$ entries)')
plt.legend()
plt.title('Lowest MSE Achievable for a Multivariate Gaussian')
plt.ylabel('MSE')
plt.yscale('log')
plt.xlabel('Bits')
plt.tight_layout()
plt.savefig('lattice_err.png', dpi=600)