File size: 10,024 Bytes
56c4b9b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import argparse
import h5py
import matplotlib.pyplot as plt
import numpy as np
import os
from scipy.interpolate import interp1d
import time
from solver import *
### For nRMSE evaluation
def compute_nrmse(u_computed, u_reference):
"""Computes the Normalized Root Mean Squared Error (nRMSE) between the computed solution and reference.
Args:
u_computed (np.ndarray): Computed solution [batch_size, len(t_coordinate), N].
u_reference (np.ndarray): Reference solution [batch_size, len(t_coordinate), N].
Returns:
nrmse (np.float32): The normalized RMSE value.
"""
rmse_values = np.sqrt(np.mean((u_computed - u_reference)**2, axis=(1,2)))
u_true_norm = np.sqrt(np.mean(u_reference**2, axis=(1,2)))
nrmse = np.mean(rmse_values / u_true_norm)
return nrmse
### For convergence test
def init(xc,
modes: list =["sin", "sinsin", "Gaussian", "react", "possin"],
u0=1.0,
du=0.1):
"""Initializes one or more 1D scalar functions based on specified modes.
Args:
xc (np.ndarray): Cell center coordinates.
modes (list): List of initial condition types to generate. Options include
"sin", "sinsin", "Gaussian", "react", and "possin".
u0 (float): Base amplitude scaling factor.
du (float): Secondary amplitude scaling factor for "sinsin" mode.
Returns:
np.ndarray: Stacked initial conditions with shape [len(modes), len(xc)].
"""
initial_conditions = []
for mode in modes:
assert mode in ["sin", "sinsin", "Gaussian", "react", "possin"], f"mode {mode} not supported!"
if mode == "sin": # sinusoidal wave
u = u0 * np.sin((xc + 1.0) * np.pi)
elif mode == "sinsin": # sinusoidal wave
u = np.sin((xc + 1.0) * np.pi) + du * np.sin((xc + 1.0) * np.pi * 8.0)
elif mode == "Gaussian": # for diffusion check
t0 = 1.0
u = np.exp(-(xc**2) * np.pi / (4.0 * t0)) / np.sqrt(2.0 * t0)
elif mode == "react": # for reaction-diffusion eq.
logu = -0.5 * (xc - np.pi) ** 2 / (0.25 * np.pi) ** 2
u = np.exp(logu)
elif mode == "possin": # sinusoidal wave
u = u0 * np.abs(np.sin((xc + 1.0) * np.pi))
initial_conditions.append(u)
return np.stack(initial_conditions)
def interpolate_solution(u_fine, x_fine, t_fine, x_coarse, t_coarse):
"""
Interpolates the fine solution onto the coarse grid in both space and time.
"""
# Interpolate in space
space_interp_func = interp1d(x_fine, u_fine, axis=2, kind='linear', fill_value="extrapolate")
# finding the values of the u_fine function over the grid points of x
u_fine_interp_space = space_interp_func(x_coarse)
# Interpolate in time
time_interp_func = interp1d(t_fine, u_fine_interp_space, axis=1, kind='linear', fill_value="extrapolate")
# finding the values of the u_fine_interp_sapce function over the grid points of time.
u_fine_interp = time_interp_func(t_coarse)
return u_fine_interp
def compute_error(coarse_tuple, fine_tuple):
"""
Computes the error between coarse and fine grid solutions by interpolating in both space and time.
"""
u_coarse, x_coarse, t_coarse = coarse_tuple
u_fine, x_fine, t_fine = fine_tuple
u_fine_interp = interpolate_solution(u_fine, x_fine, t_fine, x_coarse, t_coarse)
# Compute L2 norm error
error = np.mean(np.linalg.norm(u_coarse - u_fine_interp, axis=(1,2))) / np.sqrt(u_coarse.size)
return error
def get_x_coordinate(x_min, x_max, nx):
dx = (x_max - x_min) / nx
xe = np.linspace(x_min, x_max, nx+1)
xc = xe[:-1] + 0.5 * dx
return xc
def get_t_coordinate(t_min, t_max, nt):
# t-coordinate
it_tot = np.ceil((t_max - t_min) / nt) + 1
tc = np.arange(it_tot + 1) * nt
return tc
def convergence_test(nu, rho,
nxs=[256, 512, 1024, 2048],
dts=[0.01, 0.01, 0.01, 0.01],
t_min=0, t_max=2,
x_min=-1, x_max=1):
print(f"##### Running convergence test for the solver #####")
us = []
xcs = []
tcs = []
for nx, dt in zip(nxs, dts):
print(f"**** Spatio resolution {nx} ****")
tc = get_t_coordinate(t_min, t_max, dt)
xc = get_x_coordinate(x_min, x_max, nx)
u0 = init(xc)
u = solver(u0, tc, nu, rho)
us.append(np.squeeze(np.array(u)))
xcs.append(np.array(xc))
tcs.append(np.array(tc))
print(f"**** Finished ****")
# now we try to compute error.
errors = []
for i in range(len(nxs) - 1):
coarse_tuple = (us[i], xcs[i], tcs[i])
fine_tuple = (us[-1], xcs[-1], tcs[-1])
error = compute_error(
coarse_tuple, fine_tuple
)
errors.append(error)
for i in range(len(nxs) - 2):
rate = np.log(errors[i] / errors[i+1]) / np.log(nxs[i+1] / nxs[i])
print(f"Error measured at spatio resolution {nxs[i]} is {errors[i]:.3e}")
print(f"Rate of convergence measured at spatio resolution {nxs[i]} is {rate:.3f}")
avg_rate = np.mean(
[np.log(errors[i] / errors[i+1]) / np.log(nxs[i+1] / nxs[i]) for i in range(len(nxs) - 2)]
)
return avg_rate
def save_visualization(u_batch_np: np.array, u_ref_np: np.array, save_file_idx=0):
"""
Save the visualization of u_batch and u_ref in 2D (space vs time).
"""
difference_np = u_batch_np - u_ref_np
fig, axs = plt.subplots(3, 1, figsize=(7, 12))
im1 = axs[0].imshow(u_batch_np, aspect='auto', extent=[0, 1, 1, 0], cmap='viridis')
cbar1 = fig.colorbar(im1, ax=axs[0])
cbar1.set_label("Predicted values", fontsize=14)
axs[0].set_xlabel("Spatial Dimension (x)", fontsize=14)
axs[0].set_ylabel("Temporal Dimension (t)", fontsize=14)
axs[0].set_title("Computed Solution over Space and Time", fontsize=16)
im2 = axs[1].imshow(u_ref_np, aspect='auto', extent=[0, 1, 1, 0], cmap='viridis')
cbar2 = fig.colorbar(im2, ax=axs[1])
cbar2.set_label("Reference values", fontsize=14)
axs[1].set_xlabel("Spatial Dimension (x)", fontsize=14)
axs[1].set_ylabel("Temporal Dimension (t)", fontsize=14)
axs[1].set_title("Reference Solution over Space and Time", fontsize=16)
im3 = axs[2].imshow(difference_np, aspect='auto', extent=[0, 1, 1, 0], cmap='coolwarm')
cbar3 = fig.colorbar(im3, ax=axs[2])
cbar3.set_label("Prediction error", fontsize=14)
axs[2].set_xlabel("Spatial Dimension (x)", fontsize=14)
axs[2].set_ylabel("Temporal Dimension (t)", fontsize=14)
axs[2].set_title("Prediction error over Space and Time", fontsize=16)
plt.subplots_adjust(hspace=0.4)
plt.savefig(os.path.join(args.save_pth, f'visualization_{save_file_idx}.png'))
def time_min_max(t_coordinate):
return t_coordinate[0], t_coordinate[-1]
def x_coord_min_max(x_coordinate):
return x_coordinate[0], x_coordinate[-1]
def load_data(path, is_h5py=True):
if is_h5py:
#TODO: make sure this works out
with h5py.File(path, 'r') as f:
# Do NOT modify the data loading code
t_coordinate = np.array(f['t-coordinate'])
u = np.array(f['tensor'])
x_coordinate = np.array(f['x-coordinate'])
else:
raise NotImplementedError("Only h5py format is supported for now.")
t_min, t_max = time_min_max(t_coordinate)
x_min, x_max = time_min_max(x_coordinate)
return dict(
tensor=u,
t_coordinate=t_coordinate,
x_coordinate=x_coordinate,
t_min=t_min,
t_max=t_max,
x_min=x_min,
x_max=x_max
)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Script for solving 1D Reaction-Diffusion Equation.")
parser.add_argument("--save-pth", type=str,
default='.',
help="The folder to save experimental results.")
parser.add_argument("--run-id", type=str,
default=0,
help="The id of the current run.")
parser.add_argument("--nu", type=float,
default=0.5,
choices=[0.5, 1.0, 2.0, 5.0],
help="The diffusion coefficient.")
parser.add_argument("--rho", type=float,
default=1.0,
choices=[1.0, 2.0, 5.0, 10.0],
help="The reaction coefficient.")
parser.add_argument("--dataset-path-for-eval", type=str,
default='/usr1/username/data/CodePDE/ReactionDiffusion/ReacDiff_Nu0.5_Rho1.0.hdf5',
help="The path to load the dataset.")
args = parser.parse_args()
data_dict = load_data(args.dataset_path_for_eval, is_h5py=True)
u = data_dict['tensor']
t_coordinate = data_dict['t_coordinate']
x_coordinate = data_dict['x_coordinate']
print(f"Loaded data with shape: {u.shape}")
# t_coordinate contains T+1 time points, i.e., 0, t_1, ..., t_T.
# Extract test set
u0 = u[:, 0]
u_ref = u[:, :]
# Hyperparameters
batch_size, N = u0.shape
nu, rho = args.nu, args.rho
# Run solver
print(f"##### Running the solver on the given dataset #####")
start_time = time.time()
u_batch = solver(u0, t_coordinate, nu, rho)
end_time = time.time()
print(f"##### Finished #####")
# Evaluation
nrmse = compute_nrmse(u_batch, u_ref)
avg_rate = convergence_test(
nu,
rho,
t_min=data_dict['t_min'],
t_max=data_dict['t_max']/10, # to save time
x_min=data_dict['x_min'],
x_max=data_dict['x_max']
)
print(f"Result summary")
print(
f"nRMSE: {nrmse:.3e}\t| "
f"Time: {end_time - start_time:.2f}s\t| "
f"Average convergence rate: {avg_rate:.3f}\t|"
)
# Visualization for the first sample
save_visualization(u_batch[2], u_ref[2], args.run_id)
|