Mentors4EDU commited on
Commit
a3128b2
Β·
verified Β·
1 Parent(s): e2150b1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +99 -84
README.md CHANGED
@@ -1,84 +1,99 @@
1
- # ChaosSim
2
-
3
- A sophisticated chaos simulation software utilizing Wolfram Programming Language to model randomized chaotic systems through mathematical principles.
4
-
5
- ## Overview
6
-
7
- ChaosSim combines Bernoulli numbers, Fibonacci sequences, and game-sum theory (Nash equilibrium) to simulate and visualize complex chaotic patterns and behaviors in mathematical systems.
8
-
9
- ## Features
10
-
11
- - **Bernoulli Number Integration**: Leverage Bernoulli numbers for probabilistic chaos modeling
12
- - **Fibonacci-Based Patterns**: Generate chaotic sequences based on Fibonacci number properties
13
- - **Nash Equilibrium Analysis**: Apply game theory principles to simulate equilibrium states in chaotic systems
14
- - **Advanced Visualizations**: Create stunning visual representations of chaotic patterns
15
- - **Customizable Parameters**: Adjust simulation parameters for different chaos scenarios
16
-
17
- ## Requirements
18
-
19
- - Wolfram Mathematica (version 12.0 or higher recommended)
20
- - Wolfram Engine or Wolfram Desktop
21
-
22
- ## Project Structure
23
-
24
- ```
25
- ChaosSim/
26
- β”œβ”€β”€ README.md # Project documentation
27
- β”œβ”€β”€ ChaosSim.nb # Main simulation notebook
28
- β”œβ”€β”€ MathUtils.wl # Mathematical utility functions
29
- β”œβ”€β”€ Visualizations.nb # Visualization examples
30
- └── Examples.nb # Sample simulations
31
- ```
32
-
33
- ## Getting Started
34
-
35
- 1. Open `ChaosSim.nb` in Wolfram Mathematica
36
- 2. Evaluate all cells to initialize the simulation environment
37
- 3. Explore different chaos scenarios by adjusting parameters
38
- 4. Check `Examples.nb` for pre-built simulation demonstrations
39
-
40
- ## Usage
41
-
42
- ### Basic Chaos Simulation
43
-
44
- ```mathematica
45
- (* Generate Bernoulli-based chaos *)
46
- bernoullliChaos = SimulateBernoulliChaos[iterations, complexity]
47
-
48
- (* Create Fibonacci pattern *)
49
- fibonacciPattern = GenerateFibonacciChaos[depth, variance]
50
-
51
- (* Analyze Nash equilibrium *)
52
- nashState = AnalyzeNashEquilibrium[payoffMatrix, players]
53
- ```
54
-
55
- ## Mathematical Foundation
56
-
57
- ### Bernoulli Numbers
58
- Used for generating probabilistic distributions in chaos modeling, providing smooth transitions between chaotic states.
59
-
60
- ### Fibonacci Sequences
61
- Creates self-similar patterns and golden ratio-based chaos structures, fundamental to natural chaotic systems.
62
-
63
- ### Nash Equilibrium
64
- Models strategic interactions in multi-agent chaotic systems, determining stable states in game-theoretic scenarios.
65
-
66
- ## Examples
67
-
68
- See `Examples.nb` for complete demonstrations including:
69
- - Multi-dimensional chaos attractors
70
- - Bernoulli-weighted random walks
71
- - Fibonacci spiral chaos patterns
72
- - Game-theoretic equilibrium in chaotic markets
73
-
74
- ## License
75
-
76
- MIT License - Feel free to use and modify for your research and projects.
77
-
78
- ## Contributing
79
-
80
- Contributions are welcome! Please feel free to submit pull requests or open issues for bugs and feature requests.
81
-
82
- ## Author
83
-
84
- Created for advanced chaos theory research and mathematical simulation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ library_name: chaossim
6
+ tags:
7
+ - chaos-theory
8
+ - mathematics
9
+ - simulation
10
+ - game-theory
11
+ - fibonacci
12
+ - bernoulli
13
+ - nash-equilibrium
14
+ - dynamical-systems
15
+ ---
16
+ # ChaosSim
17
+
18
+ A sophisticated chaos simulation software utilizing Wolfram Programming Language to model randomized chaotic systems through mathematical principles.
19
+
20
+ ## Overview
21
+
22
+ ChaosSim combines Bernoulli numbers, Fibonacci sequences, and game-sum theory (Nash equilibrium) to simulate and visualize complex chaotic patterns and behaviors in mathematical systems.
23
+
24
+ ## Features
25
+
26
+ - **Bernoulli Number Integration**: Leverage Bernoulli numbers for probabilistic chaos modeling
27
+ - **Fibonacci-Based Patterns**: Generate chaotic sequences based on Fibonacci number properties
28
+ - **Nash Equilibrium Analysis**: Apply game theory principles to simulate equilibrium states in chaotic systems
29
+ - **Advanced Visualizations**: Create stunning visual representations of chaotic patterns
30
+ - **Customizable Parameters**: Adjust simulation parameters for different chaos scenarios
31
+
32
+ ## Requirements
33
+
34
+ - Wolfram Mathematica (version 12.0 or higher recommended)
35
+ - Wolfram Engine or Wolfram Desktop
36
+
37
+ ## Project Structure
38
+
39
+ ```
40
+ ChaosSim/
41
+ β”œβ”€β”€ README.md # Project documentation
42
+ β”œβ”€β”€ ChaosSim.nb # Main simulation notebook
43
+ β”œβ”€β”€ MathUtils.wl # Mathematical utility functions
44
+ β”œβ”€β”€ Visualizations.nb # Visualization examples
45
+ └── Examples.nb # Sample simulations
46
+ ```
47
+
48
+ ## Getting Started
49
+
50
+ 1. Open `ChaosSim.nb` in Wolfram Mathematica
51
+ 2. Evaluate all cells to initialize the simulation environment
52
+ 3. Explore different chaos scenarios by adjusting parameters
53
+ 4. Check `Examples.nb` for pre-built simulation demonstrations
54
+
55
+ ## Usage
56
+
57
+ ### Basic Chaos Simulation
58
+
59
+ ```mathematica
60
+ (* Generate Bernoulli-based chaos *)
61
+ bernoullliChaos = SimulateBernoulliChaos[iterations, complexity]
62
+
63
+ (* Create Fibonacci pattern *)
64
+ fibonacciPattern = GenerateFibonacciChaos[depth, variance]
65
+
66
+ (* Analyze Nash equilibrium *)
67
+ nashState = AnalyzeNashEquilibrium[payoffMatrix, players]
68
+ ```
69
+
70
+ ## Mathematical Foundation
71
+
72
+ ### Bernoulli Numbers
73
+ Used for generating probabilistic distributions in chaos modeling, providing smooth transitions between chaotic states.
74
+
75
+ ### Fibonacci Sequences
76
+ Creates self-similar patterns and golden ratio-based chaos structures, fundamental to natural chaotic systems.
77
+
78
+ ### Nash Equilibrium
79
+ Models strategic interactions in multi-agent chaotic systems, determining stable states in game-theoretic scenarios.
80
+
81
+ ## Examples
82
+
83
+ See `Examples.nb` for complete demonstrations including:
84
+ - Multi-dimensional chaos attractors
85
+ - Bernoulli-weighted random walks
86
+ - Fibonacci spiral chaos patterns
87
+ - Game-theoretic equilibrium in chaotic markets
88
+
89
+ ## License
90
+
91
+ MIT License - Feel free to use and modify for your research and projects.
92
+
93
+ ## Contributing
94
+
95
+ Contributions are welcome! Please feel free to submit pull requests or open issues for bugs and feature requests.
96
+
97
+ ## Author
98
+
99
+ Created for advanced chaos theory research and mathematical simulation.