Update README.md
Browse files
README.md
CHANGED
|
@@ -1,84 +1,99 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
-
|
| 12 |
-
-
|
| 13 |
-
-
|
| 14 |
-
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
##
|
| 56 |
-
|
| 57 |
-
###
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
library_name: chaossim
|
| 6 |
+
tags:
|
| 7 |
+
- chaos-theory
|
| 8 |
+
- mathematics
|
| 9 |
+
- simulation
|
| 10 |
+
- game-theory
|
| 11 |
+
- fibonacci
|
| 12 |
+
- bernoulli
|
| 13 |
+
- nash-equilibrium
|
| 14 |
+
- dynamical-systems
|
| 15 |
+
---
|
| 16 |
+
# ChaosSim
|
| 17 |
+
|
| 18 |
+
A sophisticated chaos simulation software utilizing Wolfram Programming Language to model randomized chaotic systems through mathematical principles.
|
| 19 |
+
|
| 20 |
+
## Overview
|
| 21 |
+
|
| 22 |
+
ChaosSim combines Bernoulli numbers, Fibonacci sequences, and game-sum theory (Nash equilibrium) to simulate and visualize complex chaotic patterns and behaviors in mathematical systems.
|
| 23 |
+
|
| 24 |
+
## Features
|
| 25 |
+
|
| 26 |
+
- **Bernoulli Number Integration**: Leverage Bernoulli numbers for probabilistic chaos modeling
|
| 27 |
+
- **Fibonacci-Based Patterns**: Generate chaotic sequences based on Fibonacci number properties
|
| 28 |
+
- **Nash Equilibrium Analysis**: Apply game theory principles to simulate equilibrium states in chaotic systems
|
| 29 |
+
- **Advanced Visualizations**: Create stunning visual representations of chaotic patterns
|
| 30 |
+
- **Customizable Parameters**: Adjust simulation parameters for different chaos scenarios
|
| 31 |
+
|
| 32 |
+
## Requirements
|
| 33 |
+
|
| 34 |
+
- Wolfram Mathematica (version 12.0 or higher recommended)
|
| 35 |
+
- Wolfram Engine or Wolfram Desktop
|
| 36 |
+
|
| 37 |
+
## Project Structure
|
| 38 |
+
|
| 39 |
+
```
|
| 40 |
+
ChaosSim/
|
| 41 |
+
βββ README.md # Project documentation
|
| 42 |
+
βββ ChaosSim.nb # Main simulation notebook
|
| 43 |
+
βββ MathUtils.wl # Mathematical utility functions
|
| 44 |
+
βββ Visualizations.nb # Visualization examples
|
| 45 |
+
βββ Examples.nb # Sample simulations
|
| 46 |
+
```
|
| 47 |
+
|
| 48 |
+
## Getting Started
|
| 49 |
+
|
| 50 |
+
1. Open `ChaosSim.nb` in Wolfram Mathematica
|
| 51 |
+
2. Evaluate all cells to initialize the simulation environment
|
| 52 |
+
3. Explore different chaos scenarios by adjusting parameters
|
| 53 |
+
4. Check `Examples.nb` for pre-built simulation demonstrations
|
| 54 |
+
|
| 55 |
+
## Usage
|
| 56 |
+
|
| 57 |
+
### Basic Chaos Simulation
|
| 58 |
+
|
| 59 |
+
```mathematica
|
| 60 |
+
(* Generate Bernoulli-based chaos *)
|
| 61 |
+
bernoullliChaos = SimulateBernoulliChaos[iterations, complexity]
|
| 62 |
+
|
| 63 |
+
(* Create Fibonacci pattern *)
|
| 64 |
+
fibonacciPattern = GenerateFibonacciChaos[depth, variance]
|
| 65 |
+
|
| 66 |
+
(* Analyze Nash equilibrium *)
|
| 67 |
+
nashState = AnalyzeNashEquilibrium[payoffMatrix, players]
|
| 68 |
+
```
|
| 69 |
+
|
| 70 |
+
## Mathematical Foundation
|
| 71 |
+
|
| 72 |
+
### Bernoulli Numbers
|
| 73 |
+
Used for generating probabilistic distributions in chaos modeling, providing smooth transitions between chaotic states.
|
| 74 |
+
|
| 75 |
+
### Fibonacci Sequences
|
| 76 |
+
Creates self-similar patterns and golden ratio-based chaos structures, fundamental to natural chaotic systems.
|
| 77 |
+
|
| 78 |
+
### Nash Equilibrium
|
| 79 |
+
Models strategic interactions in multi-agent chaotic systems, determining stable states in game-theoretic scenarios.
|
| 80 |
+
|
| 81 |
+
## Examples
|
| 82 |
+
|
| 83 |
+
See `Examples.nb` for complete demonstrations including:
|
| 84 |
+
- Multi-dimensional chaos attractors
|
| 85 |
+
- Bernoulli-weighted random walks
|
| 86 |
+
- Fibonacci spiral chaos patterns
|
| 87 |
+
- Game-theoretic equilibrium in chaotic markets
|
| 88 |
+
|
| 89 |
+
## License
|
| 90 |
+
|
| 91 |
+
MIT License - Feel free to use and modify for your research and projects.
|
| 92 |
+
|
| 93 |
+
## Contributing
|
| 94 |
+
|
| 95 |
+
Contributions are welcome! Please feel free to submit pull requests or open issues for bugs and feature requests.
|
| 96 |
+
|
| 97 |
+
## Author
|
| 98 |
+
|
| 99 |
+
Created for advanced chaos theory research and mathematical simulation.
|