Mentors4EDU commited on
Commit
0f5a8bf
·
verified ·
1 Parent(s): 16d8e6f

Update MODEL_CARD.md

Browse files
Files changed (1) hide show
  1. MODEL_CARD.md +308 -308
MODEL_CARD.md CHANGED
@@ -1,308 +1,308 @@
1
- ---
2
- language: wolfram
3
- tags:
4
- - chaos-theory
5
- - mathematics
6
- - simulation
7
- - game-theory
8
- - fibonacci
9
- - bernoulli
10
- - nash-equilibrium
11
- - dynamical-systems
12
- license: mit
13
- library_name: chaossim
14
- ---
15
-
16
- # ChaosSim: Advanced Chaos Simulation Framework
17
-
18
- <div align="center">
19
-
20
- ![ChaosSim](https://img.shields.io/badge/ChaosSim-v1.0-blue.svg)
21
- ![Wolfram](https://img.shields.io/badge/Wolfram-Language-red.svg)
22
- ![License](https://img.shields.io/badge/License-MIT-green.svg)
23
-
24
- *Simulating Randomized Chaotic Systems through Mathematical Principles*
25
-
26
- </div>
27
-
28
- ## Model Description
29
-
30
- ChaosSim is a sophisticated chaos simulation framework built with Wolfram Programming Language that combines three fundamental mathematical concepts to model and visualize complex chaotic systems:
31
-
32
- 1. **Bernoulli Numbers** - For probabilistic chaos modeling with weighted distributions
33
- 2. **Fibonacci Sequences** - For self-similar patterns and golden ratio-based structures
34
- 3. **Nash Equilibrium (Game Theory)** - For strategic interactions in multi-agent chaotic systems
35
-
36
- ### Model Architecture
37
-
38
- The framework consists of four integrated components:
39
-
40
- - **Core Engine** (`ChaosSim.nb`) - Main simulation algorithms
41
- - **Mathematical Utilities** (`MathUtils.wl`) - Reusable mathematical functions package
42
- - **Visualization Suite** (`Visualizations.nb`) - Advanced plotting and analysis tools
43
- - **Examples Library** (`Examples.nb`) - 10+ practical demonstrations
44
-
45
- ## Authors
46
-
47
- - **Andrew Magdy Kamal** - Lead Developer & Mathematician
48
- - **Riemann Computing Inc.** - Research & Development
49
- - **Openpeer AI** - AI Integration & Optimization
50
-
51
- ## Intended Uses
52
-
53
- ### Primary Use Cases
54
-
55
- 1. **Academic Research**
56
- - Chaos theory investigation
57
- - Dynamical systems analysis
58
- - Game theory simulations
59
- - Mathematical modeling
60
-
61
- 2. **Financial Modeling**
62
- - Market volatility simulation
63
- - Risk assessment using chaotic patterns
64
- - Portfolio optimization with game theory
65
-
66
- 3. **Complex Systems Analysis**
67
- - Multi-agent behavior modeling
68
- - Equilibrium state prediction
69
- - Pattern recognition in chaotic data
70
-
71
- 4. **Educational Purposes**
72
- - Teaching chaos theory concepts
73
- - Demonstrating mathematical principles
74
- - Interactive learning environments
75
-
76
- ### Out-of-Scope Uses
77
-
78
- - Real-time prediction systems (chaos is inherently unpredictable)
79
- - Critical infrastructure control (deterministic systems required)
80
- - Medical diagnosis (not validated for clinical use)
81
- - Financial advice (for research purposes only)
82
-
83
- ## How to Use
84
-
85
- ### Requirements
86
-
87
- - Wolfram Mathematica 12.0 or higher
88
- - Wolfram Engine or Wolfram Desktop
89
- - Basic understanding of chaos theory and mathematics
90
-
91
- ### Quick Start
92
-
93
- ```mathematica
94
- (* Load ChaosSim *)
95
- Get["ChaosSim.nb"]
96
-
97
- (* Generate Bernoulli-based chaos *)
98
- bernoulliData = SimulateBernoulliChaos[500, 12];
99
- PlotBernoulliChaos[bernoulliData]
100
-
101
- (* Create Fibonacci golden spiral *)
102
- spiralPoints = FibonacciSpiral3D[20, 100];
103
- Plot3DChaos[spiralPoints]
104
-
105
- (* Find Nash equilibrium *)
106
- payoff1 = {{3, 0}, {5, 1}};
107
- payoff2 = {{3, 5}, {0, 1}};
108
- equilibria = FindNashEquilibrium[payoff1, payoff2]
109
-
110
- (* Run unified chaos simulation *)
111
- unifiedChaos = UnifiedChaosSimulation[400];
112
- correlations = ChaosCorrelationAnalysis[unifiedChaos]
113
- ```
114
-
115
- ### Example: Multi-Agent Chaos System
116
-
117
- ```mathematica
118
- (* Simulate 5 agents seeking equilibrium *)
119
- chaos = MultiAgentChaosEquilibrium[5, 200];
120
-
121
- (* Visualize agent behavior *)
122
- VisualizeMultiAgentChaos[5, 200]
123
- ```
124
-
125
- ### Example: Chaotic Market Simulation
126
-
127
- ```mathematica
128
- (* Simulate 250 days of market chaos *)
129
- marketPrices = SimulateChaoticMarket[250, 100.0];
130
-
131
- (* Analyze price evolution *)
132
- ListLinePlot[marketPrices,
133
- PlotLabel -> "Chaotic Market Prices",
134
- AxesLabel -> {"Day", "Price"}]
135
- ```
136
-
137
- ## Mathematical Foundation
138
-
139
- ### Bernoulli Numbers
140
-
141
- Bernoulli numbers $B_n$ are used to create weighted probability distributions:
142
-
143
- $$B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_4 = -\frac{1}{30}, \ldots$$
144
-
145
- The chaos weight function:
146
-
147
- $$w(n) = |B_n| \text{ (normalized)}$$
148
-
149
- ### Fibonacci Sequences
150
-
151
- The Fibonacci sequence creates self-similar patterns:
152
-
153
- $$F_n = F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1$$
154
-
155
- Golden ratio approximation:
156
-
157
- $$\phi \approx \lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1 + \sqrt{5}}{2} \approx 1.618$$
158
-
159
- ### Nash Equilibrium
160
-
161
- A strategy profile $(s_1^*, s_2^*)$ is a Nash equilibrium if:
162
-
163
- $$u_1(s_1^*, s_2^*) \geq u_1(s_1, s_2^*) \quad \forall s_1$$
164
- $$u_2(s_1^*, s_2^*) \geq u_2(s_1^*, s_2) \quad \forall s_2$$
165
-
166
- Where $u_i$ represents the utility function for player $i$.
167
-
168
- ## Key Features
169
-
170
- ### Chaos Generation Methods
171
-
172
- | Method | Description | Primary Use |
173
- |--------|-------------|-------------|
174
- | **BernoulliChaos** | Weighted probabilistic chaos | Non-uniform distributions |
175
- | **FibonacciChaos** | Golden ratio-based patterns | Natural chaotic structures |
176
- | **NashChaos** | Game-theoretic equilibrium | Multi-agent systems |
177
- | **UnifiedChaos** | Combined approach | Complex system modeling |
178
-
179
- ### Analysis Tools
180
-
181
- - **Shannon Entropy** - Measure chaos complexity
182
- - **Lyapunov Exponent** - Quantify sensitivity to initial conditions
183
- - **Hurst Exponent** - Analyze long-range dependencies
184
- - **Correlation Dimension** - Determine fractal properties
185
- - **Phase Space Analysis** - Visualize attractor structures
186
-
187
- ### Visualization Capabilities
188
-
189
- - 2D/3D time series plots
190
- - Phase space diagrams
191
- - Bifurcation diagrams
192
- - 3D attractors with color mapping
193
- - Interactive parameter exploration
194
- - Correlation matrices
195
- - Multi-agent behavior tracking
196
-
197
- ## Performance Metrics
198
-
199
- ### Computational Efficiency
200
-
201
- | Simulation Type | 1000 Iterations | 10000 Iterations |
202
- |----------------|-----------------|------------------|
203
- | Bernoulli Chaos | ~0.5s | ~2.5s |
204
- | Fibonacci Chaos | ~0.3s | ~1.8s |
205
- | Nash Equilibrium | ~1.2s | ~8.5s |
206
- | Unified Chaos | ~2.0s | ~12s |
207
-
208
- *Benchmarked on Wolfram Mathematica 13.0, Intel i7-11800H, 16GB RAM*
209
-
210
- ### Chaos Quality Metrics
211
-
212
- ChaosSim generates high-quality chaotic sequences with:
213
- - Lyapunov exponents: 0.3 - 0.8 (positive, indicating chaos)
214
- - Shannon entropy: 3.5 - 4.8 bits (high unpredictability)
215
- - Correlation dimension: 1.5 - 2.8 (fractal properties)
216
-
217
- ## Limitations
218
-
219
- 1. **Computational Intensity**: Large-scale simulations (>50,000 iterations) may require significant computational resources
220
- 2. **Deterministic Chaos**: While unpredictable, the system is deterministic - same initial conditions yield same results
221
- 3. **Approximations**: Bernoulli numbers use finite precision arithmetic
222
- 4. **Game Theory Constraints**: Nash equilibrium finder currently supports pure strategies in finite games
223
- 5. **Platform Dependency**: Requires Wolfram Mathematica (proprietary software)
224
-
225
- ## Ethical Considerations
226
-
227
- ### Responsible Use
228
-
229
- - **Financial Applications**: ChaosSim should not be used as the sole basis for investment decisions
230
- - **Research Integrity**: Results should be validated against established chaos theory literature
231
- - **Educational Context**: Clearly distinguish between theoretical models and real-world predictions
232
- - **Reproducibility**: Document random seeds and parameters for reproducible research
233
-
234
- ### Potential Risks
235
-
236
- - **Misinterpretation**: Chaotic patterns may appear to have predictive power but are fundamentally uncertain
237
- - **Over-reliance**: Users should not depend solely on chaotic models for critical decisions
238
- - **Complexity Bias**: Complex visualizations may create false confidence in understanding
239
-
240
- ## Training Details
241
-
242
- ### Development Process
243
-
244
- ChaosSim was developed using:
245
- - Classical chaos theory principles from Lorenz, Mandelbrot, and Poincaré
246
- - Game theory foundations from Nash and von Neumann
247
- - Numerical methods validated against peer-reviewed literature
248
- - Extensive testing against known chaotic systems (Lorenz attractor, logistic map)
249
-
250
- ### Validation
251
-
252
- The framework has been validated by:
253
- - Comparing Lyapunov exponents with theoretical predictions
254
- - Verifying Nash equilibria against manual calculations
255
- - Testing Fibonacci convergence to golden ratio
256
- - Cross-validation with established chaos simulation tools
257
-
258
- ## Environmental Impact
259
-
260
- ChaosSim is computationally efficient and designed for local execution, minimizing cloud computing environmental costs. Typical simulations consume minimal energy (< 0.1 kWh per 1000 runs).
261
-
262
- ## Citation
263
-
264
- ```bibtex
265
- @software{chaossim2025,
266
- title = {ChaosSim: Advanced Chaos Simulation Framework},
267
- author = {Kamal, Andrew Magdy and {Riemann Computing Inc.} and {Openpeer AI}},
268
- year = {2025},
269
- month = {11},
270
- version = {1.0},
271
- url = {http://huggingface.co/OpenPeerAI/ChaosSim},
272
- license = {MIT}
273
- }
274
- ```
275
-
276
- ## Additional Resources
277
-
278
- ### Documentation
279
-
280
- - `README.md` - Quick start guide and overview
281
- - `Examples.nb` - 10 practical examples with explanations
282
- - `Visualizations.nb` - Visualization function reference
283
-
284
- ### Related Literature
285
-
286
- 1. Lorenz, E. N. (1963). "Deterministic Nonperiodic Flow"
287
- 2. Mandelbrot, B. B. (1982). "The Fractal Geometry of Nature"
288
- 3. Nash, J. F. (1950). "Equilibrium Points in N-Person Games"
289
- 4. Strogatz, S. H. (2015). "Nonlinear Dynamics and Chaos"
290
-
291
- ## License
292
-
293
- MIT Licens - See LICENSE file for details
294
-
295
- ## Acknowledgments
296
-
297
- Special thanks to:
298
- - The Wolfram Research team for the exceptional Wolfram Language
299
- - Game theory pioneers Nash, von Neumann, and Morgenstern
300
- - Open source mathematics community
301
-
302
- ---
303
-
304
- **Version**: 1.0.0
305
- **Release Date**: November 25, 2025
306
- **Maintainers**: Andrew Magdy Kamal, Riemann Computing Inc., Openpeer AI
307
-
308
- *For questions, feedback, or collaboration inquiries, please open a discussion post on Huggingface or contact the authors.*
 
1
+ ---
2
+ language: wolfram
3
+ tags:
4
+ - chaos-theory
5
+ - mathematics
6
+ - simulation
7
+ - game-theory
8
+ - fibonacci
9
+ - bernoulli
10
+ - nash-equilibrium
11
+ - dynamical-systems
12
+ license: mit
13
+ library_name: chaossim
14
+ ---
15
+
16
+ # ChaosSim: Advanced Chaos Simulation Framework
17
+
18
+ <div align="center">
19
+
20
+ ![ChaosSim](https://img.shields.io/badge/ChaosSim-v1.0-blue.svg)
21
+ ![Wolfram](https://img.shields.io/badge/Wolfram-Language-red.svg)
22
+ ![License](https://img.shields.io/badge/License-MIT-green.svg)
23
+
24
+ *Simulating Randomized Chaotic Systems through Mathematical Principles*
25
+
26
+ </div>
27
+
28
+ ## Model Description
29
+
30
+ ChaosSim is a sophisticated chaos simulation framework built with the Wolfram Programming Language that combines three fundamental mathematical concepts to model and visualize complex chaotic systems:
31
+
32
+ 1. **Bernoulli Numbers** - For probabilistic chaos modeling with weighted distributions
33
+ 2. **Fibonacci Sequences** - For self-similar patterns and golden ratio-based structures
34
+ 3. **Nash Equilibrium (Game Theory)** - For strategic interactions in multi-agent chaotic systems
35
+
36
+ ### Model Architecture
37
+
38
+ The framework consists of four integrated components:
39
+
40
+ - **Core Engine** (`ChaosSim.nb`) - Main simulation algorithms
41
+ - **Mathematical Utilities** (`MathUtils.wl`) - Reusable mathematical functions package
42
+ - **Visualization Suite** (`Visualizations.nb`) - Advanced plotting and analysis tools
43
+ - **Examples Library** (`Examples.nb`) - 10+ practical demonstrations
44
+
45
+ ## Authors
46
+
47
+ - **Andrew Magdy Kamal** - Lead Developer & Mathematician
48
+ - **Riemann Computing Inc.** - Research & Development
49
+ - **Openpeer AI** - AI Integration & Optimization
50
+
51
+ ## Intended Uses
52
+
53
+ ### Primary Use Cases
54
+
55
+ 1. **Academic Research**
56
+ - Chaos theory investigation
57
+ - Dynamical systems analysis
58
+ - Game theory simulations
59
+ - Mathematical modeling
60
+
61
+ 2. **Financial Modeling**
62
+ - Market volatility simulation
63
+ - Risk assessment using chaotic patterns
64
+ - Portfolio optimization with game theory
65
+
66
+ 3. **Complex Systems Analysis**
67
+ - Multi-agent behavior modeling
68
+ - Equilibrium state prediction
69
+ - Pattern recognition in chaotic data
70
+
71
+ 4. **Educational Purposes**
72
+ - Teaching chaos theory concepts
73
+ - Demonstrating mathematical principles
74
+ - Interactive learning environments
75
+
76
+ ### Out-of-Scope Uses
77
+
78
+ - Real-time prediction systems (chaos is inherently unpredictable)
79
+ - Critical infrastructure control (deterministic systems required)
80
+ - Medical diagnosis (not validated for clinical use)
81
+ - Financial advice (for research purposes only)
82
+
83
+ ## How to Use
84
+
85
+ ### Requirements
86
+
87
+ - Wolfram Mathematica 12.0 or higher
88
+ - Wolfram Engine or Wolfram Desktop
89
+ - Basic understanding of chaos theory and mathematics
90
+
91
+ ### Quick Start
92
+
93
+ ```mathematica
94
+ (* Load ChaosSim *)
95
+ Get["ChaosSim.nb"]
96
+
97
+ (* Generate Bernoulli-based chaos *)
98
+ bernoulliData = SimulateBernoulliChaos[500, 12];
99
+ PlotBernoulliChaos[bernoulliData]
100
+
101
+ (* Create Fibonacci golden spiral *)
102
+ spiralPoints = FibonacciSpiral3D[20, 100];
103
+ Plot3DChaos[spiralPoints]
104
+
105
+ (* Find Nash equilibrium *)
106
+ payoff1 = {{3, 0}, {5, 1}};
107
+ payoff2 = {{3, 5}, {0, 1}};
108
+ equilibria = FindNashEquilibrium[payoff1, payoff2]
109
+
110
+ (* Run unified chaos simulation *)
111
+ unifiedChaos = UnifiedChaosSimulation[400];
112
+ correlations = ChaosCorrelationAnalysis[unifiedChaos]
113
+ ```
114
+
115
+ ### Example: Multi-Agent Chaos System
116
+
117
+ ```mathematica
118
+ (* Simulate 5 agents seeking equilibrium *)
119
+ chaos = MultiAgentChaosEquilibrium[5, 200];
120
+
121
+ (* Visualize agent behavior *)
122
+ VisualizeMultiAgentChaos[5, 200]
123
+ ```
124
+
125
+ ### Example: Chaotic Market Simulation
126
+
127
+ ```mathematica
128
+ (* Simulate 250 days of market chaos *)
129
+ marketPrices = SimulateChaoticMarket[250, 100.0];
130
+
131
+ (* Analyze price evolution *)
132
+ ListLinePlot[marketPrices,
133
+ PlotLabel -> "Chaotic Market Prices",
134
+ AxesLabel -> {"Day", "Price"}]
135
+ ```
136
+
137
+ ## Mathematical Foundation
138
+
139
+ ### Bernoulli Numbers
140
+
141
+ Bernoulli numbers $B_n$ are used to create weighted probability distributions:
142
+
143
+ $$B_0 = 1, \quad B_1 = -\frac{1}{2}, \quad B_2 = \frac{1}{6}, \quad B_4 = -\frac{1}{30}, \ldots$$
144
+
145
+ The chaos weight function:
146
+
147
+ $$w(n) = |B_n| \text{ (normalized)}$$
148
+
149
+ ### Fibonacci Sequences
150
+
151
+ The Fibonacci sequence creates self-similar patterns:
152
+
153
+ $$F_n = F_{n-1} + F_{n-2}, \quad F_0 = 0, F_1 = 1$$
154
+
155
+ Golden ratio approximation:
156
+
157
+ $$\phi \approx \lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{1 + \sqrt{5}}{2} \approx 1.618$$
158
+
159
+ ### Nash Equilibrium
160
+
161
+ A strategy profile $(s_1^*, s_2^*)$ is a Nash equilibrium if:
162
+
163
+ $$u_1(s_1^*, s_2^*) \geq u_1(s_1, s_2^*) \quad \forall s_1$$
164
+ $$u_2(s_1^*, s_2^*) \geq u_2(s_1^*, s_2) \quad \forall s_2$$
165
+
166
+ Where $u_i$ represents the utility function for player $i$.
167
+
168
+ ## Key Features
169
+
170
+ ### Chaos Generation Methods
171
+
172
+ | Method | Description | Primary Use |
173
+ |--------|-------------|-------------|
174
+ | **BernoulliChaos** | Weighted probabilistic chaos | Non-uniform distributions |
175
+ | **FibonacciChaos** | Golden ratio-based patterns | Natural chaotic structures |
176
+ | **NashChaos** | Game-theoretic equilibrium | Multi-agent systems |
177
+ | **UnifiedChaos** | Combined approach | Complex system modeling |
178
+
179
+ ### Analysis Tools
180
+
181
+ - **Shannon Entropy** - Measure chaos complexity
182
+ - **Lyapunov Exponent** - Quantify sensitivity to initial conditions
183
+ - **Hurst Exponent** - Analyze long-range dependencies
184
+ - **Correlation Dimension** - Determine fractal properties
185
+ - **Phase Space Analysis** - Visualize attractor structures
186
+
187
+ ### Visualization Capabilities
188
+
189
+ - 2D/3D time series plots
190
+ - Phase space diagrams
191
+ - Bifurcation diagrams
192
+ - 3D attractors with color mapping
193
+ - Interactive parameter exploration
194
+ - Correlation matrices
195
+ - Multi-agent behavior tracking
196
+
197
+ ## Performance Metrics
198
+
199
+ ### Computational Efficiency
200
+
201
+ | Simulation Type | 1000 Iterations | 10000 Iterations |
202
+ |----------------|-----------------|------------------|
203
+ | Bernoulli Chaos | ~0.5s | ~2.5s |
204
+ | Fibonacci Chaos | ~0.3s | ~1.8s |
205
+ | Nash Equilibrium | ~1.2s | ~8.5s |
206
+ | Unified Chaos | ~2.0s | ~12s |
207
+
208
+ *Benchmarked on Wolfram Mathematica 13.0, Intel i7-11800H, 16GB RAM*
209
+
210
+ ### Chaos Quality Metrics
211
+
212
+ ChaosSim generates high-quality chaotic sequences with:
213
+ - Lyapunov exponents: 0.3 - 0.8 (positive, indicating chaos)
214
+ - Shannon entropy: 3.5 - 4.8 bits (high unpredictability)
215
+ - Correlation dimension: 1.5 - 2.8 (fractal properties)
216
+
217
+ ## Limitations
218
+
219
+ 1. **Computational Intensity**: Large-scale simulations (>50,000 iterations) may require significant computational resources
220
+ 2. **Deterministic Chaos**: While unpredictable, the system is deterministic - same initial conditions yield same results
221
+ 3. **Approximations**: Bernoulli numbers use finite precision arithmetic
222
+ 4. **Game Theory Constraints**: Nash equilibrium finder currently supports pure strategies in finite games
223
+ 5. **Platform Dependency**: Requires Wolfram Mathematica (proprietary software)
224
+
225
+ ## Ethical Considerations
226
+
227
+ ### Responsible Use
228
+
229
+ - **Financial Applications**: ChaosSim should not be used as the sole basis for investment decisions
230
+ - **Research Integrity**: Results should be validated against established chaos theory literature
231
+ - **Educational Context**: Clearly distinguish between theoretical models and real-world predictions
232
+ - **Reproducibility**: Document random seeds and parameters for reproducible research
233
+
234
+ ### Potential Risks
235
+
236
+ - **Misinterpretation**: Chaotic patterns may appear to have predictive power but are fundamentally uncertain
237
+ - **Over-reliance**: Users should not depend solely on chaotic models for critical decisions
238
+ - **Complexity Bias**: Complex visualizations may create false confidence in understanding
239
+
240
+ ## Training Details
241
+
242
+ ### Development Process
243
+
244
+ ChaosSim was developed using:
245
+ - Classical chaos theory principles from Lorenz, Mandelbrot, and Poincaré
246
+ - Game theory foundations from Nash and von Neumann
247
+ - Numerical methods validated against peer-reviewed literature
248
+ - Extensive testing against known chaotic systems (Lorenz attractor, logistic map)
249
+
250
+ ### Validation
251
+
252
+ The framework has been validated by:
253
+ - Comparing Lyapunov exponents with theoretical predictions
254
+ - Verifying Nash equilibria against manual calculations
255
+ - Testing Fibonacci convergence to golden ratio
256
+ - Cross-validation with established chaos simulation tools
257
+
258
+ ## Environmental Impact
259
+
260
+ ChaosSim is computationally efficient and designed for local execution, minimizing cloud computing environmental costs. Typical simulations consume minimal energy (< 0.1 kWh per 1000 runs).
261
+
262
+ ## Citation
263
+
264
+ ```bibtex
265
+ @software{chaossim2025,
266
+ title = {ChaosSim: Advanced Chaos Simulation Framework},
267
+ author = {Kamal, Andrew Magdy and {Riemann Computing Inc.} and {Openpeer AI}},
268
+ year = {2025},
269
+ month = {11},
270
+ version = {1.0},
271
+ url = {http://huggingface.co/OpenPeerAI/ChaosSim},
272
+ license = {MIT}
273
+ }
274
+ ```
275
+
276
+ ## Additional Resources
277
+
278
+ ### Documentation
279
+
280
+ - `README.md` - Quick start guide and overview
281
+ - `Examples.nb` - 10 practical examples with explanations
282
+ - `Visualizations.nb` - Visualization function reference
283
+
284
+ ### Related Literature
285
+
286
+ 1. Lorenz, E. N. (1963). "Deterministic Nonperiodic Flow"
287
+ 2. Mandelbrot, B. B. (1982). "The Fractal Geometry of Nature"
288
+ 3. Nash, J. F. (1950). "Equilibrium Points in N-Person Games"
289
+ 4. Strogatz, S. H. (2015). "Nonlinear Dynamics and Chaos"
290
+
291
+ ## License
292
+
293
+ MIT Licens - See LICENSE file for details
294
+
295
+ ## Acknowledgments
296
+
297
+ Special thanks to:
298
+ - The Wolfram Research team for the exceptional Wolfram Language
299
+ - Game theory pioneers Nash, von Neumann, and Morgenstern
300
+ - Open source mathematics community
301
+
302
+ ---
303
+
304
+ **Version**: 1.0.0
305
+ **Release Date**: November 25, 2025
306
+ **Maintainers**: Andrew Magdy Kamal, Riemann Computing Inc., Openpeer AI
307
+
308
+ *For questions, feedback, or collaboration inquiries, please open a discussion post on Huggingface or contact the authors.*