File size: 32,320 Bytes
56c4b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 |
from __future__ import annotations
import logging
import os
import random
import sys
import time
from functools import partial
from math import ceil, exp, log
import math as mt
import numpy as np
import hydra
import jax
import jax.numpy as jnp
from scipy.interpolate import interp1d
from jax import device_put, jit, lax, nn, random, scipy, vmap
from omegaconf import DictConfig
def interpolate_solution(u_fine, x_fine, t_fine, x_coarse, t_coarse):
"""
Interpolates the fine solution onto the coarse grid in both space and time.
"""
# Interpolate in space
space_interp_func = interp1d(x_fine, u_fine, axis=2, kind='linear', fill_value="extrapolate")
# finding the values of the u_fine function over the grid points of x
u_fine_interp_space = space_interp_func(x_coarse)
# Interpolate in time
time_interp_func = interp1d(t_fine, u_fine_interp_space, axis=1, kind='linear', fill_value="extrapolate")
# finding the values of the u_fine_interp_sapce function over the grid points of time.
u_fine_interp = time_interp_func(t_coarse)
return u_fine_interp
# def compute_error(u_coarse, u_fine, x_coarse, x_fine, t_coarse, t_fine):
def compute_error(coarse_tuple, fine_tuple):
"""
Computes the error between coarse and fine grid solutions by interpolating in both space and time.
"""
u_coarse, x_coarse, t_coarse = coarse_tuple
u_fine, x_fine, t_fine = fine_tuple
u_fine_interp = interpolate_solution(u_fine, x_fine, t_fine, x_coarse, t_coarse)
# Compute L2 norm error
print(u_coarse.shape)
print(u_fine_interp.shape)
error = np.linalg.norm(u_coarse - u_fine_interp) / np.sqrt(u_coarse.size)
return error
# import all the functions from cns_utils.py
@partial(jit, static_argnums=(3, 4, 5, 6, 7, 8, 9))
def init_multi_HD(
xc,
yc,
zc,
numbers=10000,
k_tot=10,
init_key=2022,
num_choise_k=2,
if_renorm=False,
umax=1.0e4,
umin=1.0e-8,
):
"""
:param xc: cell center coordinate
:param mode: initial condition
:return: 1D scalar function u at cell center
"""
def _pass(carry):
return carry
def select_A(carry):
def _func(carry):
return jnp.abs(carry)
cond, value = carry
value = lax.cond(cond == 1, _func, _pass, value)
return cond, value
def select_W(carry):
def _window(carry):
xx, val, xL, xR, trns = carry
val = 0.5 * (jnp.tanh((xx - xL) / trns) - jnp.tanh((xx - xR) / trns))
return xx, val, xL, xR, trns
cond, value, xx, xL, xR, trns = carry
carry = xx, value, xL, xR, trns
xx, value, xL, xR, trns = lax.cond(cond == 1, _window, _pass, carry)
return cond, value, xx, xL, xR, trns
def renormalize(carry):
def _norm(carry):
u, key = carry
u -= jnp.min(u, axis=1, keepdims=True) # positive value
u /= jnp.max(u, axis=1, keepdims=True) # normalize
key, subkey = random.split(key)
m_val = random.uniform(
key, shape=[numbers], minval=mt.log(umin), maxval=mt.log(umax)
)
m_val = jnp.exp(m_val)
key, subkey = random.split(key)
b_val = random.uniform(
key, shape=[numbers], minval=mt.log(umin), maxval=mt.log(umax)
)
b_val = jnp.exp(b_val)
return u * m_val[:, None] + b_val[:, None], key
cond, u, key = carry
carry = u, key
u, key = lax.cond(cond is True, _norm, _pass, carry)
return cond, u, key
assert numbers % jax.device_count() == 0, "numbers should be : GPUs x integer!!"
key = random.PRNGKey(init_key)
selected = random.randint(
key, shape=[numbers, num_choise_k], minval=0, maxval=k_tot
)
selected = nn.one_hot(selected, k_tot, dtype=int).sum(axis=1)
kk = jnp.pi * 2.0 * jnp.arange(1, k_tot + 1) * selected / (xc[-1] - xc[0])
amp = random.uniform(key, shape=[numbers, k_tot, 1])
key, subkey = random.split(key)
phs = 2.0 * jnp.pi * random.uniform(key, shape=[numbers, k_tot, 1])
_u = amp * jnp.sin(kk[:, :, jnp.newaxis] * xc[jnp.newaxis, jnp.newaxis, :] + phs)
_u = jnp.sum(_u, axis=1)
# perform absolute value function
cond = random.choice(key, 2, p=jnp.array([0.9, 0.1]), shape=([numbers]))
carry = (cond, _u)
cond, _u = vmap(select_A, 0, 0)(carry)
sgn = random.choice(key, a=jnp.array([1, -1]), shape=([numbers, 1]))
_u *= sgn # random flip of signature
# perform window function
key, subkey = random.split(key)
cond = random.choice(key, 2, p=jnp.array([0.5, 0.5]), shape=([numbers]))
_xc = jnp.repeat(xc[None, :], numbers, axis=0)
mask = jnp.ones_like(_xc)
xL = random.uniform(key, shape=([numbers]), minval=0.1, maxval=0.45)
xR = random.uniform(key, shape=([numbers]), minval=0.55, maxval=0.9)
trns = 0.01 * jnp.ones_like(cond)
carry = cond, mask, _xc, xL, xR, trns
cond, mask, _xc, xL, xR, trns = vmap(select_W, 0, 0)(carry)
_u *= mask
carry = if_renorm, _u, key
_, _u, _ = renormalize(carry) # renormalize value between a given values
return _u[..., None, None]
def VLlimiter(a, b, c, alpha=2.0):
return (
jnp.sign(c)
* (0.5 + 0.5 * jnp.sign(a * b))
* jnp.minimum(alpha * jnp.minimum(jnp.abs(a), jnp.abs(b)), jnp.abs(c))
)
def limiting_HD(u, if_second_order):
_, nx, _, _ = u.shape
uL, uR = u, u
nx -= 4
du_L = u[:, 1 : nx + 3, :, :] - u[:, 0 : nx + 2, :, :]
du_R = u[:, 2 : nx + 4, :, :] - u[:, 1 : nx + 3, :, :]
du_M = (u[:, 2 : nx + 4, :, :] - u[:, 0 : nx + 2, :, :]) * 0.5
gradu = VLlimiter(du_L, du_R, du_M) * if_second_order
# -1:Ncell
uL = uL.at[:, 1 : nx + 3, :, :].set(
u[:, 1 : nx + 3, :, :] - 0.5 * gradu
) # left of cell
uR = uR.at[:, 1 : nx + 3, :, :].set(
u[:, 1 : nx + 3, :, :] + 0.5 * gradu
) # right of cell
uL = jnp.where(uL[0] > 0.0, uL, u)
uL = jnp.where(uL[4] > 0.0, uL, u)
uR = jnp.where(uR[0] > 0.0, uR, u)
uR = jnp.where(uR[4] > 0.0, uR, u)
return uL, uR
def Courant_HD(u, dx, dy, dz, gamma):
cs = jnp.sqrt(gamma * u[4] / u[0]) # sound velocity
stability_adv_x = dx / (jnp.max(cs + jnp.abs(u[1])) + 1.0e-8)
stability_adv_y = dy / (jnp.max(cs + jnp.abs(u[2])) + 1.0e-8)
stability_adv_z = dz / (jnp.max(cs + jnp.abs(u[3])) + 1.0e-8)
return jnp.min(jnp.array([stability_adv_x, stability_adv_y, stability_adv_z]))
def Courant_vis_HD(dx, dy, dz, eta, zeta):
# visc = jnp.max(jnp.array([eta, zeta]))
visc = 4.0 / 3.0 * eta + zeta # maximum
stability_dif_x = 0.5 * dx**2 / (visc + 1.0e-8)
stability_dif_y = 0.5 * dy**2 / (visc + 1.0e-8)
stability_dif_z = 0.5 * dz**2 / (visc + 1.0e-8)
return jnp.min(jnp.array([stability_dif_x, stability_dif_y, stability_dif_z]))
def bc_HD(u, mode):
_, Nx, Ny, Nz = u.shape
Nx -= 2
Ny -= 2
Nz -= 2
if mode == "periodic": # periodic boundary condition
# left hand side
u = u.at[:, 0:2, 2:-2, 2:-2].set(u[:, Nx - 2 : Nx, 2:-2, 2:-2]) # x
u = u.at[:, 2:-2, 0:2, 2:-2].set(u[:, 2:-2, Ny - 2 : Ny, 2:-2]) # y
u = u.at[:, 2:-2, 2:-2, 0:2].set(u[:, 2:-2, 2:-2, Nz - 2 : Nz]) # z
u = u.at[:, Nx : Nx + 2, 2:-2, 2:-2].set(u[:, 2:4, 2:-2, 2:-2])
u = u.at[:, 2:-2, Ny : Ny + 2, 2:-2].set(u[:, 2:-2, 2:4, 2:-2])
u = u.at[:, 2:-2, 2:-2, Nz : Nz + 2].set(u[:, 2:-2, 2:-2, 2:4])
# u = u.loc[:, 2:-2, 0:2, 2:-2].set(u[:, 2:-2, Ny - 2 : Ny, 2:-2]) # y
# u = u.loc[:, 2:-2, 2:-2, 0:2].set(u[:, 2:-2, 2:-2, Nz - 2 : Nz]) # z
# # right hand side
# u = u.loc[:, Nx : Nx + 2, 2:-2, 2:-2].set(u[:, 2:4, 2:-2, 2:-2])
# u = u.loc[:, 2:-2, Ny : Ny + 2, 2:-2].set(u[:, 2:-2, 2:4, 2:-2])
# u = u.loc[:, 2:-2, 2:-2, Nz : Nz + 2].set(u[:, 2:-2, 2:-2, 2:4])
elif mode == "trans": # periodic boundary condition
# left hand side
u = u.loc[:, 0, 2:-2, 2:-2].set(u[:, 3, 2:-2, 2:-2]) # x
u = u.loc[:, 2:-2, 0, 2:-2].set(u[:, 2:-2, 3, 2:-2]) # y
u = u.loc[:, 2:-2, 2:-2, 0].set(u[:, 2:-2, 2:-2, 3]) # z
u = u.loc[:, 1, 2:-2, 2:-2].set(u[:, 2, 2:-2, 2:-2]) # x
u = u.loc[:, 2:-2, 1, 2:-2].set(u[:, 2:-2, 2, 2:-2]) # y
u = u.loc[:, 2:-2, 2:-2, 1].set(u[:, 2:-2, 2:-2, 2]) # z
# right hand side
u = u.loc[:, -2, 2:-2, 2:-2].set(u[:, -3, 2:-2, 2:-2])
u = u.loc[:, 2:-2, -2, 2:-2].set(u[:, 2:-2, -3, 2:-2])
u = u.loc[:, 2:-2, 2:-2, -2].set(u[:, 2:-2, 2:-2, -3])
u = u.loc[:, -1, 2:-2, 2:-2].set(u[:, -4, 2:-2, 2:-2])
u = u.loc[:, 2:-2, -1, 2:-2].set(u[:, 2:-2, -4, 2:-2])
u = u.loc[:, 2:-2, 2:-2, -1].set(u[:, 2:-2, 2:-2, -4])
elif mode == "KHI": # x: periodic, y, z : trans
# left hand side
u = u.loc[:, 0:2, 2:-2, 2:-2].set(u[:, Nx - 2 : Nx, 2:-2, 2:-2]) # x
u = u.loc[:, 2:-2, 0, 2:-2].set(u[:, 2:-2, 3, 2:-2]) # y
u = u.loc[:, 2:-2, 2:-2, 0].set(u[:, 2:-2, 2:-2, 3]) # z
u = u.loc[:, 2:-2, 1, 2:-2].set(u[:, 2:-2, 2, 2:-2]) # y
u = u.loc[:, 2:-2, 2:-2, 1].set(u[:, 2:-2, 2:-2, 2]) # z
# right hand side
u = u.loc[:, Nx : Nx + 2, 2:-2, 2:-2].set(u[:, 2:4, 2:-2, 2:-2])
u = u.loc[:, 2:-2, -2, 2:-2].set(u[:, 2:-2, -3, 2:-2])
u = u.loc[:, 2:-2, 2:-2, -2].set(u[:, 2:-2, 2:-2, -3])
u = u.loc[:, 2:-2, -1, 2:-2].set(u[:, 2:-2, -4, 2:-2])
u = u.loc[:, 2:-2, 2:-2, -1].set(u[:, 2:-2, 2:-2, -4])
return u
logger = logging.getLogger(__name__)
# Hydra
os.environ["TF_FORCE_GPU_ALLOW_GROWTH"] = "true"
os.environ["XLA_PYTHON_CLIENT_MEM_FRACTION"] = ".9"
sys.path.append("..")
def _pass(carry):
return carry
# Init arguments with Hydra
def run_step(cfg, nx, dt_save):
# physical constants
ny = 1
nz = 1
gamma = cfg.args.gamma # 3D non-relativistic gas
gammi1 = gamma - 1.0
gamminv1 = 1.0 / gammi1
gamgamm1inv = gamma * gamminv1
gammi1 = gamma - 1.0
BCs = ["trans", "periodic", "KHI"] # reflect
assert cfg.args.bc in BCs, "bc should be in 'trans, reflect, periodic'"
dx = (cfg.args.xR - cfg.args.xL) / nx
dx_inv = 1.0 / dx
dy = (cfg.args.yR - cfg.args.yL) / ny
dy_inv = 1.0 / dy
dz = (cfg.args.zR - cfg.args.zL) / nz
dz_inv = 1.0 / dz
# cell edge coordinate
xe = jnp.linspace(cfg.args.xL, cfg.args.xR, nx + 1)
ye = jnp.linspace(cfg.args.yL, cfg.args.yR, ny + 1)
ze = jnp.linspace(cfg.args.zL, cfg.args.zR, nz + 1)
# cell center coordinate
xc = xe[:-1] + 0.5 * dx
yc = ye[:-1] + 0.5 * dy
zc = ze[:-1] + 0.5 * dz
show_steps = cfg.args.show_steps
ini_time = cfg.args.ini_time
fin_time = cfg.args.fin_time
# t-coordinate
it_tot = ceil((fin_time - ini_time) / dt_save) + 1
tc = jnp.arange(it_tot + 1) * dt_save
# set viscosity
if cfg.args.if_rand_param:
zeta = exp(
random.uniform(log(0.001), log(10))
) # uniform number between 0.01 to 100
eta = exp(
random.uniform(log(0.001), log(10))
) # uniform number between 0.01 to 100
else:
zeta = cfg.args.zeta
eta = cfg.args.eta
logger.info(f"zeta: {zeta:>5f}, eta: {eta:>5f}")
visc = zeta + eta / 3.0
def evolve(Q):
t = ini_time
tsave = t
steps = 0
i_save = 0
dt = 0.0
tm_ini = time.time()
DDD = jnp.zeros([it_tot, nx, ny, nz])
VVx = jnp.zeros([it_tot, nx, ny, nz])
VVy = jnp.zeros([it_tot, nx, ny, nz])
VVz = jnp.zeros([it_tot, nx, ny, nz])
PPP = jnp.zeros([it_tot, nx, ny, nz])
# initial time-step
DDD = DDD.at[0].set(Q[0, 2:-2, 2:-2, 2:-2])
VVx = VVx.at[0].set(Q[1, 2:-2, 2:-2, 2:-2])
VVy = VVy.at[0].set(Q[2, 2:-2, 2:-2, 2:-2])
VVz = VVz.at[0].set(Q[3, 2:-2, 2:-2, 2:-2])
PPP = PPP.at[0].set(Q[4, 2:-2, 2:-2, 2:-2])
cond_fun = lambda x: x[0] < fin_time
def _body_fun(carry):
def _save(_carry):
Q, tsave, i_save, DDD, VVx, VVy, VVz, PPP = _carry
DDD = DDD.at[i_save].set(Q[0, 2:-2, 2:-2, 2:-2])
VVx = VVx.at[i_save].set(Q[1, 2:-2, 2:-2, 2:-2])
VVy = VVy.at[i_save].set(Q[2, 2:-2, 2:-2, 2:-2])
VVz = VVz.at[i_save].set(Q[3, 2:-2, 2:-2, 2:-2])
PPP = PPP.at[i_save].set(Q[4, 2:-2, 2:-2, 2:-2])
tsave += dt_save
i_save += 1
return (Q, tsave, i_save, DDD, VVx, VVy, VVz, PPP)
t, tsave, steps, i_save, dt, Q, DDD, VVx, VVy, VVz, PPP = carry
# if save data
carry = (Q, tsave, i_save, DDD, VVx, VVy, VVz, PPP)
Q, tsave, i_save, DDD, VVx, VVy, VVz, PPP = lax.cond(
t >= tsave, _save, _pass, carry
)
carry = (Q, t, dt, steps, tsave)
Q, t, dt, steps, tsave = lax.fori_loop(0, show_steps, simulation_fn, carry)
return (t, tsave, steps, i_save, dt, Q, DDD, VVx, VVy, VVz, PPP)
carry = t, tsave, steps, i_save, dt, Q, DDD, VVx, VVy, VVz, PPP
t, tsave, steps, i_save, dt, Q, DDD, VVx, VVy, VVz, PPP = lax.while_loop(
cond_fun, _body_fun, carry
)
tm_fin = time.time()
logger.info(f"total elapsed time is {tm_fin - tm_ini} sec")
DDD = DDD.at[-1].set(Q[0, 2:-2, 2:-2, 2:-2])
VVx = VVx.at[-1].set(Q[1, 2:-2, 2:-2, 2:-2])
VVy = VVy.at[-1].set(Q[2, 2:-2, 2:-2, 2:-2])
VVz = VVz.at[-1].set(Q[3, 2:-2, 2:-2, 2:-2])
PPP = PPP.at[-1].set(Q[4, 2:-2, 2:-2, 2:-2])
return t, DDD, VVx, VVy, VVz, PPP
@jit
def simulation_fn(i, carry):
Q, t, dt, steps, tsave = carry
dt = (
Courant_HD(Q[:, 2:-2, 2:-2, 2:-2], dx, dy, dz, cfg.args.gamma)
* cfg.args.CFL
)
dt = jnp.min(jnp.array([dt, cfg.args.fin_time - t, tsave - t]))
def _update(carry):
Q, dt = carry
# preditor step for calculating t+dt/2-th time step
Q_tmp = bc_HD(
Q, mode=cfg.args.bc
) # index 2 for _U is equivalent with index 0 for u
Q_tmp = update(Q, Q_tmp, dt * 0.5)
# update using flux at t+dt/2-th time step
Q_tmp = bc_HD(
Q_tmp, mode=cfg.args.bc
) # index 2 for _U is equivalent with index 0 for u
Q = update(Q, Q_tmp, dt)
dt_vis = Courant_vis_HD(dx, dy, dz, eta, zeta) * cfg.args.CFL
dt_vis = jnp.min(jnp.array([dt_vis, dt]))
t_vis = 0.0
carry = Q, dt, dt_vis, t_vis
Q, dt, dt_vis, t_vis = lax.while_loop(
lambda x: x[1] - x[3] > 1.0e-8, update_vis, carry
)
return Q, dt
carry = Q, dt
Q, dt = lax.cond(dt > 1.0e-8, _update, _pass, carry)
t += dt
steps += 1
return Q, t, dt, steps, tsave
@jit
def update(Q, Q_tmp, dt):
# calculate conservative variables
D0 = Q[0]
Mx = Q[1] * Q[0]
My = Q[2] * Q[0]
Mz = Q[3] * Q[0]
E0 = Q[4] * gamminv1 + 0.5 * (Mx * Q[1] + My * Q[2] + Mz * Q[3])
D0 = D0[2:-2, 2:-2, 2:-2]
Mx = Mx[2:-2, 2:-2, 2:-2]
My = My[2:-2, 2:-2, 2:-2]
Mz = Mz[2:-2, 2:-2, 2:-2]
E0 = E0[2:-2, 2:-2, 2:-2]
# calculate flux
fx = flux_x(Q_tmp)
fy = flux_y(Q_tmp)
fz = flux_z(Q_tmp)
# update conservative variables
dtdx, dtdy, dtdz = dt * dx_inv, dt * dy_inv, dt * dz_inv
D0 -= (
dtdx * (fx[0, 1:, 2:-2, 2:-2] - fx[0, :-1, 2:-2, 2:-2])
+ dtdy * (fy[0, 2:-2, 1:, 2:-2] - fy[0, 2:-2, :-1, 2:-2])
+ dtdz * (fz[0, 2:-2, 2:-2, 1:] - fz[0, 2:-2, 2:-2, :-1])
)
Mx -= (
dtdx * (fx[1, 1:, 2:-2, 2:-2] - fx[1, :-1, 2:-2, 2:-2])
+ dtdy * (fy[1, 2:-2, 1:, 2:-2] - fy[1, 2:-2, :-1, 2:-2])
+ dtdz * (fz[1, 2:-2, 2:-2, 1:] - fz[1, 2:-2, 2:-2, :-1])
)
My -= (
dtdx * (fx[2, 1:, 2:-2, 2:-2] - fx[2, :-1, 2:-2, 2:-2])
+ dtdy * (fy[2, 2:-2, 1:, 2:-2] - fy[2, 2:-2, :-1, 2:-2])
+ dtdz * (fz[2, 2:-2, 2:-2, 1:] - fz[2, 2:-2, 2:-2, :-1])
)
Mz -= (
dtdx * (fx[3, 1:, 2:-2, 2:-2] - fx[3, :-1, 2:-2, 2:-2])
+ dtdy * (fy[3, 2:-2, 1:, 2:-2] - fy[3, 2:-2, :-1, 2:-2])
+ dtdz * (fz[3, 2:-2, 2:-2, 1:] - fz[3, 2:-2, 2:-2, :-1])
)
E0 -= (
dtdx * (fx[4, 1:, 2:-2, 2:-2] - fx[4, :-1, 2:-2, 2:-2])
+ dtdy * (fy[4, 2:-2, 1:, 2:-2] - fy[4, 2:-2, :-1, 2:-2])
+ dtdz * (fz[4, 2:-2, 2:-2, 1:] - fz[4, 2:-2, 2:-2, :-1])
)
# reverse primitive variables
Q = Q.at[0, 2:-2, 2:-2, 2:-2].set(D0) # d
Q = Q.at[1, 2:-2, 2:-2, 2:-2].set(Mx / D0) # vx
Q = Q.at[2, 2:-2, 2:-2, 2:-2].set(My / D0) # vy
Q = Q.at[3, 2:-2, 2:-2, 2:-2].set(Mz / D0) # vz
Q = Q.at[4, 2:-2, 2:-2, 2:-2].set(
gammi1 * (E0 - 0.5 * (Mx**2 + My**2 + Mz**2) / D0)
) # p
return Q.at[4].set(jnp.where(Q[4] > 1.0e-8, Q[4], cfg.args.p_floor))
@jit
def update_vis(carry):
def _update_vis_x(carry):
Q, dt = carry
# calculate conservative variables
D0 = Q[0]
Mx = Q[1] * D0
My = Q[2] * D0
Mz = Q[3] * D0
E0 = Q[4] * gamminv1 + 0.5 * (Mx * Q[1] + My * Q[2] + Mz * Q[3])
# calculate flux
dtdx = dt * dx_inv
# here the viscosity is eta*D0, so that dv/dt = eta*d^2v/dx^2 (not realistic viscosity but fast to calculate)
Dm = 0.5 * (D0[2:-1, 2:-2, 2:-2] + D0[1:-2, 2:-2, 2:-2])
fMx = (
(eta + visc)
* Dm
* dx_inv
* (Q[1, 2:-1, 2:-2, 2:-2] - Q[1, 1:-2, 2:-2, 2:-2])
)
fMy = eta * Dm * dx_inv * (Q[2, 2:-1, 2:-2, 2:-2] - Q[2, 1:-2, 2:-2, 2:-2])
fMz = eta * Dm * dx_inv * (Q[3, 2:-1, 2:-2, 2:-2] - Q[3, 1:-2, 2:-2, 2:-2])
fE = 0.5 * (eta + visc) * Dm * dx_inv * (
Q[1, 2:-1, 2:-2, 2:-2] ** 2 - Q[1, 1:-2, 2:-2, 2:-2] ** 2
) + 0.5 * eta * Dm * dx_inv * (
(Q[2, 2:-1, 2:-2, 2:-2] ** 2 - Q[2, 1:-2, 2:-2, 2:-2] ** 2)
+ (Q[3, 2:-1, 2:-2, 2:-2] ** 2 - Q[3, 1:-2, 2:-2, 2:-2] ** 2)
)
D0 = D0[2:-2, 2:-2, 2:-2]
Mx = Mx[2:-2, 2:-2, 2:-2]
My = My[2:-2, 2:-2, 2:-2]
Mz = Mz[2:-2, 2:-2, 2:-2]
E0 = E0[2:-2, 2:-2, 2:-2]
Mx += dtdx * (fMx[1:, :, :] - fMx[:-1, :, :])
My += dtdx * (fMy[1:, :, :] - fMy[:-1, :, :])
Mz += dtdx * (fMz[1:, :, :] - fMz[:-1, :, :])
E0 += dtdx * (fE[1:, :, :] - fE[:-1, :, :])
# reverse primitive variables
Q = Q.at[1, 2:-2, 2:-2, 2:-2].set(Mx / D0) # vx
Q = Q.at[2, 2:-2, 2:-2, 2:-2].set(My / D0) # vy
Q = Q.at[3, 2:-2, 2:-2, 2:-2].set(Mz / D0) # vz
Q = Q.at[4, 2:-2, 2:-2, 2:-2].set(
gammi1 * (E0 - 0.5 * (Mx**2 + My**2 + Mz**2) / D0)
) # p
return Q, dt
def _update_vis_y(carry):
Q, dt = carry
# calculate conservative variables
D0 = Q[0]
Mx = Q[1] * D0
My = Q[2] * D0
Mz = Q[3] * D0
E0 = Q[4] * gamminv1 + 0.5 * (Mx * Q[1] + My * Q[2] + Mz * Q[3])
# calculate flux
dtdy = dt * dy_inv
# here the viscosity is eta*D0, so that dv/dt = eta*d^2v/dx^2 (not realistic viscosity but fast to calculate)
Dm = 0.5 * (D0[2:-2, 2:-1, 2:-2] + D0[2:-2, 1:-2, 2:-2])
fMx = eta * Dm * dy_inv * (Q[1, 2:-2, 2:-1, 2:-2] - Q[1, 2:-2, 1:-2, 2:-2])
fMy = (
(eta + visc)
* Dm
* dy_inv
* (Q[2, 2:-2, 2:-1, 2:-2] - Q[2, 2:-2, 1:-2, 2:-2])
)
fMz = eta * Dm * dy_inv * (Q[3, 2:-2, 2:-1, 2:-2] - Q[3, 2:-2, 1:-2, 2:-2])
fE = 0.5 * (eta + visc) * Dm * dy_inv * (
Q[2, 2:-2, 2:-1, 2:-2] ** 2 - Q[2, 2:-2, 1:-2, 2:-2] ** 2
) + 0.5 * eta * Dm * dy_inv * (
(Q[3, 2:-2, 2:-1, 2:-2] ** 2 - Q[3, 2:-2, 1:-2, 2:-2] ** 2)
+ (Q[1, 2:-2, 2:-1, 2:-2] ** 2 - Q[1, 2:-2, 1:-2, 2:-2] ** 2)
)
D0 = D0[2:-2, 2:-2, 2:-2]
Mx = Mx[2:-2, 2:-2, 2:-2]
My = My[2:-2, 2:-2, 2:-2]
Mz = Mz[2:-2, 2:-2, 2:-2]
E0 = E0[2:-2, 2:-2, 2:-2]
Mx += dtdy * (fMx[:, 1:, :] - fMx[:, :-1, :])
My += dtdy * (fMy[:, 1:, :] - fMy[:, :-1, :])
Mz += dtdy * (fMz[:, 1:, :] - fMz[:, :-1, :])
E0 += dtdy * (fE[:, 1:, :] - fE[:, :-1, :])
# reverse primitive variables
Q = Q.at[1, 2:-2, 2:-2, 2:-2].set(Mx / D0) # vx
Q = Q.at[2, 2:-2, 2:-2, 2:-2].set(My / D0) # vy
Q = Q.at[3, 2:-2, 2:-2, 2:-2].set(Mz / D0) # vz
Q = Q.at[4, 2:-2, 2:-2, 2:-2].set(
gammi1 * (E0 - 0.5 * (Mx**2 + My**2 + Mz**2) / D0)
) # p
return Q, dt
def _update_vis_z(carry):
Q, dt = carry
# calculate conservative variables
D0 = Q[0]
Mx = Q[1] * D0
My = Q[2] * D0
Mz = Q[3] * D0
E0 = Q[4] * gamminv1 + 0.5 * (Mx * Q[1] + My * Q[2] + Mz * Q[3])
# calculate flux
dtdz = dt * dz_inv
# here the viscosity is eta*D0, so that dv/dt = eta*d^2v/dx^2 (not realistic viscosity but fast to calculate)
Dm = 0.5 * (D0[2:-2, 2:-2, 2:-1] + D0[2:-2, 2:-2, 1:-2])
fMx = eta * Dm * dz_inv * (Q[1, 2:-2, 2:-2, 2:-1] - Q[1, 2:-2, 2:-2, 1:-2])
fMy = eta * Dm * dz_inv * (Q[2, 2:-2, 2:-2, 2:-1] - Q[2, 2:-2, 2:-2, 1:-2])
fMz = (
(eta + visc)
* Dm
* dz_inv
* (Q[3, 2:-2, 2:-2, 2:-1] - Q[3, 2:-2, 2:-2, 1:-2])
)
fE = 0.5 * (eta + visc) * Dm * dz_inv * (
Q[3, 2:-2, 2:-2, 2:-1] ** 2 - Q[3, 2:-2, 2:-2, 1:-2] ** 2
) + 0.5 * eta * Dm * dz_inv * (
(Q[1, 2:-2, 2:-2, 2:-1] ** 2 - Q[1, 2:-2, 2:-2, 1:-2] ** 2)
+ (Q[2, 2:-2, 2:-2, 2:-1] ** 2 - Q[2, 2:-2, 2:-2, 1:-2] ** 2)
)
D0 = D0[2:-2, 2:-2, 2:-2]
Mx = Mx[2:-2, 2:-2, 2:-2]
My = My[2:-2, 2:-2, 2:-2]
Mz = Mz[2:-2, 2:-2, 2:-2]
E0 = E0[2:-2, 2:-2, 2:-2]
Mx += dtdz * (fMx[:, :, 1:] - fMx[:, :, :-1])
My += dtdz * (fMy[:, :, 1:] - fMy[:, :, :-1])
Mz += dtdz * (fMz[:, :, 1:] - fMz[:, :, :-1])
E0 += dtdz * (fE[:, :, 1:] - fE[:, :, :-1])
# reverse primitive variables
Q = Q.at[1, 2:-2, 2:-2, 2:-2].set(Mx / D0) # vx
Q = Q.at[2, 2:-2, 2:-2, 2:-2].set(My / D0) # vy
Q = Q.at[3, 2:-2, 2:-2, 2:-2].set(Mz / D0) # vz
Q = Q.at[4, 2:-2, 2:-2, 2:-2].set(
gammi1 * (E0 - 0.5 * (Mx**2 + My**2 + Mz**2) / D0)
) # p
return Q, dt
Q, dt, dt_vis, t_vis = carry
Q = bc_HD(
Q, mode=cfg.args.bc
) # index 2 for _U is equivalent with index 0 for u
dt_ev = jnp.min(jnp.array([dt, dt_vis, dt - t_vis]))
carry = Q, dt_ev
# directional split
carry = _update_vis_x(carry) # x
carry = _update_vis_y(carry) # y
Q, d_ev = _update_vis_z(carry) # z
t_vis += dt_ev
return Q, dt, dt_vis, t_vis
@jit
def flux_x(Q):
QL, QR = limiting_HD(Q, if_second_order=cfg.args.if_second_order)
# f_Riemann = HLL(QL, QR, direc=0)
return HLLC(QL, QR, direc=0)
@jit
def flux_y(Q):
_Q = jnp.transpose(Q, (0, 2, 3, 1)) # (y, z, x)
QL, QR = limiting_HD(_Q, if_second_order=cfg.args.if_second_order)
# f_Riemann = jnp.transpose(HLL(QL, QR, direc=1), (0, 3, 1, 2)) # (x,y,z) = (Z,X,Y)
return jnp.transpose(HLLC(QL, QR, direc=1), (0, 3, 1, 2)) # (x,y,z) = (Z,X,Y)
@jit
def flux_z(Q):
_Q = jnp.transpose(Q, (0, 3, 1, 2)) # (z, x, y)
QL, QR = limiting_HD(_Q, if_second_order=cfg.args.if_second_order)
# f_Riemann = jnp.transpose(HLL(QL, QR, direc=2), (0, 2, 3, 1))
return jnp.transpose(HLLC(QL, QR, direc=2), (0, 2, 3, 1))
@partial(jit, static_argnums=(2,))
def HLL(QL, QR, direc):
# direc = 0, 1, 2: (X, Y, Z)
iX, iY, iZ = direc + 1, (direc + 1) % 3 + 1, (direc + 2) % 3 + 1
cfL = jnp.sqrt(gamma * QL[4] / QL[0])
cfR = jnp.sqrt(gamma * QR[4] / QR[0])
Sfl = jnp.minimum(QL[iX, 2:-1], QR[iX, 1:-2]) - jnp.maximum(
cfL[2:-1], cfR[1:-2]
) # left-going wave
Sfr = jnp.maximum(QL[iX, 2:-1], QR[iX, 1:-2]) + jnp.maximum(
cfL[2:-1], cfR[1:-2]
) # right-going wave
dcfi = 1.0 / (Sfr - Sfl + 1.0e-8)
UL, UR = jnp.zeros_like(QL), jnp.zeros_like(QR)
UL = UL.at[0].set(QL[0])
UL = UL.at[iX].set(QL[0] * QL[iX])
UL = UL.at[iY].set(QL[0] * QL[iY])
UL = UL.at[iZ].set(QL[0] * QL[iZ])
UL = UL.at[4].set(
gamminv1 * QL[4]
+ 0.5 * (UL[iX] * QL[iX] + UL[iY] * QL[iY] + UL[iZ] * QL[iZ])
)
UR = UR.at[0].set(QR[0])
UR = UR.at[iX].set(QR[0] * QR[iX])
UR = UR.at[iY].set(QR[0] * QR[iY])
UR = UR.at[iZ].set(QR[0] * QR[iZ])
UR = UR.at[4].set(
gamminv1 * QR[4]
+ 0.5 * (UR[iX] * QR[iX] + UR[iY] * QR[iY] + UR[iZ] * QR[iZ])
)
fL, fR = jnp.zeros_like(QL), jnp.zeros_like(QR)
fL = fL.at[0].set(UL[iX])
fL = fL.at[iX].set(UL[iX] * QL[iX] + QL[4])
fL = fL.at[iY].set(UL[iX] * QL[iY])
fL = fL.at[iZ].set(UL[iX] * QL[iZ])
fL = fL.at[4].set((UL[4] + QL[4]) * QL[iX])
fR = fR.at[0].set(UR[iX])
fR = fR.at[iX].set(UR[iX] * QR[iX] + QR[4])
fR = fR.at[iY].set(UR[iX] * QR[iY])
fR = fR.at[iZ].set(UR[iX] * QR[iZ])
fR = fR.at[4].set((UR[4] + QR[4]) * QR[iX])
# upwind advection scheme
fHLL = dcfi * (
Sfr * fR[:, 1:-2]
- Sfl * fL[:, 2:-1]
+ Sfl * Sfr * (UL[:, 2:-1] - UR[:, 1:-2])
)
# L: left of cell = right-going, R: right of cell: left-going
f_Riemann = jnp.where(Sfl > 0.0, fR[:, 1:-2], fHLL)
return jnp.where(Sfr < 0.0, fL[:, 2:-1], f_Riemann)
@partial(jit, static_argnums=(2,))
def HLLC(QL, QR, direc):
"""full-Godunov method -- exact shock solution"""
iX, iY, iZ = direc + 1, (direc + 1) % 3 + 1, (direc + 2) % 3 + 1
cfL = jnp.sqrt(gamma * QL[4] / QL[0])
cfR = jnp.sqrt(gamma * QR[4] / QR[0])
Sfl = jnp.minimum(QL[iX, 2:-1], QR[iX, 1:-2]) - jnp.maximum(
cfL[2:-1], cfR[1:-2]
) # left-going wave
Sfr = jnp.maximum(QL[iX, 2:-1], QR[iX, 1:-2]) + jnp.maximum(
cfL[2:-1], cfR[1:-2]
) # right-going wave
UL, UR = jnp.zeros_like(QL), jnp.zeros_like(QR)
UL = UL.at[0].set(QL[0])
UL = UL.at[iX].set(QL[0] * QL[iX])
UL = UL.at[iY].set(QL[0] * QL[iY])
UL = UL.at[iZ].set(QL[0] * QL[iZ])
UL = UL.at[4].set(
gamminv1 * QL[4]
+ 0.5 * (UL[iX] * QL[iX] + UL[iY] * QL[iY] + UL[iZ] * QL[iZ])
)
UR = UR.at[0].set(QR[0])
UR = UR.at[iX].set(QR[0] * QR[iX])
UR = UR.at[iY].set(QR[0] * QR[iY])
UR = UR.at[iZ].set(QR[0] * QR[iZ])
UR = UR.at[4].set(
gamminv1 * QR[4]
+ 0.5 * (UR[iX] * QR[iX] + UR[iY] * QR[iY] + UR[iZ] * QR[iZ])
)
Va = (
(Sfr - QL[iX, 2:-1]) * UL[iX, 2:-1]
- (Sfl - QR[iX, 1:-2]) * UR[iX, 1:-2]
- QL[4, 2:-1]
+ QR[4, 1:-2]
)
Va /= (Sfr - QL[iX, 2:-1]) * QL[0, 2:-1] - (Sfl - QR[iX, 1:-2]) * QR[0, 1:-2]
Pa = QR[4, 1:-2] + QR[0, 1:-2] * (Sfl - QR[iX, 1:-2]) * (Va - QR[iX, 1:-2])
# shock jump condition
Dal = QR[0, 1:-2] * (Sfl - QR[iX, 1:-2]) / (Sfl - Va) # right-hand density
Dar = QL[0, 2:-1] * (Sfr - QL[iX, 2:-1]) / (Sfr - Va) # left-hand density
fL, fR = jnp.zeros_like(QL), jnp.zeros_like(QR)
fL = fL.at[0].set(UL[iX])
fL = fL.at[iX].set(UL[iX] * QL[iX] + QL[4])
fL = fL.at[iY].set(UL[iX] * QL[iY])
fL = fL.at[iZ].set(UL[iX] * QL[iZ])
fL = fL.at[4].set((UL[4] + QL[4]) * QL[iX])
fR = fR.at[0].set(UR[iX])
fR = fR.at[iX].set(UR[iX] * QR[iX] + QR[4])
fR = fR.at[iY].set(UR[iX] * QR[iY])
fR = fR.at[iZ].set(UR[iX] * QR[iZ])
fR = fR.at[4].set((UR[4] + QR[4]) * QR[iX])
# upwind advection scheme
far, fal = jnp.zeros_like(QL[:, 2:-1]), jnp.zeros_like(QR[:, 1:-2])
far = far.at[0].set(Dar * Va)
far = far.at[iX].set(Dar * Va**2 + Pa)
far = far.at[iY].set(Dar * Va * QL[iY, 2:-1])
far = far.at[iZ].set(Dar * Va * QL[iZ, 2:-1])
far = far.at[4].set(
(
gamgamm1inv * Pa
+ 0.5 * Dar * (Va**2 + QL[iY, 2:-1] ** 2 + QL[iZ, 2:-1] ** 2)
)
* Va
)
fal = fal.at[0].set(Dal * Va)
fal = fal.at[iX].set(Dal * Va**2 + Pa)
fal = fal.at[iY].set(Dal * Va * QR[iY, 1:-2])
fal = fal.at[iZ].set(Dal * Va * QR[iZ, 1:-2])
fal = fal.at[4].set(
(
gamgamm1inv * Pa
+ 0.5 * Dal * (Va**2 + QR[iY, 1:-2] ** 2 + QR[iZ, 1:-2] ** 2)
)
* Va
)
f_Riemann = jnp.where(
Sfl > 0.0, fR[:, 1:-2], fL[:, 2:-1]
) # Sf2 > 0 : supersonic
f_Riemann = jnp.where(
Sfl * Va < 0.0, fal, f_Riemann
) # SL < 0 and Va > 0 : sub-sonic
return jnp.where(
Sfr * Va < 0.0, far, f_Riemann
) # Va < 0 and SR > 0 : sub-sonic
# f_Riemann = jnp.where(Sfr < 0., fL[:, 2:-1], f_Riemann) # SR < 0 : supersonic
Q = jnp.zeros(
[cfg.args.numbers, 5, nx + 4, ny + 4, nz + 4]
)
Q = Q.at[:, 0, 2:-2, 2:-2, 2:-2].set(
init_multi_HD(
xc,
yc,
zc,
numbers=cfg.args.numbers,
k_tot=3,
init_key=cfg.args.init_key,
num_choise_k=2,
umin=1.0e0,
umax=1.0e1,
if_renorm=True,
)
)
Q = device_put(Q) # putting variables in GPU (not necessary??)
DDDs = []
VVxs = []
VVys = []
VVzs = []
PPPs = []
for i in range(Q.shape[0]):
t, DDD, VVx, VVy, VVz, PPP = evolve(Q[i])
DDDs.append(jnp.squeeze(DDD))
VVxs.append(jnp.squeeze(VVx))
VVys.append(jnp.squeeze(VVy))
VVzs.append(jnp.squeeze(VVz))
PPPs.append(jnp.squeeze(PPP))
density = jnp.stack(DDDs)
ux = jnp.stack(VVxs)
pressure = jnp.stack(PPPs)
return ux, density, pressure, xc, tc
@hydra.main(config_path="config", config_name="config", version_base=None)
def main(cfg: DictConfig) -> None:
nxs = cfg.args.nx
dt_saves = cfg.args.dt_save
outputs = []
xcs = []
tcs = []
for nx, dt_save in zip(nxs, dt_saves):
print(nx, dt_save)
u, density, pressure, xc, tc = run_step(cfg, nx, dt_save)
full = np.stack([u, density, pressure], axis=-1)
outputs.append(full)
xcs.append(xc)
tcs.append(tc[1:])
# now we try to compute error.
errors = []
for i in range(len(nxs) - 1):
coarse_tuple = (outputs[i], xcs[i], tcs[i])
fine_tuple = (outputs[i+1], xcs[i+1], tcs[i+1])
error = compute_error(
coarse_tuple, fine_tuple
)
errors.append(error)
breakpoint()
if __name__ == "__main__":
main()
|