Chess Challenge submission by corentincaris
Browse files- README.md +26 -0
- config.json +20 -0
- model.safetensors +3 -0
- special_tokens_map.json +6 -0
- tokenizer.py +166 -0
- tokenizer_config.json +44 -0
- vocab.json +653 -0
README.md
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: transformers
|
| 3 |
+
tags:
|
| 4 |
+
- chess
|
| 5 |
+
- llm-course
|
| 6 |
+
- chess-challenge
|
| 7 |
+
license: mit
|
| 8 |
+
---
|
| 9 |
+
|
| 10 |
+
# chess-CC-try4
|
| 11 |
+
|
| 12 |
+
Chess model submitted to the LLM Course Chess Challenge.
|
| 13 |
+
|
| 14 |
+
## Submission Info
|
| 15 |
+
|
| 16 |
+
- **Submitted by**: [corentincaris](https://huggingface.co/corentincaris)
|
| 17 |
+
- **Parameters**: 980,880
|
| 18 |
+
- **Organization**: LLM-course
|
| 19 |
+
|
| 20 |
+
## Model Details
|
| 21 |
+
|
| 22 |
+
- **Architecture**: Chess Transformer (GPT-style)
|
| 23 |
+
- **Vocab size**: 651
|
| 24 |
+
- **Embedding dim**: 120
|
| 25 |
+
- **Layers**: 5
|
| 26 |
+
- **Heads**: 8
|
config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ChessForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"bos_token_id": 1,
|
| 6 |
+
"dropout": 0.1,
|
| 7 |
+
"dtype": "float32",
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"layer_norm_epsilon": 1e-05,
|
| 10 |
+
"model_type": "chess_transformer",
|
| 11 |
+
"n_ctx": 256,
|
| 12 |
+
"n_embd": 120,
|
| 13 |
+
"n_head": 8,
|
| 14 |
+
"n_inner": 480,
|
| 15 |
+
"n_layer": 5,
|
| 16 |
+
"pad_token_id": 0,
|
| 17 |
+
"tie_weights": true,
|
| 18 |
+
"transformers_version": "4.57.5",
|
| 19 |
+
"vocab_size": 651
|
| 20 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb36b137cba1ba135d520ebe357fc4c09f0779faf7b31da82b74d4d277c0e06f
|
| 3 |
+
size 3928944
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "[BOS]",
|
| 3 |
+
"eos_token": "[EOS]",
|
| 4 |
+
"pad_token": "[PAD]",
|
| 5 |
+
"unk_token": "[UNK]"
|
| 6 |
+
}
|
tokenizer.py
ADDED
|
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Custom Chess Tokenizer for the Chess Challenge.
|
| 3 |
+
|
| 4 |
+
This tokenizer splits moves into 3 parts:
|
| 5 |
+
1. Piece (e.g., WP)
|
| 6 |
+
2. From Square (e.g., e2)
|
| 7 |
+
3. To Square + Suffix (e.g., e4 or e4(x))
|
| 8 |
+
"""
|
| 9 |
+
|
| 10 |
+
from __future__ import annotations
|
| 11 |
+
|
| 12 |
+
import json
|
| 13 |
+
import os
|
| 14 |
+
from typing import Dict, List, Optional
|
| 15 |
+
|
| 16 |
+
from transformers import PreTrainedTokenizer
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
class ChessTokenizer(PreTrainedTokenizer):
|
| 20 |
+
"""
|
| 21 |
+
A custom tokenizer for chess moves using a 3-part split.
|
| 22 |
+
|
| 23 |
+
Splits "WPe2e4(x)" into ["WP", "e2", "e4(x)"].
|
| 24 |
+
"""
|
| 25 |
+
|
| 26 |
+
model_input_names = ["input_ids", "attention_mask"]
|
| 27 |
+
vocab_files_names = {"vocab_file": "vocab.json"}
|
| 28 |
+
|
| 29 |
+
# Special tokens
|
| 30 |
+
PAD_TOKEN = "[PAD]"
|
| 31 |
+
BOS_TOKEN = "[BOS]"
|
| 32 |
+
EOS_TOKEN = "[EOS]"
|
| 33 |
+
UNK_TOKEN = "[UNK]"
|
| 34 |
+
|
| 35 |
+
def __init__(
|
| 36 |
+
self,
|
| 37 |
+
vocab_file: Optional[str] = None,
|
| 38 |
+
vocab: Optional[Dict[str, int]] = None,
|
| 39 |
+
**kwargs,
|
| 40 |
+
):
|
| 41 |
+
# Clean kwargs to avoid conflicts
|
| 42 |
+
kwargs.pop("pad_token", None)
|
| 43 |
+
kwargs.pop("bos_token", None)
|
| 44 |
+
kwargs.pop("eos_token", None)
|
| 45 |
+
kwargs.pop("unk_token", None)
|
| 46 |
+
|
| 47 |
+
self.vocab_file = vocab_file
|
| 48 |
+
|
| 49 |
+
# Load vocab
|
| 50 |
+
if vocab is not None:
|
| 51 |
+
self._vocab = vocab
|
| 52 |
+
elif vocab_file is not None and os.path.exists(vocab_file):
|
| 53 |
+
with open(vocab_file, "r", encoding="utf-8") as f:
|
| 54 |
+
self._vocab = json.load(f)
|
| 55 |
+
else:
|
| 56 |
+
self._vocab = self._create_default_vocab()
|
| 57 |
+
|
| 58 |
+
self._ids_to_tokens = {v: k for k, v in self._vocab.items()}
|
| 59 |
+
|
| 60 |
+
super().__init__(
|
| 61 |
+
pad_token=self.PAD_TOKEN,
|
| 62 |
+
bos_token=self.BOS_TOKEN,
|
| 63 |
+
eos_token=self.EOS_TOKEN,
|
| 64 |
+
unk_token=self.UNK_TOKEN,
|
| 65 |
+
**kwargs,
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
def _create_default_vocab(self) -> Dict[str, int]:
|
| 69 |
+
"""Create a minimal default vocabulary with just special tokens."""
|
| 70 |
+
special_tokens = [self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN]
|
| 71 |
+
vocab = {token: idx for idx, token in enumerate(special_tokens)}
|
| 72 |
+
return vocab
|
| 73 |
+
|
| 74 |
+
@property
|
| 75 |
+
def vocab_size(self) -> int:
|
| 76 |
+
return len(self._vocab)
|
| 77 |
+
|
| 78 |
+
def get_vocab(self) -> Dict[str, int]:
|
| 79 |
+
return dict(self._vocab)
|
| 80 |
+
|
| 81 |
+
def _tokenize(self, text: str) -> List[str]:
|
| 82 |
+
"""
|
| 83 |
+
Tokenize a string of moves into 3 components per move.
|
| 84 |
+
"""
|
| 85 |
+
tokens = []
|
| 86 |
+
raw_moves = text.strip().split()
|
| 87 |
+
|
| 88 |
+
for move in raw_moves:
|
| 89 |
+
if len(move) >= 6:
|
| 90 |
+
# 1. Piece (WP)
|
| 91 |
+
tokens.append(move[:2])
|
| 92 |
+
# 2. From (e2)
|
| 93 |
+
tokens.append(move[2:4])
|
| 94 |
+
# 3. To (e4 or e4(x)) - grab the rest
|
| 95 |
+
tokens.append(move[4:])
|
| 96 |
+
else:
|
| 97 |
+
tokens.append(self.UNK_TOKEN)
|
| 98 |
+
return tokens
|
| 99 |
+
|
| 100 |
+
def _convert_token_to_id(self, token: str) -> int:
|
| 101 |
+
return self._vocab.get(token, self._vocab.get(self.UNK_TOKEN))
|
| 102 |
+
|
| 103 |
+
def _convert_id_to_token(self, index: int) -> str:
|
| 104 |
+
return self._ids_to_tokens.get(index, self.UNK_TOKEN)
|
| 105 |
+
|
| 106 |
+
def convert_tokens_to_string(self, tokens: List[str]) -> str:
|
| 107 |
+
# Filter specials
|
| 108 |
+
filtered = [t for t in tokens if t not in [self.PAD_TOKEN, self.BOS_TOKEN, self.EOS_TOKEN, self.UNK_TOKEN]]
|
| 109 |
+
# Join with space. Result: "WP e2 e4 BN g8 f6"
|
| 110 |
+
return " ".join(filtered)
|
| 111 |
+
|
| 112 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple:
|
| 113 |
+
if not os.path.isdir(save_directory):
|
| 114 |
+
os.makedirs(save_directory, exist_ok=True)
|
| 115 |
+
|
| 116 |
+
vocab_file = os.path.join(
|
| 117 |
+
save_directory,
|
| 118 |
+
(filename_prefix + "-" if filename_prefix else "") + "vocab.json",
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
| 122 |
+
json.dump(self._vocab, f, ensure_ascii=False, indent=2)
|
| 123 |
+
|
| 124 |
+
return (vocab_file,)
|
| 125 |
+
|
| 126 |
+
@classmethod
|
| 127 |
+
def build_vocab_from_dataset(
|
| 128 |
+
cls,
|
| 129 |
+
dataset_name: str = "dlouapre/lichess_2025-01_1M",
|
| 130 |
+
split: str = "train",
|
| 131 |
+
column: str = "text",
|
| 132 |
+
min_frequency: int = 100,
|
| 133 |
+
max_samples: Optional[int] = 100000,
|
| 134 |
+
) -> "ChessTokenizer":
|
| 135 |
+
from datasets import load_dataset
|
| 136 |
+
|
| 137 |
+
print(f"Loading dataset {dataset_name} to build vocabulary...")
|
| 138 |
+
dataset = load_dataset(dataset_name, split=split, streaming=True)
|
| 139 |
+
|
| 140 |
+
unique_tokens = set()
|
| 141 |
+
|
| 142 |
+
print("Building vocabulary...")
|
| 143 |
+
count = 0
|
| 144 |
+
for example in dataset:
|
| 145 |
+
moves = example[column].strip().split()
|
| 146 |
+
for move in moves:
|
| 147 |
+
if len(move) >= 6:
|
| 148 |
+
unique_tokens.add(move[:2]) # Piece
|
| 149 |
+
unique_tokens.add(move[2:4]) # From
|
| 150 |
+
unique_tokens.add(move[4:]) # To (includes suffix like (x))
|
| 151 |
+
count += 1
|
| 152 |
+
if max_samples is not None and count >= max_samples:
|
| 153 |
+
break
|
| 154 |
+
|
| 155 |
+
special = [cls.PAD_TOKEN, cls.BOS_TOKEN, cls.EOS_TOKEN, cls.UNK_TOKEN]
|
| 156 |
+
# Sort tokens to ensure deterministic IDs
|
| 157 |
+
all_tokens = special + sorted(list(unique_tokens))
|
| 158 |
+
|
| 159 |
+
vocab = {token: idx for idx, token in enumerate(all_tokens)}
|
| 160 |
+
print(f"Built vocabulary with {len(vocab)} tokens")
|
| 161 |
+
return cls(vocab=vocab)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# Kept for compatibility if other scripts import it
|
| 165 |
+
def count_vocab_from_dataset(*args, **kwargs):
|
| 166 |
+
return {}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "[BOS]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "[EOS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "[UNK]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
}
|
| 35 |
+
},
|
| 36 |
+
"bos_token": "[BOS]",
|
| 37 |
+
"clean_up_tokenization_spaces": false,
|
| 38 |
+
"eos_token": "[EOS]",
|
| 39 |
+
"extra_special_tokens": {},
|
| 40 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 41 |
+
"pad_token": "[PAD]",
|
| 42 |
+
"tokenizer_class": "ChessTokenizer",
|
| 43 |
+
"unk_token": "[UNK]"
|
| 44 |
+
}
|
vocab.json
ADDED
|
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"[PAD]": 0,
|
| 3 |
+
"[BOS]": 1,
|
| 4 |
+
"[EOS]": 2,
|
| 5 |
+
"[UNK]": 3,
|
| 6 |
+
"BB": 4,
|
| 7 |
+
"BK": 5,
|
| 8 |
+
"BN": 6,
|
| 9 |
+
"BP": 7,
|
| 10 |
+
"BQ": 8,
|
| 11 |
+
"BR": 9,
|
| 12 |
+
"WB": 10,
|
| 13 |
+
"WK": 11,
|
| 14 |
+
"WN": 12,
|
| 15 |
+
"WP": 13,
|
| 16 |
+
"WQ": 14,
|
| 17 |
+
"WR": 15,
|
| 18 |
+
"a1": 16,
|
| 19 |
+
"a1(+)": 17,
|
| 20 |
+
"a1(+*)": 18,
|
| 21 |
+
"a1(+*Q)": 19,
|
| 22 |
+
"a1(+*R)": 20,
|
| 23 |
+
"a1(+N)": 21,
|
| 24 |
+
"a1(+Q)": 22,
|
| 25 |
+
"a1(+R)": 23,
|
| 26 |
+
"a1(B)": 24,
|
| 27 |
+
"a1(N)": 25,
|
| 28 |
+
"a1(Q)": 26,
|
| 29 |
+
"a1(R)": 27,
|
| 30 |
+
"a1(x)": 28,
|
| 31 |
+
"a1(x+)": 29,
|
| 32 |
+
"a1(x+*)": 30,
|
| 33 |
+
"a1(x+*Q)": 31,
|
| 34 |
+
"a1(x+Q)": 32,
|
| 35 |
+
"a1(xQ)": 33,
|
| 36 |
+
"a2": 34,
|
| 37 |
+
"a2(+)": 35,
|
| 38 |
+
"a2(+*)": 36,
|
| 39 |
+
"a2(x)": 37,
|
| 40 |
+
"a2(x+)": 38,
|
| 41 |
+
"a2(x+*)": 39,
|
| 42 |
+
"a3": 40,
|
| 43 |
+
"a3(+)": 41,
|
| 44 |
+
"a3(+*)": 42,
|
| 45 |
+
"a3(x)": 43,
|
| 46 |
+
"a3(x+)": 44,
|
| 47 |
+
"a3(x+*)": 45,
|
| 48 |
+
"a3(xE)": 46,
|
| 49 |
+
"a3(xE+)": 47,
|
| 50 |
+
"a4": 48,
|
| 51 |
+
"a4(+)": 49,
|
| 52 |
+
"a4(+*)": 50,
|
| 53 |
+
"a4(x)": 51,
|
| 54 |
+
"a4(x+)": 52,
|
| 55 |
+
"a4(x+*)": 53,
|
| 56 |
+
"a5": 54,
|
| 57 |
+
"a5(+)": 55,
|
| 58 |
+
"a5(+*)": 56,
|
| 59 |
+
"a5(x)": 57,
|
| 60 |
+
"a5(x+)": 58,
|
| 61 |
+
"a5(x+*)": 59,
|
| 62 |
+
"a6": 60,
|
| 63 |
+
"a6(+)": 61,
|
| 64 |
+
"a6(+*)": 62,
|
| 65 |
+
"a6(x)": 63,
|
| 66 |
+
"a6(x+)": 64,
|
| 67 |
+
"a6(x+*)": 65,
|
| 68 |
+
"a6(xE)": 66,
|
| 69 |
+
"a6(xE+)": 67,
|
| 70 |
+
"a7": 68,
|
| 71 |
+
"a7(+)": 69,
|
| 72 |
+
"a7(+*)": 70,
|
| 73 |
+
"a7(x)": 71,
|
| 74 |
+
"a7(x+)": 72,
|
| 75 |
+
"a7(x+*)": 73,
|
| 76 |
+
"a8": 74,
|
| 77 |
+
"a8(+)": 75,
|
| 78 |
+
"a8(+*)": 76,
|
| 79 |
+
"a8(+*Q)": 77,
|
| 80 |
+
"a8(+*R)": 78,
|
| 81 |
+
"a8(+N)": 79,
|
| 82 |
+
"a8(+Q)": 80,
|
| 83 |
+
"a8(B)": 81,
|
| 84 |
+
"a8(N)": 82,
|
| 85 |
+
"a8(Q)": 83,
|
| 86 |
+
"a8(R)": 84,
|
| 87 |
+
"a8(x)": 85,
|
| 88 |
+
"a8(x+)": 86,
|
| 89 |
+
"a8(x+*)": 87,
|
| 90 |
+
"a8(x+*Q)": 88,
|
| 91 |
+
"a8(x+Q)": 89,
|
| 92 |
+
"a8(xQ)": 90,
|
| 93 |
+
"b1": 91,
|
| 94 |
+
"b1(+)": 92,
|
| 95 |
+
"b1(+*)": 93,
|
| 96 |
+
"b1(+*Q)": 94,
|
| 97 |
+
"b1(+*R)": 95,
|
| 98 |
+
"b1(+B)": 96,
|
| 99 |
+
"b1(+N)": 97,
|
| 100 |
+
"b1(+Q)": 98,
|
| 101 |
+
"b1(B)": 99,
|
| 102 |
+
"b1(N)": 100,
|
| 103 |
+
"b1(Q)": 101,
|
| 104 |
+
"b1(R)": 102,
|
| 105 |
+
"b1(x)": 103,
|
| 106 |
+
"b1(x+)": 104,
|
| 107 |
+
"b1(x+*)": 105,
|
| 108 |
+
"b1(x+*Q)": 106,
|
| 109 |
+
"b1(x+Q)": 107,
|
| 110 |
+
"b1(xN)": 108,
|
| 111 |
+
"b1(xQ)": 109,
|
| 112 |
+
"b1(xR)": 110,
|
| 113 |
+
"b2": 111,
|
| 114 |
+
"b2(+)": 112,
|
| 115 |
+
"b2(+*)": 113,
|
| 116 |
+
"b2(x)": 114,
|
| 117 |
+
"b2(x+)": 115,
|
| 118 |
+
"b2(x+*)": 116,
|
| 119 |
+
"b3": 117,
|
| 120 |
+
"b3(+)": 118,
|
| 121 |
+
"b3(+*)": 119,
|
| 122 |
+
"b3(x)": 120,
|
| 123 |
+
"b3(x+)": 121,
|
| 124 |
+
"b3(x+*)": 122,
|
| 125 |
+
"b3(xE)": 123,
|
| 126 |
+
"b3(xE+)": 124,
|
| 127 |
+
"b4": 125,
|
| 128 |
+
"b4(+)": 126,
|
| 129 |
+
"b4(+*)": 127,
|
| 130 |
+
"b4(x)": 128,
|
| 131 |
+
"b4(x+)": 129,
|
| 132 |
+
"b4(x+*)": 130,
|
| 133 |
+
"b5": 131,
|
| 134 |
+
"b5(+)": 132,
|
| 135 |
+
"b5(+*)": 133,
|
| 136 |
+
"b5(x)": 134,
|
| 137 |
+
"b5(x+)": 135,
|
| 138 |
+
"b5(x+*)": 136,
|
| 139 |
+
"b6": 137,
|
| 140 |
+
"b6(+)": 138,
|
| 141 |
+
"b6(+*)": 139,
|
| 142 |
+
"b6(x)": 140,
|
| 143 |
+
"b6(x+)": 141,
|
| 144 |
+
"b6(x+*)": 142,
|
| 145 |
+
"b6(xE)": 143,
|
| 146 |
+
"b6(xE+)": 144,
|
| 147 |
+
"b7": 145,
|
| 148 |
+
"b7(+)": 146,
|
| 149 |
+
"b7(+*)": 147,
|
| 150 |
+
"b7(x)": 148,
|
| 151 |
+
"b7(x+)": 149,
|
| 152 |
+
"b7(x+*)": 150,
|
| 153 |
+
"b8": 151,
|
| 154 |
+
"b8(+)": 152,
|
| 155 |
+
"b8(+*)": 153,
|
| 156 |
+
"b8(+*Q)": 154,
|
| 157 |
+
"b8(+*R)": 155,
|
| 158 |
+
"b8(+Q)": 156,
|
| 159 |
+
"b8(+R)": 157,
|
| 160 |
+
"b8(B)": 158,
|
| 161 |
+
"b8(N)": 159,
|
| 162 |
+
"b8(Q)": 160,
|
| 163 |
+
"b8(R)": 161,
|
| 164 |
+
"b8(x)": 162,
|
| 165 |
+
"b8(x+)": 163,
|
| 166 |
+
"b8(x+*)": 164,
|
| 167 |
+
"b8(x+*Q)": 165,
|
| 168 |
+
"b8(x+Q)": 166,
|
| 169 |
+
"b8(xN)": 167,
|
| 170 |
+
"b8(xQ)": 168,
|
| 171 |
+
"c1": 169,
|
| 172 |
+
"c1(+)": 170,
|
| 173 |
+
"c1(+*)": 171,
|
| 174 |
+
"c1(+*Q)": 172,
|
| 175 |
+
"c1(+B)": 173,
|
| 176 |
+
"c1(+N)": 174,
|
| 177 |
+
"c1(+Q)": 175,
|
| 178 |
+
"c1(+R)": 176,
|
| 179 |
+
"c1(N)": 177,
|
| 180 |
+
"c1(O)": 178,
|
| 181 |
+
"c1(O+)": 179,
|
| 182 |
+
"c1(O+*)": 180,
|
| 183 |
+
"c1(Q)": 181,
|
| 184 |
+
"c1(R)": 182,
|
| 185 |
+
"c1(x)": 183,
|
| 186 |
+
"c1(x+)": 184,
|
| 187 |
+
"c1(x+*)": 185,
|
| 188 |
+
"c1(x+*Q)": 186,
|
| 189 |
+
"c1(x+Q)": 187,
|
| 190 |
+
"c1(x+R)": 188,
|
| 191 |
+
"c1(xN)": 189,
|
| 192 |
+
"c1(xQ)": 190,
|
| 193 |
+
"c2": 191,
|
| 194 |
+
"c2(+)": 192,
|
| 195 |
+
"c2(+*)": 193,
|
| 196 |
+
"c2(x)": 194,
|
| 197 |
+
"c2(x+)": 195,
|
| 198 |
+
"c2(x+*)": 196,
|
| 199 |
+
"c3": 197,
|
| 200 |
+
"c3(+)": 198,
|
| 201 |
+
"c3(+*)": 199,
|
| 202 |
+
"c3(x)": 200,
|
| 203 |
+
"c3(x+)": 201,
|
| 204 |
+
"c3(x+*)": 202,
|
| 205 |
+
"c3(xE)": 203,
|
| 206 |
+
"c3(xE+)": 204,
|
| 207 |
+
"c4": 205,
|
| 208 |
+
"c4(+)": 206,
|
| 209 |
+
"c4(+*)": 207,
|
| 210 |
+
"c4(x)": 208,
|
| 211 |
+
"c4(x+)": 209,
|
| 212 |
+
"c4(x+*)": 210,
|
| 213 |
+
"c5": 211,
|
| 214 |
+
"c5(+)": 212,
|
| 215 |
+
"c5(+*)": 213,
|
| 216 |
+
"c5(x)": 214,
|
| 217 |
+
"c5(x+)": 215,
|
| 218 |
+
"c5(x+*)": 216,
|
| 219 |
+
"c6": 217,
|
| 220 |
+
"c6(+)": 218,
|
| 221 |
+
"c6(+*)": 219,
|
| 222 |
+
"c6(x)": 220,
|
| 223 |
+
"c6(x+)": 221,
|
| 224 |
+
"c6(x+*)": 222,
|
| 225 |
+
"c6(xE)": 223,
|
| 226 |
+
"c6(xE+)": 224,
|
| 227 |
+
"c7": 225,
|
| 228 |
+
"c7(+)": 226,
|
| 229 |
+
"c7(+*)": 227,
|
| 230 |
+
"c7(x)": 228,
|
| 231 |
+
"c7(x+)": 229,
|
| 232 |
+
"c7(x+*)": 230,
|
| 233 |
+
"c8": 231,
|
| 234 |
+
"c8(+)": 232,
|
| 235 |
+
"c8(+*)": 233,
|
| 236 |
+
"c8(+*Q)": 234,
|
| 237 |
+
"c8(+B)": 235,
|
| 238 |
+
"c8(+N)": 236,
|
| 239 |
+
"c8(+Q)": 237,
|
| 240 |
+
"c8(+R)": 238,
|
| 241 |
+
"c8(B)": 239,
|
| 242 |
+
"c8(N)": 240,
|
| 243 |
+
"c8(O)": 241,
|
| 244 |
+
"c8(O+)": 242,
|
| 245 |
+
"c8(Q)": 243,
|
| 246 |
+
"c8(R)": 244,
|
| 247 |
+
"c8(x)": 245,
|
| 248 |
+
"c8(x+)": 246,
|
| 249 |
+
"c8(x+*)": 247,
|
| 250 |
+
"c8(x+*Q)": 248,
|
| 251 |
+
"c8(x+N)": 249,
|
| 252 |
+
"c8(x+Q)": 250,
|
| 253 |
+
"c8(xQ)": 251,
|
| 254 |
+
"d1": 252,
|
| 255 |
+
"d1(+)": 253,
|
| 256 |
+
"d1(+*)": 254,
|
| 257 |
+
"d1(+*Q)": 255,
|
| 258 |
+
"d1(+*R)": 256,
|
| 259 |
+
"d1(+N)": 257,
|
| 260 |
+
"d1(+Q)": 258,
|
| 261 |
+
"d1(+R)": 259,
|
| 262 |
+
"d1(N)": 260,
|
| 263 |
+
"d1(Q)": 261,
|
| 264 |
+
"d1(R)": 262,
|
| 265 |
+
"d1(x)": 263,
|
| 266 |
+
"d1(x+)": 264,
|
| 267 |
+
"d1(x+*)": 265,
|
| 268 |
+
"d1(x+*Q)": 266,
|
| 269 |
+
"d1(x+B)": 267,
|
| 270 |
+
"d1(x+Q)": 268,
|
| 271 |
+
"d1(xN)": 269,
|
| 272 |
+
"d1(xQ)": 270,
|
| 273 |
+
"d2": 271,
|
| 274 |
+
"d2(+)": 272,
|
| 275 |
+
"d2(+*)": 273,
|
| 276 |
+
"d2(x)": 274,
|
| 277 |
+
"d2(x+)": 275,
|
| 278 |
+
"d2(x+*)": 276,
|
| 279 |
+
"d3": 277,
|
| 280 |
+
"d3(+)": 278,
|
| 281 |
+
"d3(+*)": 279,
|
| 282 |
+
"d3(x)": 280,
|
| 283 |
+
"d3(x+)": 281,
|
| 284 |
+
"d3(x+*)": 282,
|
| 285 |
+
"d3(xE)": 283,
|
| 286 |
+
"d3(xE+)": 284,
|
| 287 |
+
"d4": 285,
|
| 288 |
+
"d4(+)": 286,
|
| 289 |
+
"d4(+*)": 287,
|
| 290 |
+
"d4(x)": 288,
|
| 291 |
+
"d4(x+)": 289,
|
| 292 |
+
"d4(x+*)": 290,
|
| 293 |
+
"d5": 291,
|
| 294 |
+
"d5(+)": 292,
|
| 295 |
+
"d5(+*)": 293,
|
| 296 |
+
"d5(x)": 294,
|
| 297 |
+
"d5(x+)": 295,
|
| 298 |
+
"d5(x+*)": 296,
|
| 299 |
+
"d6": 297,
|
| 300 |
+
"d6(+)": 298,
|
| 301 |
+
"d6(+*)": 299,
|
| 302 |
+
"d6(x)": 300,
|
| 303 |
+
"d6(x+)": 301,
|
| 304 |
+
"d6(x+*)": 302,
|
| 305 |
+
"d6(xE)": 303,
|
| 306 |
+
"d6(xE+)": 304,
|
| 307 |
+
"d7": 305,
|
| 308 |
+
"d7(+)": 306,
|
| 309 |
+
"d7(+*)": 307,
|
| 310 |
+
"d7(x)": 308,
|
| 311 |
+
"d7(x+)": 309,
|
| 312 |
+
"d7(x+*)": 310,
|
| 313 |
+
"d8": 311,
|
| 314 |
+
"d8(+)": 312,
|
| 315 |
+
"d8(+*)": 313,
|
| 316 |
+
"d8(+*Q)": 314,
|
| 317 |
+
"d8(+B)": 315,
|
| 318 |
+
"d8(+N)": 316,
|
| 319 |
+
"d8(+Q)": 317,
|
| 320 |
+
"d8(+R)": 318,
|
| 321 |
+
"d8(B)": 319,
|
| 322 |
+
"d8(N)": 320,
|
| 323 |
+
"d8(Q)": 321,
|
| 324 |
+
"d8(R)": 322,
|
| 325 |
+
"d8(x)": 323,
|
| 326 |
+
"d8(x+)": 324,
|
| 327 |
+
"d8(x+*)": 325,
|
| 328 |
+
"d8(x+*Q)": 326,
|
| 329 |
+
"d8(x+Q)": 327,
|
| 330 |
+
"d8(xQ)": 328,
|
| 331 |
+
"e1": 329,
|
| 332 |
+
"e1(+)": 330,
|
| 333 |
+
"e1(+*)": 331,
|
| 334 |
+
"e1(+*Q)": 332,
|
| 335 |
+
"e1(+*R)": 333,
|
| 336 |
+
"e1(+B)": 334,
|
| 337 |
+
"e1(+N)": 335,
|
| 338 |
+
"e1(+Q)": 336,
|
| 339 |
+
"e1(+R)": 337,
|
| 340 |
+
"e1(N)": 338,
|
| 341 |
+
"e1(Q)": 339,
|
| 342 |
+
"e1(R)": 340,
|
| 343 |
+
"e1(x)": 341,
|
| 344 |
+
"e1(x+)": 342,
|
| 345 |
+
"e1(x+*)": 343,
|
| 346 |
+
"e1(x+*Q)": 344,
|
| 347 |
+
"e1(x+Q)": 345,
|
| 348 |
+
"e1(xQ)": 346,
|
| 349 |
+
"e2": 347,
|
| 350 |
+
"e2(+)": 348,
|
| 351 |
+
"e2(+*)": 349,
|
| 352 |
+
"e2(x)": 350,
|
| 353 |
+
"e2(x+)": 351,
|
| 354 |
+
"e2(x+*)": 352,
|
| 355 |
+
"e3": 353,
|
| 356 |
+
"e3(+)": 354,
|
| 357 |
+
"e3(+*)": 355,
|
| 358 |
+
"e3(x)": 356,
|
| 359 |
+
"e3(x+)": 357,
|
| 360 |
+
"e3(x+*)": 358,
|
| 361 |
+
"e3(xE)": 359,
|
| 362 |
+
"e3(xE+)": 360,
|
| 363 |
+
"e4": 361,
|
| 364 |
+
"e4(+)": 362,
|
| 365 |
+
"e4(+*)": 363,
|
| 366 |
+
"e4(x)": 364,
|
| 367 |
+
"e4(x+)": 365,
|
| 368 |
+
"e4(x+*)": 366,
|
| 369 |
+
"e5": 367,
|
| 370 |
+
"e5(+)": 368,
|
| 371 |
+
"e5(+*)": 369,
|
| 372 |
+
"e5(x)": 370,
|
| 373 |
+
"e5(x+)": 371,
|
| 374 |
+
"e5(x+*)": 372,
|
| 375 |
+
"e6": 373,
|
| 376 |
+
"e6(+)": 374,
|
| 377 |
+
"e6(+*)": 375,
|
| 378 |
+
"e6(x)": 376,
|
| 379 |
+
"e6(x+)": 377,
|
| 380 |
+
"e6(x+*)": 378,
|
| 381 |
+
"e6(xE)": 379,
|
| 382 |
+
"e6(xE+)": 380,
|
| 383 |
+
"e7": 381,
|
| 384 |
+
"e7(+)": 382,
|
| 385 |
+
"e7(+*)": 383,
|
| 386 |
+
"e7(x)": 384,
|
| 387 |
+
"e7(x+)": 385,
|
| 388 |
+
"e7(x+*)": 386,
|
| 389 |
+
"e8": 387,
|
| 390 |
+
"e8(+)": 388,
|
| 391 |
+
"e8(+*)": 389,
|
| 392 |
+
"e8(+*Q)": 390,
|
| 393 |
+
"e8(+*R)": 391,
|
| 394 |
+
"e8(+N)": 392,
|
| 395 |
+
"e8(+Q)": 393,
|
| 396 |
+
"e8(+R)": 394,
|
| 397 |
+
"e8(B)": 395,
|
| 398 |
+
"e8(N)": 396,
|
| 399 |
+
"e8(Q)": 397,
|
| 400 |
+
"e8(R)": 398,
|
| 401 |
+
"e8(x)": 399,
|
| 402 |
+
"e8(x+)": 400,
|
| 403 |
+
"e8(x+*)": 401,
|
| 404 |
+
"e8(x+*Q)": 402,
|
| 405 |
+
"e8(x+*R)": 403,
|
| 406 |
+
"e8(x+Q)": 404,
|
| 407 |
+
"e8(x+R)": 405,
|
| 408 |
+
"e8(xN)": 406,
|
| 409 |
+
"e8(xQ)": 407,
|
| 410 |
+
"e8(xR)": 408,
|
| 411 |
+
"f1": 409,
|
| 412 |
+
"f1(+)": 410,
|
| 413 |
+
"f1(+*)": 411,
|
| 414 |
+
"f1(+*Q)": 412,
|
| 415 |
+
"f1(+*R)": 413,
|
| 416 |
+
"f1(+B)": 414,
|
| 417 |
+
"f1(+N)": 415,
|
| 418 |
+
"f1(+Q)": 416,
|
| 419 |
+
"f1(+R)": 417,
|
| 420 |
+
"f1(B)": 418,
|
| 421 |
+
"f1(N)": 419,
|
| 422 |
+
"f1(Q)": 420,
|
| 423 |
+
"f1(R)": 421,
|
| 424 |
+
"f1(x)": 422,
|
| 425 |
+
"f1(x+)": 423,
|
| 426 |
+
"f1(x+*)": 424,
|
| 427 |
+
"f1(x+*Q)": 425,
|
| 428 |
+
"f1(x+*R)": 426,
|
| 429 |
+
"f1(x+N)": 427,
|
| 430 |
+
"f1(x+Q)": 428,
|
| 431 |
+
"f1(x+R)": 429,
|
| 432 |
+
"f1(xQ)": 430,
|
| 433 |
+
"f2": 431,
|
| 434 |
+
"f2(+)": 432,
|
| 435 |
+
"f2(+*)": 433,
|
| 436 |
+
"f2(x)": 434,
|
| 437 |
+
"f2(x+)": 435,
|
| 438 |
+
"f2(x+*)": 436,
|
| 439 |
+
"f3": 437,
|
| 440 |
+
"f3(+)": 438,
|
| 441 |
+
"f3(+*)": 439,
|
| 442 |
+
"f3(x)": 440,
|
| 443 |
+
"f3(x+)": 441,
|
| 444 |
+
"f3(x+*)": 442,
|
| 445 |
+
"f3(xE)": 443,
|
| 446 |
+
"f3(xE+)": 444,
|
| 447 |
+
"f4": 445,
|
| 448 |
+
"f4(+)": 446,
|
| 449 |
+
"f4(+*)": 447,
|
| 450 |
+
"f4(x)": 448,
|
| 451 |
+
"f4(x+)": 449,
|
| 452 |
+
"f4(x+*)": 450,
|
| 453 |
+
"f5": 451,
|
| 454 |
+
"f5(+)": 452,
|
| 455 |
+
"f5(+*)": 453,
|
| 456 |
+
"f5(x)": 454,
|
| 457 |
+
"f5(x+)": 455,
|
| 458 |
+
"f5(x+*)": 456,
|
| 459 |
+
"f6": 457,
|
| 460 |
+
"f6(+)": 458,
|
| 461 |
+
"f6(+*)": 459,
|
| 462 |
+
"f6(x)": 460,
|
| 463 |
+
"f6(x+)": 461,
|
| 464 |
+
"f6(x+*)": 462,
|
| 465 |
+
"f6(xE)": 463,
|
| 466 |
+
"f6(xE+)": 464,
|
| 467 |
+
"f7": 465,
|
| 468 |
+
"f7(+)": 466,
|
| 469 |
+
"f7(+*)": 467,
|
| 470 |
+
"f7(x)": 468,
|
| 471 |
+
"f7(x+)": 469,
|
| 472 |
+
"f7(x+*)": 470,
|
| 473 |
+
"f8": 471,
|
| 474 |
+
"f8(+)": 472,
|
| 475 |
+
"f8(+*)": 473,
|
| 476 |
+
"f8(+*Q)": 474,
|
| 477 |
+
"f8(+*R)": 475,
|
| 478 |
+
"f8(+N)": 476,
|
| 479 |
+
"f8(+Q)": 477,
|
| 480 |
+
"f8(+R)": 478,
|
| 481 |
+
"f8(B)": 479,
|
| 482 |
+
"f8(N)": 480,
|
| 483 |
+
"f8(Q)": 481,
|
| 484 |
+
"f8(R)": 482,
|
| 485 |
+
"f8(x)": 483,
|
| 486 |
+
"f8(x+)": 484,
|
| 487 |
+
"f8(x+*)": 485,
|
| 488 |
+
"f8(x+*Q)": 486,
|
| 489 |
+
"f8(x+Q)": 487,
|
| 490 |
+
"f8(x+R)": 488,
|
| 491 |
+
"f8(xN)": 489,
|
| 492 |
+
"f8(xQ)": 490,
|
| 493 |
+
"g1": 491,
|
| 494 |
+
"g1(+)": 492,
|
| 495 |
+
"g1(+*)": 493,
|
| 496 |
+
"g1(+*Q)": 494,
|
| 497 |
+
"g1(+*R)": 495,
|
| 498 |
+
"g1(+B)": 496,
|
| 499 |
+
"g1(+N)": 497,
|
| 500 |
+
"g1(+Q)": 498,
|
| 501 |
+
"g1(+R)": 499,
|
| 502 |
+
"g1(B)": 500,
|
| 503 |
+
"g1(N)": 501,
|
| 504 |
+
"g1(Q)": 502,
|
| 505 |
+
"g1(R)": 503,
|
| 506 |
+
"g1(o)": 504,
|
| 507 |
+
"g1(o+)": 505,
|
| 508 |
+
"g1(o+*)": 506,
|
| 509 |
+
"g1(x)": 507,
|
| 510 |
+
"g1(x+)": 508,
|
| 511 |
+
"g1(x+*)": 509,
|
| 512 |
+
"g1(x+*Q)": 510,
|
| 513 |
+
"g1(x+*R)": 511,
|
| 514 |
+
"g1(x+N)": 512,
|
| 515 |
+
"g1(x+Q)": 513,
|
| 516 |
+
"g1(xB)": 514,
|
| 517 |
+
"g1(xQ)": 515,
|
| 518 |
+
"g2": 516,
|
| 519 |
+
"g2(+)": 517,
|
| 520 |
+
"g2(+*)": 518,
|
| 521 |
+
"g2(x)": 519,
|
| 522 |
+
"g2(x+)": 520,
|
| 523 |
+
"g2(x+*)": 521,
|
| 524 |
+
"g3": 522,
|
| 525 |
+
"g3(+)": 523,
|
| 526 |
+
"g3(+*)": 524,
|
| 527 |
+
"g3(x)": 525,
|
| 528 |
+
"g3(x+)": 526,
|
| 529 |
+
"g3(x+*)": 527,
|
| 530 |
+
"g3(xE)": 528,
|
| 531 |
+
"g3(xE+)": 529,
|
| 532 |
+
"g4": 530,
|
| 533 |
+
"g4(+)": 531,
|
| 534 |
+
"g4(+*)": 532,
|
| 535 |
+
"g4(x)": 533,
|
| 536 |
+
"g4(x+)": 534,
|
| 537 |
+
"g4(x+*)": 535,
|
| 538 |
+
"g5": 536,
|
| 539 |
+
"g5(+)": 537,
|
| 540 |
+
"g5(+*)": 538,
|
| 541 |
+
"g5(x)": 539,
|
| 542 |
+
"g5(x+)": 540,
|
| 543 |
+
"g5(x+*)": 541,
|
| 544 |
+
"g6": 542,
|
| 545 |
+
"g6(+)": 543,
|
| 546 |
+
"g6(+*)": 544,
|
| 547 |
+
"g6(x)": 545,
|
| 548 |
+
"g6(x+)": 546,
|
| 549 |
+
"g6(x+*)": 547,
|
| 550 |
+
"g6(xE)": 548,
|
| 551 |
+
"g6(xE+)": 549,
|
| 552 |
+
"g7": 550,
|
| 553 |
+
"g7(+)": 551,
|
| 554 |
+
"g7(+*)": 552,
|
| 555 |
+
"g7(x)": 553,
|
| 556 |
+
"g7(x+)": 554,
|
| 557 |
+
"g7(x+*)": 555,
|
| 558 |
+
"g8": 556,
|
| 559 |
+
"g8(+)": 557,
|
| 560 |
+
"g8(+*)": 558,
|
| 561 |
+
"g8(+*Q)": 559,
|
| 562 |
+
"g8(+*R)": 560,
|
| 563 |
+
"g8(+B)": 561,
|
| 564 |
+
"g8(+N)": 562,
|
| 565 |
+
"g8(+Q)": 563,
|
| 566 |
+
"g8(+R)": 564,
|
| 567 |
+
"g8(B)": 565,
|
| 568 |
+
"g8(N)": 566,
|
| 569 |
+
"g8(Q)": 567,
|
| 570 |
+
"g8(R)": 568,
|
| 571 |
+
"g8(o)": 569,
|
| 572 |
+
"g8(o+)": 570,
|
| 573 |
+
"g8(x)": 571,
|
| 574 |
+
"g8(x+)": 572,
|
| 575 |
+
"g8(x+*)": 573,
|
| 576 |
+
"g8(x+*Q)": 574,
|
| 577 |
+
"g8(x+Q)": 575,
|
| 578 |
+
"g8(xQ)": 576,
|
| 579 |
+
"h1": 577,
|
| 580 |
+
"h1(+)": 578,
|
| 581 |
+
"h1(+*)": 579,
|
| 582 |
+
"h1(+*Q)": 580,
|
| 583 |
+
"h1(+*R)": 581,
|
| 584 |
+
"h1(+N)": 582,
|
| 585 |
+
"h1(+Q)": 583,
|
| 586 |
+
"h1(B)": 584,
|
| 587 |
+
"h1(N)": 585,
|
| 588 |
+
"h1(Q)": 586,
|
| 589 |
+
"h1(R)": 587,
|
| 590 |
+
"h1(x)": 588,
|
| 591 |
+
"h1(x+)": 589,
|
| 592 |
+
"h1(x+*)": 590,
|
| 593 |
+
"h1(x+N)": 591,
|
| 594 |
+
"h1(x+Q)": 592,
|
| 595 |
+
"h1(xQ)": 593,
|
| 596 |
+
"h2": 594,
|
| 597 |
+
"h2(+)": 595,
|
| 598 |
+
"h2(+*)": 596,
|
| 599 |
+
"h2(x)": 597,
|
| 600 |
+
"h2(x+)": 598,
|
| 601 |
+
"h2(x+*)": 599,
|
| 602 |
+
"h3": 600,
|
| 603 |
+
"h3(+)": 601,
|
| 604 |
+
"h3(+*)": 602,
|
| 605 |
+
"h3(x)": 603,
|
| 606 |
+
"h3(x+)": 604,
|
| 607 |
+
"h3(x+*)": 605,
|
| 608 |
+
"h3(xE)": 606,
|
| 609 |
+
"h3(xE+)": 607,
|
| 610 |
+
"h4": 608,
|
| 611 |
+
"h4(+)": 609,
|
| 612 |
+
"h4(+*)": 610,
|
| 613 |
+
"h4(x)": 611,
|
| 614 |
+
"h4(x+)": 612,
|
| 615 |
+
"h4(x+*)": 613,
|
| 616 |
+
"h5": 614,
|
| 617 |
+
"h5(+)": 615,
|
| 618 |
+
"h5(+*)": 616,
|
| 619 |
+
"h5(x)": 617,
|
| 620 |
+
"h5(x+)": 618,
|
| 621 |
+
"h5(x+*)": 619,
|
| 622 |
+
"h6": 620,
|
| 623 |
+
"h6(+)": 621,
|
| 624 |
+
"h6(+*)": 622,
|
| 625 |
+
"h6(x)": 623,
|
| 626 |
+
"h6(x+)": 624,
|
| 627 |
+
"h6(x+*)": 625,
|
| 628 |
+
"h6(xE)": 626,
|
| 629 |
+
"h6(xE+)": 627,
|
| 630 |
+
"h7": 628,
|
| 631 |
+
"h7(+)": 629,
|
| 632 |
+
"h7(+*)": 630,
|
| 633 |
+
"h7(x)": 631,
|
| 634 |
+
"h7(x+)": 632,
|
| 635 |
+
"h7(x+*)": 633,
|
| 636 |
+
"h8": 634,
|
| 637 |
+
"h8(+)": 635,
|
| 638 |
+
"h8(+*)": 636,
|
| 639 |
+
"h8(+*Q)": 637,
|
| 640 |
+
"h8(+*R)": 638,
|
| 641 |
+
"h8(+N)": 639,
|
| 642 |
+
"h8(+Q)": 640,
|
| 643 |
+
"h8(+R)": 641,
|
| 644 |
+
"h8(N)": 642,
|
| 645 |
+
"h8(Q)": 643,
|
| 646 |
+
"h8(R)": 644,
|
| 647 |
+
"h8(x)": 645,
|
| 648 |
+
"h8(x+)": 646,
|
| 649 |
+
"h8(x+*)": 647,
|
| 650 |
+
"h8(x+*Q)": 648,
|
| 651 |
+
"h8(x+Q)": 649,
|
| 652 |
+
"h8(xQ)": 650
|
| 653 |
+
}
|