Delete TEST_RESULTS.md
Browse files- TEST_RESULTS.md +0 -450
TEST_RESULTS.md
DELETED
|
@@ -1,450 +0,0 @@
|
|
| 1 |
-
# ChaosSim Test Results
|
| 2 |
-
|
| 3 |
-
**Test Date**: November 25, 2025
|
| 4 |
-
**Tested By**: Development Team
|
| 5 |
-
**Framework Version**: 1.0.0
|
| 6 |
-
**Platform**: Wolfram Mathematica 13.x
|
| 7 |
-
|
| 8 |
-
---
|
| 9 |
-
|
| 10 |
-
## Test Environment
|
| 11 |
-
|
| 12 |
-
- **Operating System**: Windows 11
|
| 13 |
-
- **Wolfram Version**: 13.0+
|
| 14 |
-
- **Memory**: 16GB RAM recommended
|
| 15 |
-
- **Processor**: Multi-core processor (4+ cores recommended)
|
| 16 |
-
|
| 17 |
-
---
|
| 18 |
-
|
| 19 |
-
## Unit Tests
|
| 20 |
-
|
| 21 |
-
### 1. Bernoulli Number Functions
|
| 22 |
-
|
| 23 |
-
#### Test: `BernoulliChaosWeight[n]`
|
| 24 |
-
|
| 25 |
-
**Expected Behavior**: Returns absolute value of nth Bernoulli number, returns 0.001 for B₀=0
|
| 26 |
-
|
| 27 |
-
```mathematica
|
| 28 |
-
(* Test cases *)
|
| 29 |
-
BernoulliChaosWeight[0] (* Expected: 0.001 *)
|
| 30 |
-
BernoulliChaosWeight[2] (* Expected: 0.166667 *)
|
| 31 |
-
BernoulliChaosWeight[4] (* Expected: 0.0333333 *)
|
| 32 |
-
```
|
| 33 |
-
|
| 34 |
-
**Status**: ✅ PASS
|
| 35 |
-
**Notes**: Correctly handles zero Bernoulli numbers and returns normalized weights
|
| 36 |
-
|
| 37 |
-
#### Test: `SimulateBernoulliChaos[iterations, complexity]`
|
| 38 |
-
|
| 39 |
-
**Expected Behavior**: Generates chaos sequence of specified length with values in [0, 1]
|
| 40 |
-
|
| 41 |
-
```mathematica
|
| 42 |
-
(* Generate 100 iterations *)
|
| 43 |
-
data = SimulateBernoulliChaos[100, 10];
|
| 44 |
-
Length[data] (* Expected: 100 *)
|
| 45 |
-
Min[data] >= 0 && Max[data] <= 1 (* Expected: True *)
|
| 46 |
-
```
|
| 47 |
-
|
| 48 |
-
**Status**: ✅ PASS
|
| 49 |
-
**Output Range**: [0, 1]
|
| 50 |
-
**Sequence Length**: Matches input parameter
|
| 51 |
-
|
| 52 |
-
#### Test: `BernoulliAttractor[steps, dimension]`
|
| 53 |
-
|
| 54 |
-
**Expected Behavior**: Creates 3D point cloud with specified number of steps
|
| 55 |
-
|
| 56 |
-
```mathematica
|
| 57 |
-
points = BernoulliAttractor[1000, 3];
|
| 58 |
-
Dimensions[points] (* Expected: {1000, 3} *)
|
| 59 |
-
```
|
| 60 |
-
|
| 61 |
-
**Status**: ✅ PASS
|
| 62 |
-
**Dimensions**: Correct 3D output
|
| 63 |
-
|
| 64 |
-
---
|
| 65 |
-
|
| 66 |
-
### 2. Fibonacci Functions
|
| 67 |
-
|
| 68 |
-
#### Test: `GenerateFibonacciSequence[n]`
|
| 69 |
-
|
| 70 |
-
**Expected Behavior**: Returns first n Fibonacci numbers
|
| 71 |
-
|
| 72 |
-
```mathematica
|
| 73 |
-
fibs = GenerateFibonacciSequence[10];
|
| 74 |
-
(* Expected: {1, 1, 2, 3, 5, 8, 13, 21, 34, 55} *)
|
| 75 |
-
```
|
| 76 |
-
|
| 77 |
-
**Status**: ✅ PASS
|
| 78 |
-
**Validation**: Sequence follows F(n) = F(n-1) + F(n-2)
|
| 79 |
-
|
| 80 |
-
#### Test: `FibonacciChaosSequence[depth, variance]`
|
| 81 |
-
|
| 82 |
-
**Expected Behavior**: Creates chaos from golden ratio deviations
|
| 83 |
-
|
| 84 |
-
```mathematica
|
| 85 |
-
chaos = FibonacciChaosSequence[50, 0.1];
|
| 86 |
-
Length[chaos] (* Expected: 49 (depth-1) *)
|
| 87 |
-
```
|
| 88 |
-
|
| 89 |
-
**Status**: ✅ PASS
|
| 90 |
-
**Properties**: Exhibits chaotic behavior around golden ratio
|
| 91 |
-
|
| 92 |
-
#### Test: `FibonacciSpiral3D[turns, pointsPerTurn]`
|
| 93 |
-
|
| 94 |
-
**Expected Behavior**: Generates 3D golden spiral points
|
| 95 |
-
|
| 96 |
-
```mathematica
|
| 97 |
-
spiral = FibonacciSpiral3D[10, 50];
|
| 98 |
-
Length[spiral] (* Expected: 500 *)
|
| 99 |
-
Dimensions[spiral] (* Expected: {500, 3} *)
|
| 100 |
-
```
|
| 101 |
-
|
| 102 |
-
**Status**: ✅ PASS
|
| 103 |
-
**Structure**: Forms recognizable golden spiral pattern
|
| 104 |
-
|
| 105 |
-
#### Test: `FibonacciChaosMap[iterations]`
|
| 106 |
-
|
| 107 |
-
**Expected Behavior**: Creates chaotic map using Fibonacci ratios
|
| 108 |
-
|
| 109 |
-
```mathematica
|
| 110 |
-
map = FibonacciChaosMap[500];
|
| 111 |
-
0 <= Min[map] && Max[map] <= 1 (* Expected: True *)
|
| 112 |
-
```
|
| 113 |
-
|
| 114 |
-
**Status**: ✅ PASS
|
| 115 |
-
**Range**: Values properly bounded in [0, 1]
|
| 116 |
-
|
| 117 |
-
---
|
| 118 |
-
|
| 119 |
-
### 3. Game Theory Functions
|
| 120 |
-
|
| 121 |
-
#### Test: `FindNashEquilibrium[payoff1, payoff2]`
|
| 122 |
-
|
| 123 |
-
**Expected Behavior**: Identifies pure strategy Nash equilibria
|
| 124 |
-
|
| 125 |
-
```mathematica
|
| 126 |
-
(* Prisoner's Dilemma *)
|
| 127 |
-
p1 = {{-1, -3}, {0, -2}};
|
| 128 |
-
p2 = {{-1, 0}, {-3, -2}};
|
| 129 |
-
equilibria = FindNashEquilibrium[p1, p2];
|
| 130 |
-
(* Expected: {{2, 2}} - both defect *)
|
| 131 |
-
```
|
| 132 |
-
|
| 133 |
-
**Status**: ✅ PASS
|
| 134 |
-
**Accuracy**: Correctly identifies Prisoner's Dilemma equilibrium
|
| 135 |
-
|
| 136 |
-
#### Test: `ChaosGameSimulation[rounds, players, volatility]`
|
| 137 |
-
|
| 138 |
-
**Expected Behavior**: Simulates evolving game with chaotic payoffs
|
| 139 |
-
|
| 140 |
-
```mathematica
|
| 141 |
-
history = ChaosGameSimulation[100, 2, 0.2];
|
| 142 |
-
Length[history] (* Expected: 100 *)
|
| 143 |
-
```
|
| 144 |
-
|
| 145 |
-
**Status**: ✅ PASS
|
| 146 |
-
**Output**: Returns complete game history with strategies
|
| 147 |
-
|
| 148 |
-
#### Test: `MultiAgentChaosEquilibrium[agents, iterations]`
|
| 149 |
-
|
| 150 |
-
**Expected Behavior**: Simulates multiple agents seeking equilibrium
|
| 151 |
-
|
| 152 |
-
```mathematica
|
| 153 |
-
chaos = MultiAgentChaosEquilibrium[5, 200];
|
| 154 |
-
Length[chaos] (* Expected: 200 *)
|
| 155 |
-
Length[chaos[[1, 2]]] (* Expected: 5 agents *)
|
| 156 |
-
```
|
| 157 |
-
|
| 158 |
-
**Status**: ✅ PASS
|
| 159 |
-
**Convergence**: Agents show convergence behavior toward equilibrium
|
| 160 |
-
|
| 161 |
-
---
|
| 162 |
-
|
| 163 |
-
### 4. Unified Chaos Functions
|
| 164 |
-
|
| 165 |
-
#### Test: `UnifiedChaosSimulation[steps]`
|
| 166 |
-
|
| 167 |
-
**Expected Behavior**: Combines all three chaos types
|
| 168 |
-
|
| 169 |
-
```mathematica
|
| 170 |
-
unified = UnifiedChaosSimulation[300];
|
| 171 |
-
Dimensions[unified] (* Expected: {300, 3} *)
|
| 172 |
-
```
|
| 173 |
-
|
| 174 |
-
**Status**: ✅ PASS
|
| 175 |
-
**Components**: All three chaos types present
|
| 176 |
-
|
| 177 |
-
#### Test: `ChaosCorrelationAnalysis[data]`
|
| 178 |
-
|
| 179 |
-
**Expected Behavior**: Calculates correlations between components
|
| 180 |
-
|
| 181 |
-
```mathematica
|
| 182 |
-
data = UnifiedChaosSimulation[500];
|
| 183 |
-
corr = ChaosCorrelationAnalysis[data];
|
| 184 |
-
Length[corr] (* Expected: 3 pairs *)
|
| 185 |
-
```
|
| 186 |
-
|
| 187 |
-
**Status**: ✅ PASS
|
| 188 |
-
**Output**: Returns valid correlation coefficients
|
| 189 |
-
|
| 190 |
-
---
|
| 191 |
-
|
| 192 |
-
## Integration Tests
|
| 193 |
-
|
| 194 |
-
### Test Suite 1: Complete Workflow
|
| 195 |
-
|
| 196 |
-
```mathematica
|
| 197 |
-
(* Load system *)
|
| 198 |
-
Get["ChaosSim.nb"]
|
| 199 |
-
|
| 200 |
-
(* Generate chaos *)
|
| 201 |
-
bChaos = SimulateBernoulliChaos[500, 12];
|
| 202 |
-
fChaos = FibonacciChaosSequence[100, 0.15];
|
| 203 |
-
|
| 204 |
-
(* Analyze *)
|
| 205 |
-
entropy = ChaosEntropy[bChaos];
|
| 206 |
-
lyapunov = LyapunovExponent[bChaos];
|
| 207 |
-
|
| 208 |
-
(* Visualize *)
|
| 209 |
-
PlotBernoulliChaos[bChaos];
|
| 210 |
-
```
|
| 211 |
-
|
| 212 |
-
**Status**: ✅ PASS
|
| 213 |
-
**Performance**: Completes in < 3 seconds
|
| 214 |
-
|
| 215 |
-
### Test Suite 2: Visualization Pipeline
|
| 216 |
-
|
| 217 |
-
```mathematica
|
| 218 |
-
Get["Visualizations.nb"]
|
| 219 |
-
|
| 220 |
-
(* Generate visualizations *)
|
| 221 |
-
VisualizeBernoulliChaos[1000, 12];
|
| 222 |
-
VisualizeFibonacciChaos[100];
|
| 223 |
-
VisualizeMultiAgentChaos[5, 200];
|
| 224 |
-
```
|
| 225 |
-
|
| 226 |
-
**Status**: ✅ PASS
|
| 227 |
-
**Rendering**: All plots render correctly
|
| 228 |
-
|
| 229 |
-
### Test Suite 3: Example Executions
|
| 230 |
-
|
| 231 |
-
```mathematica
|
| 232 |
-
Get["Examples.nb"]
|
| 233 |
-
|
| 234 |
-
(* Run all 10 examples *)
|
| 235 |
-
(* Examples 1-10 execute without errors *)
|
| 236 |
-
```
|
| 237 |
-
|
| 238 |
-
**Status**: ✅ PASS
|
| 239 |
-
**Coverage**: All examples complete successfully
|
| 240 |
-
|
| 241 |
-
---
|
| 242 |
-
|
| 243 |
-
## Performance Tests
|
| 244 |
-
|
| 245 |
-
### Benchmark: Chaos Generation Speed
|
| 246 |
-
|
| 247 |
-
| Function | Iterations | Time (avg) | Memory |
|
| 248 |
-
|----------|-----------|------------|---------|
|
| 249 |
-
| SimulateBernoulliChaos | 1,000 | 0.48s | 1.2 MB |
|
| 250 |
-
| SimulateBernoulliChaos | 10,000 | 2.43s | 8.5 MB |
|
| 251 |
-
| FibonacciChaosMap | 1,000 | 0.31s | 0.8 MB |
|
| 252 |
-
| FibonacciChaosMap | 10,000 | 1.85s | 6.2 MB |
|
| 253 |
-
| MultiAgentChaosEquilibrium | 5 agents, 1000 iter | 1.89s | 3.4 MB |
|
| 254 |
-
| UnifiedChaosSimulation | 1,000 | 2.12s | 4.1 MB |
|
| 255 |
-
|
| 256 |
-
**Status**: ✅ PASS
|
| 257 |
-
**Performance**: Within acceptable ranges
|
| 258 |
-
|
| 259 |
-
### Benchmark: Visualization Rendering
|
| 260 |
-
|
| 261 |
-
| Visualization | Data Points | Render Time |
|
| 262 |
-
|--------------|-------------|-------------|
|
| 263 |
-
| 2D ListPlot | 1,000 | 0.15s |
|
| 264 |
-
| 3D Attractor | 5,000 | 0.82s |
|
| 265 |
-
| Phase Space | 1,000 | 0.21s |
|
| 266 |
-
| Multi-line Plot | 5 series × 500 | 0.35s |
|
| 267 |
-
|
| 268 |
-
**Status**: ✅ PASS
|
| 269 |
-
**Rendering**: Fast and responsive
|
| 270 |
-
|
| 271 |
-
---
|
| 272 |
-
|
| 273 |
-
## Chaos Quality Tests
|
| 274 |
-
|
| 275 |
-
### Lyapunov Exponent Analysis
|
| 276 |
-
|
| 277 |
-
```mathematica
|
| 278 |
-
(* Generate chaos samples *)
|
| 279 |
-
samples = Table[SimulateBernoulliChaos[1000, 12], {10}];
|
| 280 |
-
lyapunovs = Map[LyapunovExponent, samples];
|
| 281 |
-
|
| 282 |
-
Mean[lyapunovs] (* Expected: > 0 for chaotic behavior *)
|
| 283 |
-
```
|
| 284 |
-
|
| 285 |
-
**Result**: Mean λ = 0.47 (positive - confirms chaos)
|
| 286 |
-
**Status**: ✅ PASS
|
| 287 |
-
|
| 288 |
-
### Shannon Entropy Analysis
|
| 289 |
-
|
| 290 |
-
```mathematica
|
| 291 |
-
entropies = Map[ChaosEntropy, samples];
|
| 292 |
-
Mean[entropies] (* Expected: High entropy 3-5 bits *)
|
| 293 |
-
```
|
| 294 |
-
|
| 295 |
-
**Result**: Mean entropy = 4.12 bits
|
| 296 |
-
**Status**: ✅ PASS
|
| 297 |
-
**Interpretation**: High unpredictability confirmed
|
| 298 |
-
|
| 299 |
-
### Correlation Dimension
|
| 300 |
-
|
| 301 |
-
```mathematica
|
| 302 |
-
(* Test fractal properties *)
|
| 303 |
-
dims = Map[CorrelationDimension[#, 0.1]&, samples];
|
| 304 |
-
Mean[dims] (* Expected: Non-integer (fractal) *)
|
| 305 |
-
```
|
| 306 |
-
|
| 307 |
-
**Result**: Mean dimension = 2.31
|
| 308 |
-
**Status**: ✅ PASS
|
| 309 |
-
**Interpretation**: Fractal structure present
|
| 310 |
-
|
| 311 |
-
---
|
| 312 |
-
|
| 313 |
-
## Validation Tests
|
| 314 |
-
|
| 315 |
-
### Mathematical Validation
|
| 316 |
-
|
| 317 |
-
#### Golden Ratio Convergence
|
| 318 |
-
|
| 319 |
-
```mathematica
|
| 320 |
-
(* Fibonacci ratios should converge to φ *)
|
| 321 |
-
ratios = FibonacciRatioSequence[50];
|
| 322 |
-
Last[ratios] - GoldenRatio (* Expected: < 0.001 *)
|
| 323 |
-
```
|
| 324 |
-
|
| 325 |
-
**Result**: Error = 0.00023
|
| 326 |
-
**Status**: ✅ PASS
|
| 327 |
-
|
| 328 |
-
#### Nash Equilibrium Correctness
|
| 329 |
-
|
| 330 |
-
```mathematica
|
| 331 |
-
(* Test known game equilibria *)
|
| 332 |
-
(* Matching Pennies - no pure strategy equilibrium *)
|
| 333 |
-
p1 = {{1, -1}, {-1, 1}};
|
| 334 |
-
p2 = {{-1, 1}, {1, -1}};
|
| 335 |
-
equilibria = FindNashEquilibrium[p1, p2];
|
| 336 |
-
(* Expected: {} - empty *)
|
| 337 |
-
```
|
| 338 |
-
|
| 339 |
-
**Result**: Correctly finds no pure strategy equilibrium
|
| 340 |
-
**Status**: ✅ PASS
|
| 341 |
-
|
| 342 |
-
#### Bernoulli Number Accuracy
|
| 343 |
-
|
| 344 |
-
```mathematica
|
| 345 |
-
(* Compare with known values *)
|
| 346 |
-
BernoulliB[2] (* Expected: 1/6 ≈ 0.166667 *)
|
| 347 |
-
BernoulliB[4] (* Expected: -1/30 ≈ -0.0333333 *)
|
| 348 |
-
```
|
| 349 |
-
|
| 350 |
-
**Result**: Matches Wolfram's built-in BernoulliB
|
| 351 |
-
**Status**: ✅ PASS
|
| 352 |
-
|
| 353 |
-
---
|
| 354 |
-
|
| 355 |
-
## Edge Cases and Error Handling
|
| 356 |
-
|
| 357 |
-
### Test: Zero Iterations
|
| 358 |
-
|
| 359 |
-
```mathematica
|
| 360 |
-
SimulateBernoulliChaos[0, 10] (* Expected: {} *)
|
| 361 |
-
```
|
| 362 |
-
|
| 363 |
-
**Status**: ✅ PASS - Returns empty list
|
| 364 |
-
|
| 365 |
-
### Test: Negative Parameters
|
| 366 |
-
|
| 367 |
-
```mathematica
|
| 368 |
-
BernoulliChaosWeight[-5] (* Expected: 0.001 *)
|
| 369 |
-
```
|
| 370 |
-
|
| 371 |
-
**Status**: ✅ PASS - Safe fallback value
|
| 372 |
-
|
| 373 |
-
### Test: Large Scale Simulation
|
| 374 |
-
|
| 375 |
-
```mathematica
|
| 376 |
-
(* Stress test *)
|
| 377 |
-
largeSim = SimulateBernoulliChaos[100000, 15];
|
| 378 |
-
Length[largeSim] (* Expected: 100000 *)
|
| 379 |
-
```
|
| 380 |
-
|
| 381 |
-
**Status**: ✅ PASS
|
| 382 |
-
**Time**: 24.5s
|
| 383 |
-
**Memory**: 85 MB
|
| 384 |
-
|
| 385 |
-
---
|
| 386 |
-
|
| 387 |
-
## Known Issues
|
| 388 |
-
|
| 389 |
-
### Issue 1: Mixed Strategy Nash Equilibria
|
| 390 |
-
**Status**: Not Implemented
|
| 391 |
-
**Severity**: Low
|
| 392 |
-
**Description**: Current implementation finds only pure strategy equilibria
|
| 393 |
-
**Workaround**: Use external solvers for mixed strategies
|
| 394 |
-
|
| 395 |
-
### Issue 2: Very High Complexity Parameters
|
| 396 |
-
**Status**: Performance Degradation
|
| 397 |
-
**Severity**: Low
|
| 398 |
-
**Description**: Complexity > 30 in Bernoulli chaos causes slowdown
|
| 399 |
-
**Workaround**: Keep complexity ≤ 20 for optimal performance
|
| 400 |
-
|
| 401 |
-
---
|
| 402 |
-
|
| 403 |
-
## Test Summary
|
| 404 |
-
|
| 405 |
-
| Category | Tests Run | Passed | Failed | Pass Rate |
|
| 406 |
-
|----------|-----------|--------|--------|-----------|
|
| 407 |
-
| Unit Tests | 18 | 18 | 0 | 100% |
|
| 408 |
-
| Integration Tests | 3 | 3 | 0 | 100% |
|
| 409 |
-
| Performance Tests | 10 | 10 | 0 | 100% |
|
| 410 |
-
| Validation Tests | 5 | 5 | 0 | 100% |
|
| 411 |
-
| **TOTAL** | **36** | **36** | **0** | **100%** |
|
| 412 |
-
|
| 413 |
-
---
|
| 414 |
-
|
| 415 |
-
## Recommendations
|
| 416 |
-
|
| 417 |
-
### For Users
|
| 418 |
-
|
| 419 |
-
1. ✅ Start with small iterations (< 1000) to understand behavior
|
| 420 |
-
2. ✅ Use provided examples as templates
|
| 421 |
-
3. ✅ Monitor memory usage for large-scale simulations
|
| 422 |
-
4. ✅ Validate results against theoretical expectations
|
| 423 |
-
|
| 424 |
-
### For Developers
|
| 425 |
-
|
| 426 |
-
1. 🔄 Consider implementing mixed strategy Nash equilibria
|
| 427 |
-
2. 🔄 Add parallel processing for large simulations
|
| 428 |
-
3. 🔄 Optimize memory usage for 100k+ iterations
|
| 429 |
-
4. ✅ Current implementation is production-ready
|
| 430 |
-
|
| 431 |
-
---
|
| 432 |
-
|
| 433 |
-
## Conclusion
|
| 434 |
-
|
| 435 |
-
ChaosSim has successfully passed all test suites with 100% pass rate. The framework demonstrates:
|
| 436 |
-
|
| 437 |
-
- ✅ Correct mathematical implementations
|
| 438 |
-
- ✅ Robust chaos generation
|
| 439 |
-
- ✅ Accurate game theory calculations
|
| 440 |
-
- ✅ Efficient performance
|
| 441 |
-
- ✅ High-quality visualizations
|
| 442 |
-
- ✅ Comprehensive functionality
|
| 443 |
-
|
| 444 |
-
**Overall Status**: ✅ **PRODUCTION READY**
|
| 445 |
-
|
| 446 |
-
---
|
| 447 |
-
|
| 448 |
-
**Test Report Version**: 1.0
|
| 449 |
-
**Next Review Date**: December 25, 2025
|
| 450 |
-
**Tested By**: Andrew Magdy Kamal, Riemann Computing Inc., Openpeer AI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|